General Electric Company

February 7, 2024

Final Report

2023 ANNUAL PROGRESS REPORT FORMER INDIANAPOLIS CONSUMER ELECTRONICS PLANT (SHERMAN PARK FACILITY), INDIANAPOLIS, INDIANA (VRP #6020801)

2023 ANNUAL PROGRESS REPORT FORMER INDIANAPOLIS CONSUMER ELECTRONICS PLANT (SHERMAN PARK FACILITY), INDIANAPOLIS, INDIANA (VRP #6020801)

Project name Former Indianapolis Consumer Electronics Plant (Sherman Park,

Indianapolis, IN

Project no. 1940103494
Document type Final Report
Date February 7, 2024
Prepared by Matt Starrett – Ramboll
Checked by Chase Forman – Ramboll

CONTENTS

1.	Introduction	1
2.	2023 Groundwater Monitoring Activities	5
2.1	Monitoring Well Network and Sampling Schedule	5
2.2	Field Procedures	6
2.3	Laboratory Analyses	7
3.	2023 Soil Gas Monitoring Activities	9
3.1	Soil-Gas Monitoring	9
3.2	Field Procedures	9
4.	Summary of 2023 Injection Activities	11
5.	Groundwater Monitoring Results	12
5.1	Well Conditions	12
5.2	Groundwater Elevation and Flow Direction	12
5.3	Field Parameters	13
5.4	Laboratory Analytical Results	14
5.4.1	General Summary	14
5.4.2	CVOCs and Trend Analyses	14
5.4.3	Dissolved Hydrocarbon Gases	18
6.	Summary, Recommendations and 2024 Activities	20
6.1	Reductive Dechlorination	20
6.2	Recommendations	20
6.3	2024 Activities	20
7.	References	21

LIST OF TABLES

- Table 1 Summary of Monitoring Well Construction Details
- Table 2 Monitoring Well Sampling Program Summary
- Table 3 Groundwater Monitoring Well Elevations -2023
- Table 4a Stabilized pH Measurements in Remedial Monitoring Wells
- Table 4b Stabilized Temperature Measurements in Remedial Monitoring Wells
- Table 4c Stabilized Specific Conductivity Measurements in Remedial Monitoring Wells
- Table 4d Stabilized Dissolved Oxygen Measurements in Remedial Monitoring Wells
- Table 4e Stabilized ORP Measurements in Remedial Monitoring Wells
- Table 5 Groundwater VOC Analytical Results 2023
- Table 6a Concentrations of Methane in Selected Monitoring Wells
- Table 6b Concentrations of Ethane in Selected Monitoring Wells
- Table 6c Concentrations of Ethene in Selected Monitoring Wells

LIST OF FIGURES

- Figure 1 Site Location Map
- Figure 2 Site Layout
- Figure 3 Injection Well Locations
- Figure 4 Monitoring Well Sampling Location Map
- Figure 5a Potentiometric Surface Map (Upper Water-Bearing Unit) July 2023
- Figure 5b Potentiometric Surface Map (Middle Water-Bearing Unit) July 2023
- Figure 5c Potentiometric Surface Map (Lower Water-Bearing Unit) July 2023
- Figure 6a TCE Concentrations in Groundwater (Upper Water-Bearing Unit) July 2023
- Figure 6b TCE Concentrations in Groundwater (Middle Water-Bearing Unit) July 2023
- Figure 6c TCE Concentrations in Groundwater (Lower Water-Bearing Unit) July 2023
- Figure 7a cDCE Concentrations in Groundwater (Upper Water-Bearing Unit) July 2023
- Figure 7b cDCE Concentrations in Groundwater (Middle Water-Bearing Unit) July 2023
- Figure 7c cDCE Concentrations in Groundwater (Lower Water-Bearing Unit) July 2023
- Figure 8a VC Concentrations in Groundwater (Upper Water-Bearing Unit) July 2023
- Figure 8b VC Concentrations in Groundwater (Middle Water-Bearing Unit) July 2023
- Figure 8c VC Concentrations in Groundwater (Lower Water-Bearing Unit) July 2023
- Figure 9a TCA Concentrations in Groundwater (Upper Water-Bearing Unit) July 2023
- Figure 9b TCA Concentrations in Groundwater (Middle Water-Bearing Unit) July 2023
- Figure 9c TCA Concentrations in Groundwater (Lower Water-Bearing Unit) July 2023
- Figure 10a 11DCE Concentrations in Groundwater (Upper Water-Bearing Unit) July 2023
- Figure 10b 11DCE Concentrations in Groundwater (Middle Water-Bearing Unit) July 2023
- Figure 10c 11DCE Concentrations in Groundwater (Lower Water-Bearing Unit) July 2023
- Figure 11a 11DCA Concentrations in Groundwater (Upper Water-Bearing Unit) July 2023
- Figure 11b 11DCA Concentrations in Groundwater (Middle Water-Bearing Unit) July 2023
- Figure 11c 11DCA Concentrations in Groundwater (Lower Water-Bearing Unit) July 2023

LIST OF APPENDICES

Appendix A - Field Forms and Notes

- Appendix A-1 January/February 2023 Groundwater Sampling Field Notes
- Appendix A-2 April 2023 Groundwater Sampling Field Notes
- Appendix A-3 July/September 2023 Groundwater Sampling Field Notes
- Appendix A-4 October/December 2023 Groundwater Sampling Field Notes

Appendix B - Supplemental Amendment Injection Summary Report

Appendix C - Laboratory Analytical Reports

Appendix C-1 – January/February 2023 Groundwater Sampling Event

Appendix C-2 – April 2023 Groundwater Sampling Event

Appendix C-3 – July/September 2023 Groundwater Sampling Event

Appendix C-4 – October/December 2023 Groundwater Sampling Event

Appendix D – VOC Concentration Trend Charts

Appendix D-1 – TCE and Breakdown Products

Appendix D-2 – TCA and Breakdown Products

1. INTRODUCTION

The General Electric Company (GE) is submitting this Annual Progress Report (APR) for the 2023 calendar year for the Sherman Park Facility (also known as the Former Indianapolis Consumer Electronics [CE] Plant) (hereafter the "Site") located at 600 North Sherman Drive in Indianapolis, Marion County, Indiana (**Figure 1**). The Site is approximately 50 acres and is currently owned by the City of Indianapolis and is zoned "C-S", which designates Customized Commercial Mixed-Use. The Site is in a mixed-use setting that includes areas of industrial, commercial, and residential land use, and is bounded by North Sherman Drive to the east, East Michigan Street to the south, LaSalle Street and Tuxedo Street to the west, and 9th Street, St. Clair Street, and North Street to the north.

The CSX railroad line that runs in a northeast-southwest orientation separates the Site into eastern and western sides. There were historically seven buildings on the Site: five on the east side of the CSX railroad tracks and two on the west side. The largest building was on the east side and was generally referred to as the main building. The powerhouse was located to the immediate west of the main building (but still on the east side of the CSX railroad tracks). The east and west sides of the Site are still connected by an underpass that is located just to the north of the former powerhouse and west of the former main building.

As of the issuance of this APR, impervious surfaces (asphalt pavement and concrete building foundations) cover over 90 percent of the Site. The far western area of the Site (west of the existing CSX railroad tracks) consists generally of gravel covered lands. The western portion of the Site to the east of the railroad tracks is generally paved or has remaining foundations from previously demolished buildings. The far eastern portion of the Site consists of a large former building foundation.

The City of Indianapolis had been using the eastern portion of the Site for large soil stockpiles since they acquired the Site in 2017, but, as of the end of 2022, the stockpiled soils had been removed as part of the first phase of the planned re-development.¹ A new building is currently under construction on the parcel of land located adjacent to the northeast of the Site that was formerly part of the larger former Sherman Park complex. The land was acquired from the City by Recycleforce in November 2021 and will also be operated by the same entity. The facility will be a metals recycling facility.

Chlorinated volatile organic compounds (CVOCs) are present in groundwater in the upper water-bearing unit (UWBU) near the west side of the former main building as a result of the former use of chemicals near the former Chemical Storage Building (CSB), the former Solvent Tank Area (STA), the former Metal Plating Area (MPA) and the former 1,1,1-Trichloroethane Still Area (TSA). The CSB, STA, MPA and TSA are each collectively referred to as the "on-site source areas" and are shown on **Figure 2**.

On November 12, 2003, GE entered into a Voluntary Remediation Agreement (VRA) with the Indiana Department of Environmental Management (IDEM) under IDEM's Voluntary Remediation Program (VRP) and was assigned Site #6020801. Since 2003, there have been a significant number of environmental investigations performed at the Site to characterize the

¹ Based on information provided to GE by the City of Indianapolis, a large portion of the property (generally the southwest corner of the area east of the railroad tracks) had been slated to be redeveloped as the City's Animal Care Services (ACS) facility. In late 2023, the City informed GE that they would not be moving forward with the ACS at this location, and would be evaluating alternative redevelopment options.

geologic/hydrogeologic conditions at the Site, define the nature and extent of various contaminants of concern (COCs) and evaluate potential remedial options. The investigations identified several CVOCs as the COCs, primarily trichloroethene (TCE) and 1,1,1-trichloroethane (TCA) and their degradation products (i.e., cis-1,2-dichloroethene [cDCE], 1,1-dichloroethane [11DCA], vinyl chloride [VC] and chloroethane [CA]).

GE submitted a Remediation Work Plan (RWP) to IDEM on May 17, 2010 in accordance with the requirements specified in Section VII of the VRA. IDEM approved the RWP on August 12, 2010, after which GE began implementing the remedial activities and monitoring specified in the RWP.

A high-level summary of the investigation and remediation activities completed at the Site since approval of the RWP include:

- Baseline Groundwater Monitoring
 - Pre-injection (baseline) groundwater monitoring was completed between 2009 and 2010 (during preparation of the RWP).
- Cap Installation (November 13 to 22, 2010)
 - An asphalt cap was installed as an engineering control adjacent to the west side of the main building.
- Injection Well Installation (January 10 to February 20, 2011)
 - 58 dual-screened injection wells (total of 116 well screens) were installed in and around the on-site source areas.
- First Round of Bioenhancement Injections (May 19 to June 20, 2011)
 - A total of 601,675 gallons of dilute emulsified vegetable oil (EVO) solution containing 91,500 pounds (lbs) of EVO was injected into 116 injection well screens as a carbon substrate to support biological growth and the reductive dechlorination of TCE and TCA in groundwater.
- Bioaugmentation Injections (August 15-18, 2011)
 - 72.6 liters of a bacteria culture specially adapted to high TCA concentrations was added to 22 injection locations in the area with the highest TCA concentrations
 - 154.8 liters of KB-1® bacteria culture was added to 43 injection locations in the remaining areas.
- Performance Groundwater Monitoring
 - Post-injection (performance) groundwater monitoring was completed between 2011 and 2013.
- Supplemental Injection Well Installation (May 13 to 17, 2013)

- Ten supplemental dual-screened injection wells (IW-566 to IW-575) were installed to allow carbon substrate injection at additional locations where persistent CVOCs remained in groundwater.
- In addition, a groundwater extraction well was installed to provide makeup and chase water for the injections.
- Second Round of Bioenhancement Injections (July 17 to August 6, 2013)
 - A total of 706,715 gallons of dilute EVO solution containing 101,997 lbs of EVO was injected into 148 injection well screens as a carbon substrate to support biological growth and the reductive dechlorination of TCE and TCA in groundwater.
- Performance Groundwater Monitoring
 - Additional post-injection (performance) groundwater monitoring was completed between 2013 and 2015.
- Supplemental Injection Well Installation (August 17 to 19, 2015)
 - Seven supplemental dual-screened injection wells (IW-576 to IW-582) were installed to allow carbon substrate injection at additional locations where persistent CVOCs remained in groundwater.
- Third Round of Bioenhancement Injections (September 17 to October 6, 2015)
 - A total of 624,100 gallons of dilute EVO solution containing 88,213 lbs of EVO was injected into 128 injection well screens as a carbon substrate to support biological growth and the reductive dechlorination of TCE and TCA in groundwater.
- Performance Groundwater Monitoring
 - Additional post-injection (performance) groundwater monitoring was completed between 2015 and 2017.
- Limited Bioenhancement Injections (September 20 and 21, 2017)
 - Supplemental bioremediation injections proximal to monitoring wells MW-401,
 MW-402 and MW-404 were completed in accordance with a work plan dated July 26, 2017 (which was approved by IDEM in an email dated August 1, 2017).
- Methane Assessment (November 7 to 9, 2017)
 - A methane assessment was performed along the Michigan Street property line in accordance with a work plan dated August 2, 2017 (approved by IDEM in an email dated October 27, 2017).
- Performance Groundwater Monitoring

 Additional post-injection (performance) groundwater monitoring was completed between 2018 and 2022.

Groundwater monitoring is currently being performed quarterly, semi-annually, and annually (depending on the monitoring well) while methane monitoring via soil gas vapor probes is being performed quarterly. This ASR documents the monitoring activities that occurred in 2023 and the associated results. This report also documents the additional bioenhancement activities that were started in late 2022 and completed in April 2023.

2. 2023 GROUNDWATER MONITORING ACTIVITIES

2.1 Monitoring Well Network and Sampling Schedule

Table 1 includes a full listing of the over 200 wells installed on and adjacent to the property since 1987. Since that time, many of the wells have been decommissioned or destroyed; in accordance with the approved RWP, many others are no longer being monitored.

Table 2 details the 82 wells that are included as part of the 2023 scope of work in accordance with the IDEM-approved RWP. During 2023, 14 wells were sampled on a quarterly basis using low-flow sampling methodology for laboratory analysis of VOCs and total organic carbon (TOC), iron, sulfate, and chloride and field measurement of temperature, pH, specific conductivity, dissolved oxygen (DO), oxidation-reduction potential (ORP), and turbidity. These same wells were also analyzed for dissolved hydrocarbon gasses (DHGs, specifically, methane, ethane and ethene) on a semi-annual basis.

The remaining wells included within the monitoring plan were sampled using passive diffusion bags (PDBs). Twenty-nine wells were sampled on a quarterly bases for laboratory analysis of VOCs; samples from three of these wells were also analyzed for DHGs. An additional 26 wells were sampled on a semi-annual basis for analysis of VOCs, and an additional 13 wells were sampled once (i.e., annual frequency) for analysis of VOCs. Due to injection activities in late 2022 and April 2023, Ramboll requested and IDEM approved modifications to the typical sampling scope as noted for each quarter below. A breakdown of the number of wells sampled and when the sampling events occurred is provided below:

- January/February 2023
 - Quarterly and semi-annual event.
 - Ramboll submitted an e-mail on January 20, 2023 requesting a modification to the first and second quarterly events which was approved by IDEM on January 31, 2023.
 - Low-flow groundwater sampling at one monitoring well (MW-425).
 - The sample from this well was collected for analysis of VOCs, DHGs, TOC, dissolved iron, nitrate, and sulfate.
 - Field measurements during purging were collected for temperature, pH, specific conductivity, DO, ORP, and turbidity.
 - Groundwater sampling via the use of PDBs at 24 monitoring wells.
 - Samples collected for analysis of VOCs, and, for three wells, analysis of DHGs.
- April 2023 and October/December 2023
 - Quarterly events.
 - Modifications to the 2Q event were approved by IDEM on January 31, 2023 as noted above. Given the January 2023 approval email indicated that long-term plume behavior monitoring data cannot be utilized until four quarters have passed since the April 2023 injections, Ramboll utilized the same revised modification schedule for the October/December 2023 event as well.
 - Low-flow groundwater sampling at one monitoring well.

- The samples from this well were collected for analysis of VOCs, DHGs,
 TOC, dissolved iron, nitrate, and sulfate.
- Field measurements during purging were collected for temperature, pH, specific conductivity, DO, ORP, and turbidity.
- Groundwater sampling via the use of PDBs at 9 monitoring wells.
 - Samples were collected for analysis of VOCs, and, for three wells, analysis of DHGs.

• July/September 2023

- Quarterly, semi-annual and annual event.
 - The typical full annual scope of work was conducted to evaluate remedial progress and recent injection efforts. In July, three of the monitoring wells (MW-402D, MW-411D and MW-413D) exhibited the presence of amendment materials within the well screen and were not sampled. In addition, many of the wells were found to be damaged or to have missing PDBs. PDBs were redeployed and well repairs were made, and the annual scope was completed in September 2023.
- Low-flow groundwater sampling at 11 monitoring wells (typically 14, but amendment was identified at 3 locations).
 - Samples collected for analysis of VOCs, DHGs, TOC, dissolved iron, nitrate, and sulfate.
 - Field measurements during purging for temperature, pH, specific conductivity, DO, ORP, and turbidity.
- o Groundwater sampling via the use of PDBs at 68 monitoring wells.
 - Samples collected for analysis of VOCs, and, for three wells, analysis of DHGs.

A summary of the well construction details of the monitoring well network is provided in **Table 1**. The scope of the 2023 monitoring is summarized in **Table 2**.

2.2 Field Procedures

The sampling events for 2023 occurred in January/February, April, July/September, and October/December. Note that sampling during the first quarterly event (1Q), the annual sampling event (3Q), and the last quarterly sampling event (4Q) took place over two deployments due to theft of well assembly items, including PDB setups. During each event, Ramboll has continued to deploy security bolts within the wells that are part of the monitoring program. This has improved the likelihood of collecting samples but has not entirely eliminated others accessing the wells without permission.

As stated previously and consistent with the approach communicated with IDEM, only monitoring wells located outside of the injection area were sampled during the first (combined semi-annual and quarterly), second (quarterly), and fourth (quarterly) events of 2023 due to the potential groundwater effects from the recent amendments injections. The full scope of sampling was attempted during the annual event in July/September (including low-flow sampling in the remedial monitoring wells and PDB sampling in all other scoped locations) in an effort to evaluate remedial progress from the injection program.

During each sampling event, the following procedure was used for each monitoring well sampled using the low-flow method:

- Well conditions were inspected and noted on the sampling forms (Appendix A).
- Depth to water was measured prior to and during purging.
- Low-flow (less than 500 milliliters per minute [mL/min]) sampling techniques were
 utilized, and groundwater quality parameters (temperature, pH, specific conductivity, DO,
 ORP, and turbidity) were measured until stabilization was achieved.
- Samples were then collected into the appropriate laboratory-supplied containers and placed in a cooler with ice.
- Non-dedicated sampling equipment was decontaminated before use and between each sampling location.
- Investigation-derived waste (IDM), including purge water and decontamination water, was containerized in secured, labelled 55-gallon drum pending off-site disposal. Solid IDM (e.g., personal protective equipment [PPE] and debris [plastic sheeting, paper towels, etc.]) was placed in garbage bags and disposed of off-site as municipal solid waste.
- Maintenance of wells (securing of bolts and lids, replacement of caps, etc.) was
 performed as necessary and to the extent practical given the well conditions and issues
 associated with vandals.

For the sampling locations where PDBs were used to collect samples, a water level meter was used to measure and document water levels within each of the sampled wells. The PDB and associated equipment were then removed from the well, the bag was cut open, and the water from the bag poured directly into the laboratory-supplied containers. Upon completion at each well, a new PDB was attached to the line and the bag was lowered back into position in preparation for the next event.

During many of the 2023 sampling events, PDBs were found to be missing from some of the wells. Additional security bolts were installed after the July 2023 event (the annual event when all onsite wells are gauged and a majority sampled) to provide an additional layer of security for wells within the monitoring program. These efforts were generally successful, allowing for almost all monitoring wells that were a part of the RWP scope of work to be sampled. Similar to 2022, certain monitoring wells could not be located or accessed during the 2023 sampling events. A summary of these wells is provided in Section 5.1.

Table 3 includes collected water levels and calculated groundwater elevations for the 2023 monitoring events. This table also includes a vertical gradient calculation for monitoring wells that are clustered together to include more than one water-bearing unit (WBU). **Tables 4a through 4e** include stabilized field parameter measurements (pH, temperature, specific conductivity, DO, and ORP, respectively) for the low-flow monitoring wells.

2.3 Laboratory Analyses

Consistent with the approved RWP, samples collected during each of the 2023 monitoring events were placed in laboratory-supplied coolers on ice and were either picked up at the Site by a laboratory courier who delivered the samples directly to the laboratory or were transported to the laboratory directly by Ramboll. In both cases, the coolers maintained proper chain-of-custody. With the exception of the samples collected for DHGs, the laboratory analyses were performed by Pace Analytical Services, LLC (Pace) in Indianapolis, Indiana. The analyses for DHGs were

performed by Pace's laboratory in Baton Rouge, Louisiana; those samples were shipped internally by Pace from their Indianapolis laboratory to the Baton Rouge laboratory under proper chain-of-custody.

3. 2023 SOIL GAS MONITORING ACTIVITIES

3.1 Soil-Gas Monitoring

The current soil gas point monitoring network consists of three shallow vapor probes located along the southern boundary of the Site along East Michigan Street and east of the CSX railroad tracks that bisect the site. The locations of the soil gas points (identified as SGP-1, SGP-2 and SGP-3) are provided on **Figure 2**. These soil gas monitoring points are monitored for methane concentrations on a quarterly basis based on feedback from IDEM as part of the 2018 annual report submitted by Tetra Tech. In accordance with IDEM comments, continued monitoring is required until methane concentrations are consistently below 10 mg/L.

3.2 Field Procedures

Quarterly monitoring events for the soil gas points occurred in January, April, July, and October 2023. During each monitoring event, the soil gas was monitored using the following procedure:

- The protective lid was removed from the vault and water (if present) was removed from the interior of the vault.
- The stopcock on the soil gas probe was opened, and the tubing was connected directly to a multi-gas meter with readings for the photoionization detector (PID), methane (CH₄), carbon dioxide (CO₂), and oxygen (O₂). Levels were recorded as the maximum response above ambient background.
- The highest reading for each parameter at each location was recorded in a field notebook.
- When a soil gas probe had water within the tubing, a peristaltic pump was used in an attempt to purge the water from the tubing.

A summary of the soil gas probe readings for the quarterly events is provided in the embedded table below. Overall, the monitoring results in 2023 from the soil gas points located along the southern boundary of the Site continued to suggest that off-site migration of methane is non-existent with no methane detections throughout 2023. Detections of total VOCs were within historical, low-level/non-detect ranges, with the exception of readings from SGP-1 and SGP-3 in July 2023.

Location ID	Sampling Date	PID (ppma)	CH4 (ppm)	CO2 (ppm)	O2 (% ^b)
	1-24-2023	0.0	0.0	0.0	20.8
CCD 1	4-25-2023	0.0	0.0	0.0	20.9
SGP-1	7-20-2023	60.5	0.0	0.0	20.9
	10-17-2023	0.0	0.0	0.0	16.6
	1-24-2023	0.0	0.0	0.0	20.4
CCD 2	4-25-2023	0.0	0.0	0.0	20.9
SGP-2	7-20-2023	0.06	0.0	0.0	20.9
	10-17-2023	0.0	0.0	0.0	20.9

Location ID	Sampling Date	PID (ppm ^a)	CH4 (ppm)	CO2 (ppm)	O2 (% ^b)
	1-24-2023	0.0	0.0	0.0	20.6
CCD 2	4-25-2023	0.0	0.0	0.0	20.9
SGP-3	7-20-2023	60.7	0.0	0.0	17.0
	10-17-2023	0.5	0.0	0.0	17.0

- a. ppm = parts per million.
- b. % = percent by volume.

4. SUMMARY OF 2023 INJECTION ACTIVITIES

Ramboll prepared a Supplemental Injection Work Plan (Work Plan) for the Site in August 2022 that was approved by IDEM on August 30, 2022. The Work Plan utilized portions of the existing injection well infrastructure as well as installation of 30 new injection wells (some of which had double screens) to target the UWBU on the property. As summarized within the 2022 Annual Progress Report, approximately 60 percent of the injection efforts were completed before the cold weather forced a temporary shutdown of the project in late 2022. In April 2023, the remaining 40 percent of the injection volume was completed. In total, 592,700 gallons of amendments were injected into 121 well screens on the Site. Details regarding the full injection program completed in 2022 and 2023 are provided in the final Supplemental Amendment Injection Completion Report, which is included as **Appendix B** of this APR.

5. GROUNDWATER MONITORING RESULTS

5.1 Well Conditions

During each of the sampling events, the monitoring wells that were included as part of the work scope were inspected and conditions noted on the groundwater sampling forms. There were several monitoring wells that either could not be safely accessed, had been destroyed, or could not be located during one or more of the 2023 events. The following summary is provided:

- During the first quarterly and semiannual sampling event conducted in January, a total of 12 monitoring wells had been vandalized and were unable to be sampled. This included the following monitoring wells: W-9, MW-173, MW-22, MW-131, MW-253, W-10, W-8, MW-41, MW-333, MW-331, MW-153, and MW-322. On January 30, 2023, Ramboll redeployed PDBs and associated hanging equipment and also redistributed security bolts among each of these wells to be sampled later in the quarter. On February 20, 2023, Ramboll returned to the site to complete the monitoring event.
- During the second quarterly sampling event conducted in April 2023, one monitoring well (MW-131) was not sampled due to it being vandalized. This monitoring well was resecured for sampling during the next scheduled sampling event.
- During the quarterly, semiannual and annual sampling event in July, 31 additional monitoring wells were not able to be sampled due to vandalism, stripped bolts inhibiting access, obfuscation of monitoring wells by dirt, overgrown vegetation, and on-site debris, and/or missing PDB well sampling assemblies. As such, a limited number of samples were collected in July 2023, and a second mobilization was performed in August to secure and restore access to the monitoring wells. The annual sampling event was wrapped up in September 2023 and each of the monitoring wells was able to be sampled, with the exception of three wells which exhibited the presence of amendment materials within the well screen (MW-402D, MW-411D and MW-413D).
- During the fourth quarterly sampling event in October, 3 wells (W-10, W-8, and MW-241) were unable to be sampled either due to vandalism (W-8 and W-10) or access issues (vehicle parked over MW-241). The PDBs were replaced and the well lids secured with security bolts in W-8 and W-10. All three monitoring wells were sampled in December 2023.

5.2 Groundwater Elevation and Flow Direction

The static (pre-purging) depth to water measurements collected during the sampling events are provided in **Table 3**. Throughout 2023, the depth to water ranged from 10.40 feet below ground surface (ft bgs) to 32.61 ft bgs. The depth to water measurements were converted to groundwater elevations using previously surveyed and documented measuring point elevations and are shown on **Table 3**. Potentiometric surface maps were prepared for the upper, middle and lower WBUs (referred to as the UWBU, MWBU and LWBU, respectively) using the data from the July 2023 monitoring event (which includes the majority of wells). These maps are presented as **Figures 5a, 5b and 5c**, respectively.

The groundwater flow directions shown on **Figures 5a, 5b and 5c** are generally consistent with previous years. Flow for the UWBU is generally to the west/southwest, while flow in the MWBU is

to the southwest. Flow within the LWBU is toward the southwest in the northern portion of the property and to the northwest along the southern property boundary, near MW-33.

Table 3 also includes columns for vertical gradient differences among clustered wells on the Site. Many of the wells were historically installed within close proximity to one another and screen either the UWBU, MWBU or LWBU. Additionally, many of the wells installed within the remedial injection area have 'S' and 'D' wells which are both screened within the UWBU, but at differing depths. Overall, there was a large vertical gradient difference noted between the UWBU and MWBU, ranging from 15 to 18 feet in most circumstances from upper to middle. The MWBU and LWBU were more even and had consistent water level measurements. There was also a noted difference in vertical gradient between the shallow and deep portions of the UWBU, ranging in difference from 1 to 6 feet from shallow to deep. Each of these vertical gradient differences (high from UWBU to MWBU, low from MWBU to LWBU and varied from the shallow to deep within the UWBU) are consistent from prior years with no apparent changes noted.

5.3 Field Parameters

During purging of the monitoring wells sampled using low-flow methods (note that these low-flow wells are referred to as "remedial monitoring wells"), field parameters were collected via the use of a multi-parameter water quality meter in a flow-through cell as well as a standalone turbidity meter. The parameters, as well as water level measurements, were obtained every five minutes and recorded on the respective groundwater sampling forms (see **Appendix A**). Each remedial monitoring well was sampled upon achieving the required stabilization criteria. The static (prepurging) depth to water measurements are provided in **Table 3**. The final, stabilized field parameter measurements are summarized in **Tables 4a through 4e** for pH, temperature, specific conductivity, DO and ORP, respectively. As discussed in prior sections of the report, a modified scope was implemented in 2023 following the initial round of amendment injections in late 2022 and the completion of injections in April 2023. As such, only one remedial monitoring well (MW-425) was sampled via low-flow methods during the first, second and fourth monitoring events in 2023 due to its location being outside of the injection zone. Eleven of the fourteen remedial monitoring wells were sampled during the annual event in July 2023, as evidence of amendment material was found within the remaining three wells at that time.

The pH, DO and ORP measurements are used to assess the groundwater geochemical conditions, which are important for reductive dechlorination of the CVOCs. The pH measurements during the July 2023 monitoring event were each within a relatively tight range, from 6.34 to 7.00 Standard Units (SU), with a mean of 6.73 SU. This mean (as well as each of the measured pH values) are within the 6.0 to 8.0 SU range deemed optimal for biodegradation. The DO measurements ranged from 0.00 to 0.78 milligrams per liter (mg/L), with a mean of 0.09 mg/L. These DO measurements are considered low, reflecting anaerobic conditions suitable for reductive dechlorination. The ORP measurements during the 2023 monitoring event ranged from -58.8 to -180.9 millivolts (mV), with a mean of -107.7mV. These data generally reflect iron-reducing conditions, with some measurements (at or below -200 mV) indicative of sulfate-reducing conditions. The more deeply reducing conditions were observed at MW-402 and MW-425; the less reducing conditions were at MW-428.

5.4 Laboratory Analytical Results

5.4.1 General Summary

As documented by the field notes, chain-of-custody records, and the laboratory analytical results, the following samples were collected during the four monitoring events conducted at the Site:

- January/February 2023
 - o Quarterly and semi-annual event
 - Samples were collected from 19 monitoring wells for VOC analysis; samples from three monitoring wells for analysis of DHGs, and one monitoring well for analysis of TOC, dissolved iron, nitrate, and sulfate
 - One duplicate samples for VOC analysis only
 - Three trip blank samples for VOC analysis only
- April 2023
 - Quarterly Event
 - Samples were collected from 8 monitoring wells for VOC analysis; samples from two monitoring wells for analysis of DHGs, and one monitoring well for analysis of TOC, dissolved iron, nitrate, and sulfate
 - One duplicate samples for VOC analysis only
 - One trip blank samples for VOC analysis only
- July/September 2023
 - Annual, Semi-Annual and Quarterly Event
 - Samples were collected from 71 monitoring wells for VOC analysis;
 samples from 13 monitoring wells for analysis of DHGs, and 11
 monitoring wells for analysis of TOC, dissolved iron, nitrate, and sulfate
 - Six duplicate samples for VOC analysis only
 - Four trip blank samples for VOC analysis
- October/December 2023
 - Quarterly Event
 - Samples were collected from 9 monitoring wells for VOC analysis;
 samples from two monitoring wells for analysis of DHGs, and one
 monitoring well for analysis of TOC, dissolved iron, nitrate, and sulfate
 - One duplicate samples for VOC analysis only
 - One laboratory trip blank samples for VOC analysis only

The varying number of quality control samples (duplicate samples, MS/MSDs and trip blanks) were a function of the scope of each sampling event (defined by the RWP and modified for 2023 with IDEM approval as noted previously), the number of days onsite (typically one per day), access to the monitoring wells, and condition of the wells. A summary of the laboratory analytical results for the four monitoring events is provided in **Table 5**. The laboratory analytical reports for the 2023 events are provided in **Appendix C**.

5.4.2 CVOCs and Trend Analyses

As stated previously, the primary CVOCs at the Site are TCE and TCA and their associated degradation products (i.e., cDCE, 11DCE, VC, 11DCA, and CA). A summary of the results for each

of these seven CVOCs follows below with comparison to IDEM's Risk-Based Closure Guide Screening Level (RCGSL) for groundwater.

- TCE was detected above its RCGSL of 5 micrograms per liter (μg/L) in 14 of the 71 monitoring wells sampled in 2023:
 - $_{\odot}$ The highest detection of TCE was in MW-132 (627 μg/L during the January 2023 event); this well is located in the western portion of the Site outside of the injection zone, though the concentration is consistent with prior years.
 - Other elevated TCE concentrations (above 200 µg/L) included MW-406S and W-2. Both of these wells are located proximate to a known source area and were targeted as part of the recent supplemental injections that occurred in 2022 and 2023.
- cDCE (the preferred biotic degradation product from TCE) was detected above its RCGSL of 70 μg/L in 32 of the 71 monitoring wells sampled in 2023. cDCE is a biotic degradation breakdown product of TCE and its presence in multiple wells is attributed to the ongoing reductive dechlorination occurring at the Site:
 - The highest detection of cDCE was in MW-404 (47,000 μg/L during the July 2023 event). This well is located in the TSA source area and is located proximate to areas targeted as part of the recent supplemental injections that occurred in 2022 and 2023.
 - Other elevated cDCE concentrations (above 2,000 µg/L) included MW-163, MW-253, MW-333, MW-402, MW-405D, MW-406S/D, MW-418S, MW-419D, and W-2. The majority of these wells are located within or proximate to a known source area that was targeted as part of the supplemental injections.
- VC (a biotic degradation product from cDCE and 11DCE) was detected above its RCGSL of 2 μg/L in 58 of the 68 monitoring wells sampled in 2023.
 - The highest VC detection was in MW-404 (14,400 μg/L during the July 2023 event). The elevated detection in this area of the Site is consistent with historical groundwater impacts as MW-404 lies within the TSA source area.
 - Other elevated VC concentrations (above 1,000 μg/L) included MW-163, MW-253, MW-333, MW-418S and MW-422S. The majority of these wells are located proximate to known source areas and were targeted as part of the recent supplemental injections
- TCA was detected above its RCGSL of 200 μ g/L in three of the 71 monitoring wells sampled in 2023:
 - $_{\odot}$ The highest TCA detection was in MW-404 (45,800 µg/L during the July 2023 event). The elevated detection in this area of the Site is consistent with MW-404 being located near the TSA source area.
 - Other elevated TCA concentrations (above 5,000 μg/L) included MW-406S and W-2. Both of these wells are located proximate to known source areas targeted as part of the supplemental injections.
- 11DCE was detected above its RCGSL of 7 μ g/L in 20 of the 68 monitoring wells sampled in 2022.
 - $_{\odot}$ The highest 11DCE detection was in MW-411S (726 $\mu g/L$ during the April 2022 event). This well is located within the TSA source area.

- Other elevated 11DCE concentrations (above 100 µg/L) included MW-333, MW-404, MW-406 S/D, MW-418Sand MW-423S. With the exception of MW-333, each of these wells is located proximate to a known source area and each were targeted as part of the supplemental injections. MW-333 is located within the LWBU and impacts within this zone have been attributed to an off-property source.
- 11DCA (generally present as a biotic degradation product from TCA) was detected above its RCGSL of 5 μ g/L in 31 of the 71 monitoring wells sampled in 2023.
 - The highest 11DCA detection was noted in MW-404 (42,400 μ g/L during the July 2023 event). The elevated detection in this area of the Site is consistent with the TSA source area.
 - Other elevated 11DCA concentrations (above 1,000 μg/L) included W-2, MW-405D and MW-406S/D. Each of these wells is located proximate to a known source area that was targeted as part of the supplemental injections that began in October 2022.
- CA was detected above its RCGSL of 21,000 μg/L in one monitoring well during the July 2023 event (MW-411S at a concentration of 28,000 μg/L). CA is a biotic degradation product from 11DCA (which is generally present as a biotic degradation product from TCA), so the presence of CA in varying concentrations across the Site suggests that breakdown of the TCA continues to occur. The MW-411S location is within the heart of the recent injection area, which suggest that the amendment may already be aiding in breakdown down TCE and TCA.

Ramboll generated isoconcentration maps for the individual CVOCs discussed above (the exception being CA, which was detected above its RCGSL in only one of the sampled wells), for each of the water-bearing units. **Figures 6a through 6f** include the UWBU, **Figures 7a through 7f** include the MWBU and **Figures 8a through 8f** include the LWBU.

VOC concentration versus time charts were prepared for selected monitoring wells and are included in **Appendix D**. Two sets of trend charts have been prepared; the first focusing on TCE and its breakdown products (**Appendix D-1**), and the second focusing on TCA and its breakdown products (**Appendix D-2**). In general, the charts show a stable or decreasing trend for the primary CVOCs for a majority of wells, with fluctuations and selected increases seemingly related to both seasonal variations in groundwater elevation as well as to ongoing reductive dechlorination within the UWBU. Given the recently completed injection efforts and the lack of a robust dataset from wells within the remedial/injection zone post-injection, the trends are not yet able to evaluate the effect of the recent injections on groundwater quality, though the initial round of sampling in July 2023 shows promising results.

A summary of the onsite and offsite wells that are worth noting is provided below:

• The charts for W-4R show generally persistent concentrations of TCE and cDCE throughout the last several years. Historically located on the outside edge of the areas of influence of the injection wells, new injection wells IW-619, IW-620 and IW-621 were installed around this monitoring well location. Initial post-injection results from the July 2023 event show promising results with daughter products on the decline and chloroethane increasing.

- The charts for MW-311 show elevated levels of TCA, 11DCA and cDCE over the last three to four years. It is also noted that persistent concentrations of VC have occurred at this location dating back to around 2015. Historically located on the outside edge of the areas of influence of the injection wells, new injection wells IW-604 through IW-609 (six wells) were installed around this monitoring well location. Initial post-injection results from July 2023 show a significant decrease in daughter products.
- The charts for MW-321 show generally persistent concentrations of TCE and cDCE throughout the last several years. Historically located on the outside edge of the areas of influence of the injection wells, new injection wells IW-625, IW-626 and IW-627 were installed around this monitoring well location. Initial post-injection results from July 2023 show a significant decrease in daughter products and an increase in chloroethane.
- The charts for MW-331 shows a general decreasing trend of parent CVOCs TCE and TCA.
 Degradation products cDCE, VC and CA are all increasing, though the concentrations are
 low and do not appear to pose risk to off-site receptors. Results from July 2023 show a
 decrease in CVOCs, with the exception of 1,1-DCA which appears stable. Chloroethane
 shows a recent increase.
- The charts for MW-401 shows an overall stable and/or decreasing trend for most of the CVOCs on-site, though the remaining concentrations of TCE and cDCE are persistent. This monitoring well is located down-gradient of injection wells that were targeted for supplemental injections. Initial post-injection results from July 2023 show a significant decrease in daughter products and no detections of parent compounds.
- The charts for MW-411S and, to a lesser degree, MW-411D show a general increasing trend of TCA and also of TCE daughter products cDCE and VC in recent years. These monitoring wells are located down-gradient of several injection wells that were targeted for supplemental injections. Monitoring well MW-411S did not exhibit concentrations of CVOCs during the July 2023 event and MW-411D could not be sampled due to amendment product found within the well screen during sampling.
- The charts for MW-416D shows a general increasing trend for TCE daughter products cDCE and VC as well as for parent compound TCA and its breakdown product 1,1-DCA. Historically located on the outside edge of the areas of influence of the injection wells, six new injection wells (IW-610 through IW-615) were installed around this location. Results from July 2023 show that concentrations of CVOCs have decreased.
- The charts for MW-419D shows little to no detections of TCA and its daughter products. However, the TCE chart shows an increasing trend for TCE and cDCE and little to no evidence of VC. Historically located on the outside edge of the areas of influence of the existing injection wells, new injection wells IW-616, IW-617 and IW-618 were installed around this location. Results from July 2023 show that concentrations of TCE have decreased while cDCE has increased, which could suggest reductive dechlorination is occurring.
- The charts for MW-423D and MW-423S show increasing levels of cDCE and VC since approximately 2015. MW-423S has exhibited decreasing levels of TCA and its daughter

products, 11DCA and CA, although MW-423D has shown increasing levels of TCA, 11DCA and CA. Historically located near the up-gradient edge of the areas of influence of the injection wells, new injection wells IW-601, IW-602 and IW-603 were installed around this location. Initial post-injection results from the July 2023 event show decreasing results of TCA and increasing results of DCA and CA. Both cDCE and VC have declined.

- The charts for MW-425 show increasing levels of cDCE and VC. Concentrations of TCE
 have gradually decreased over time in this location and are currently just slightly above
 the RCGSL. MW-425 is located generally down-gradient of a line of existing injection
 wells targeted for supplemental injections. Results from the 2023 sampling events show
 decreasing levels of VC and little to no detections of TCE and TCA. DCA and CA are
 increasing.
- The charts for MW-426 show generally increasing concentrations of cDCE and VC.
 Concentrations of TCE have gradually decreased over time in this location and are currently just slightly above the RCGSL. MW-426 is located approximately 300 feet downgradient of the closest injection points and ongoing monitoring will be performed to evaluate remedial progress. Based on July 2023 sampling, TCE was non-detect while the concentrations of other breakdown products are generally consistent.
- The chart for MW-131 shows a generally stable trend of TCA and a slight decreasing trend of TCE. Concentrations of cDCE appear to be trending upward slowly, suggesting ongoing breakdown. Concentrations of other breakdown products of TCE and TCA are generally consistent. MW-131 is located in the western portion of the property outside of the zones of injection in a down-gradient location.

5.4.3 Dissolved Hydrocarbon Gases

A summary of methane concentrations is provided in **Table 6a**. The methane results for the low-flow samples collected during the 2023 monitoring events ranged from non-detect (<50) to 47,000 ug/L with a mean of approximately 12,283 ug/L. The highest methane concentrations were in W-9 and were above 10,000 ug/L in a total of three locations, including MW413S, MW-425 and W-9. Elevated methane concentrations are evidence of the presence and activity of methanogenic bacteria, which require deeply reducing (at or below -300 mV) anaerobic conditions. These data suggest that there are microenvironments that are more reducing than evidenced by the ORP measurements, which showed iron-reducing and in some cases sulfate-reducing conditions. The presence of methanogenic conditions is favorable for complete reductive dechlorination (i.e., degradation to the non-toxic end products). It should be noted that samples for methane were only collected during the July/September 2023 annual event due to the amendment injections that occurred between 2022 and 2023. As such, the dataset for the presence of methane in 2023 is limited. Moreover, it is unlikely that enough time has passed for the generation of methane to occur post-injection.

A summary of ethane and ethene concentrations is provided in **Tables 6b and 6c**, respectively. The concentrations of ethane were generally lower than those of ethene, ranging from non-detect to 328 ug/L, with a mean of 85 ug/L. Ethane concentrations were above 100 ug/L in two wells (MW-418S and W-9). The presence of elevated ethane is evidence of the complete reductive dechlorination of TCE, cDCE, 11DCE (from TCA) and VC.

The concentrations of ethene for the low-flow samples collected during the 2023 monitoring events varied widely, from non-detect to 4,500 ug/L with a mean of approximately 689 ug/L. Ethene concentrations were above 1,000 ug/L in the same two wells as ethane (MW-418S and W-9). The varying concentrations of ethane and ethene suggest (like methane above) that microenvironments likely exist where degradation is occurring more rapidly than in other portions of the Site. Moreover, at locations where the source area is higher in TCA than TCE, there may be closer concentrations of ethane and ethene, since TCA tends to break down to both products.

Based on the lack of methane, ethane and ethene data collected during 2023, Ramboll did not generate trend plots for each of the DHGs, though they will be generated in 2024.

6. SUMMARY, RECOMMENDATIONS AND 2024 ACTIVITIES

6.1 Reductive Dechlorination

A review of the CVOC isoconcentration maps (**Figures 6a through 8f**) and CVOC concentrations versus time charts for individual wells (**Appendices D-1 and D-2**) show considerable progress in dechlorination has been made since the baseline conditions that existed prior to the first amendment injections in 2011.

The reductive dechlorination appears to be the greatest for TCE (a parent compound) and 11DCE (generally present as an abiotic degradation product from TCA). As expected, there has been an increase in the concentration of daughter products of both TCE and TCA which are both formed and destroyed during the reductive dechlorination process and are often observed in these results and in the individual well trend plots.

As discussed previously and detailed within Appendix B, supplemental amendment injection activities occurred on the Site between October 2022 and April 2023, resulting in almost 600,000 gallons of amendments being injected within the known source areas. The groundwater results and data from the July/September 2023 event seem to indicate initial positive reductive dechlorination, though additional data is needed to more fully evaluate the effectiveness of the recent injections.

6.2 Recommendations

Ramboll is recommending that the sampling methodology for W-8, W-9 and MW-426 be switched from PDB to low-flow during the annual sampling event in July 2024. These three wells are sampled for DHGs, and the low-flow methodology will provide better analytical results. In a more general sense, Ramboll intends to revert back to the original sampling scope identified in **Table 2** of this report and as provided in the 2010 RWP. This would include each of the monitoring wells both inside and outside of the injection zone.

6.3 2024 Activities

Ramboll will continue to implement the performance groundwater monitoring and soil gas monitoring at the Site following the same scope presented in this APR. The monitoring events will be performed during January, April, July, and October 2024. The monitoring locations, sampling frequencies, and parameters are generally shown in **Table 2**. The January, April, and October 2023 sampling events did not include monitoring wells within the active injection zone in the eastern portion of the Site (i.e., east of the CSX railroad tracks). During the annual July 2023 event, the full scope of wells was sampled to assess the initial effectiveness of the recent amendment injections. In 2024, sampling will include the full scope of quarterly, semi-annual and annual wells given the amount of time that has passed since completion of the supplemental injection efforts.

7. REFERENCES

GeoTrans, Inc. (a Tetra Tech company), 2010. Remediation Work Plan. Sherman Park Facility, 600 North Sherman Drive, Indianapolis, Indiana. May 17, 2010.

IDEM, Technical Resource Guidance Document. February 15, 2001, updated May 1, 2009.

Ramboll, 2022. Supplemental Amendment Injection Work Plan. Sherman Park Facility (Former Indianapolis CE Plant), 600 North Sherman Drive, Indianapolis, Indiana. August 9, 2022.

Ramboll, 2023. 2022 Annual Progress Report. Former Indianapolis CE Plant, 600 North Sherman Drive, Indianapolis, Indiana. February 28, 2023.

Tetra Tech, 2021. 2021 Annual Progress Report. Sherman Park Facility, 600 North Sherman Drive, Indianapolis, Indiana. December 14, 2021.

TABLES

Table 1
Summary of Monitoring Well Construction Details
Former Indianapolis Consumer Electronics Facility (Sherman Park)
600 North Sherman Drive, Indianapolis, Indiana

				Location	Survey											
					<u> </u>	Top of Casing	Ground							Steel		
	Water-					Reference	Surface	Total	Screen	Top of	Bottom of	Top of	Top of	Casing	Top of Steel	Bottom of
		Date of	Installed				Elevation (ft						Seal (ft		•	Steel Casing
	Bearing					Elevation (ft			Length	Screen (ft	Screen (ft	Sandpack		Dianeter	Casing (ft	· ·
Well ID	Unit	Instalation	Ву	Northing	Easting	amsl)	amsl)	bgs)	(ft)	bgs)	bgs)	(ft bgs)	bgs)	(inches)	bgs)	(ft bgs)
PW-1	Upper	8/12/1989	SEC	1649046.40	204380.20	769.41	769.69	29.0	22.2	6.5	28.7	5.9	3.9			
TP-1	Abandoned	4/25/1989	SEC	464074070		known 760.46	750.05	25.0	21.2	3.8	25.0	3.3	1.4			
TP-1R	Upper	12/7/2001	BEAK	1649743.72	204175.73	768.46	768.86	25.0	10.0	15.0	25.0	12.7	7.8			
TP-2	Upper	4/20/1989	SEC SEC	1649119.98	204902.93	777.75	777.75	30.0	15.2	14.3 9.0	29.5	12.0	10.0 7			
TP-3 TP-4	Abandoned	7/25/1989	SEC	1649056.15	204330.75	769.29	769.61	25.3 Unkn	15.2	9.0	24.2	8.8	/			
W-1	Abandoned	12/1/1987	D&M	1649872.37	205574.56	790.55	788.30	25.0	10.0	13.0	23.0	11	9		I	
W-1 W-2	Upper Upper	12/1/1987	D&M D&M	1649872.37	205574.56	790.55 780.02	788.30 778.19	30.0	10.0	20.0	30.0	17	15			
W-3	Abandoned	12/1/1987	D&M	1649579.13	204667.19	774.62	774.90	25.0	10.0	15.0	25.0	14	11			
W-4	Abandoned	12/1/1987	D&M	1649434.96	204479.43	774.78	774.90	25.0	10.0	14.0	24.0	12	10			
W4R	Upper	8/5/2008	GeoTrans	1649434.96	204496.27	774.78	772.72	25.3	10.0	15.0	25.0	13.0	1.0			
W-4D	Middle	12/11/1990	SEC	1649437.84	204492.98	772.52	772.53	67.8	10.0	57.2	67.4	55.5	NA	16	0	34.1
W-4D.	Middle	12/11/1990	SEC	1649437.84	204486.65	772.32	772.55	67.8	10.2	37.2	67.4	33.3	INA	12	0	36
W-4D.	Not Located	8/4/1989	SEC	1649825.40	204474.56	771.61	771.80	35.0	15.5	11.5	27.0	10.8	7.8			
W-7	Upper	11/9/1987	SEC	1649411.14	204195.83	765.75	766.08	19.0	10.4	7.1	17.5	5	3.9			
W-8	Upper	11/8/1990	SEC	1648988.08	204193.83	770.53	770.92	33.5	10.4	21.1	31.5	17.3	16			
W-8D	Middle	11/29/1990	SEC	1648996.17	204080.44	770.70	770.87	70.2	10.4	56.7	67.1	50	44.9	16	0	34
W-8D.	Middle	11/29/1990	SEC	1648996.17	204080.44	770.70	770.87	70.2	10.4	30.7	07.1	30	44.3	12	0	37
W-95.	Upper	11/12/1990	SEC	1648965.41	204585.85	771.37	771.87	43.8	9.4	32.3	41.7	20.5-29.3	17.1			
W-10	Upper	11/13/1987	SEC	1648957.59	203784.16	768.61	768.88	36.0	10.5	21.4	31.9	17.6	15			
W-10	Middle	12/4/1990	SEC	1649137.17	204524.08	772.17	772.37	65.5	10.5	55.0	65.5	52.9	NA	16	0	34.9
W-11D.	Middle	12/4/1990	SEC	1649137.17	204524.08	772.17	772.57	05.5	10.5	33.0	03.3	32.3	107	12	0	37.6
MW-22	Middle	5/8/1993	BEAK	1648973.31	204499.52	769.71	770.09	60.9	10.0	50.0	60.0	48.0	38.1	10	1.2	37.0
MW-32	Middle	4/16/1993	BEAK	1649846.93	204696.92	777.34	777.61	63.1	10.0	53.0	63.0	50.0	44.0	12	2	35.5
MW-33	Lower	3/13/2002	BEAK	1649837.21	204687.82	777.63	777.90	105.0	10.0	94.0	104.0	93.0	92.0			
MW-41	Upper	4/19/1993	BEAK	1649108.45	204009.99	771.10	771.34	26.4	5.0	22.0	27.0	20.0	16.5			
MW-81	Upper	12/7/2001	BEAK	1648978.18	204777.82	774.51	774.99	25.0	10.0	15.0	25.0	13.0	8.0			
MW-82	Middle	6/30/1993	BEAK	1648966.92	204778.37	774.50	775.25	60.8	5.0	56.0	61.0	54.1	49.0	8	1.2	32
MW-91	Upper	7/16/1993	BEAK	1648668.59	204532.59	771.91	772.09	43.9	10.3	33.75	44.0	31.0	27.0			
MW-92	Middle	7/20/1993	BEAK	1648678.14	204532.63	771.62	771.88	62.8	10.0	53.0	63.0	51.5	47.5	8	1.2	43.5
MW-112	Middle	11/20/2001	BEAK	1648983.97	204315.38	767.58	768.03	58.0	10.0	47.8	57.8	45.8	41.8	6	0	32.5
MW-122	Middle	12/3/2001	BEAK	1649413.25	204180.69	765.49	765.88	60.0	10.0	49.5	59.5	47.5	42.5	6	0	31
MW-123	Lower	3/12/2002	BEAK	1649422.02	204189.74	765.17	766.08	91.5	10.0	80.7	90.7	78.6	73.0	10	0	25.6
MW-123.	Lower	3/12/2002	BEAK	1649422.02	204189.74									6	0	63
MW-131	Upper	3/5/2002	BEAK	1649174.39	204138.18	772.88	773.19	33.0	10.0	22.0	32.0	20.0	15.0			
MW-132	Middle	11/27/2001	BEAK	1649152.71	204135.64	772.39	772.73	69.5	10.0	59.5	69.5	56.5	51.0	6	0	34
MW-133	Lower	12/5/2001	BEAK	1649164.78	204137.85	772.68	772.92	98.8	10.0	87.7	97.7	86.5	78.0	10	0	34
MW-133.	Lower	12/5/2001	BEAK	1649164.78	204137.85									6	0	69.5
MW-142	Middle	12/2/2001	BEAK	1649099.71	203986.88	770.92	771.26	64.0	10.0	53.5	63.5	50.5	45.5	6	0	35
MW-153	Lower	11/30/2001	BEAK	1648970.72	203974.40	768.95	769.61	91.0	10.0	80.0	90.0	78.0	73.0	6	0	35
MW-163	Lower	12/2/2001	BEAK	1648990.75	204091.18	770.49	770.79	95.7	10.0	85.2	95.2	83.8	76.0	10	0	35
MW-163.	Lower	12/2/2001	BEAK	1648990.75	204091.18									6	0	70
MW-173	Lower	12/3/2001	BEAK	1648974.22	204375.76	768.97	769.18	98.1	10.0	87.8	97.8	85.6	77.0	10	0	34
MW-173.	Lower	12/3/2001	BEAK	1648974.22	204375.76									6	0	64.6
MW-183	Lower	11/29/2001	BEAK	1649147.67	204522.10	772.17	772.47	105.3	11.1	94.3	105.3	93.1	84.0	10	0	40
MW-183.	Lower	11/29/2001	BEAK	1649147.67	204522.10									6	0	66
MW-191	Upper	12/4/2001	BEAK	1648971.91	205521.11	789.69	789.93	28.0	10.0	18.0	28.0	16.0	11.0			

Table 1
Summary of Monitoring Well Construction Details
Former Indianapolis Consumer Electronics Facility (Sherman Park)
600 North Sherman Drive, Indianapolis, Indiana

				Location	Survey											
						Top of Casing	Ground							Steel		
	Water-					Reference	Surface	Total	Screen	Top of	Bottom of	Top of	Top of	Casing	Top of Steel	Bottom of
	Bearing	Date of	Installed			Elevation (ft	Elevation (ft	Depth (ft	Length	Screen (ft	Screen (ft	Sandpack	Seal (ft	Dianeter	Casing (ft	Steel Casing
Well ID	Unit	Instalation	By	Northing	Easting	amsl)	amsl)	bgs)	(ft)	bgs)	bgs)	(ft bgs)	bgs)	(inches)	bgs)	(ft bgs)
MW-201	Upper	12/4/2001	BEAK	1649943.26	205226.17	782.21	782.32	22.0	10.0	12.0	22.0	10.0	1.0			
MW-211	Upper	12/6/2001	BEAK	1648641.87	204612.71	772.52	772.81	37.5	10.0	27.5	37.5	25.5	20.5			
MW-221	Upper	12/6/2001	BEAK	1648602.31	203971.31	766.69	767.10	32.5	10.0	22.5	32.5	20.2	15.0			
MW-231	Upper	12/4/2001	BEAK	1648598.65	203765.17	767.98	768.05	24.0	10.0	13.8	23.8	12.7	8.0			
MW-241	Upper	12/5/2001	BEAK	1648688.52	203555.08	767.58	767.91	34.0	10.0	24.0	34.0	22.0	17.0			
MW-251	Upper	12/5/2001	BEAK	1648961.06	203639.45	767.81	768.06	30.0	10.0	20.0	30.0	18.0	13.0			
MW-253	Lower	3/8/2002	BEAK	1648961.17	203646.03	767.70	768.04	93.0	10.0	82.0	92.0	79.9	75.0	10	0	39
MW-261	Upper	12/4/2001	BEAK	1649396.07	204046.87	764.14	764.52	20.0	10.0	10.0	20.0	8.0	1.0			
MW-273	Lower	3/13/2002	BEAK	1649438.36	204476.63	772.44	772.51	99.0	10.0	88.0	98.0	86.2	81.0	10	0	39
MW-273.	Lower	3/13/2002	BEAK	1649438.36	204476.63									6	0	69
MW-281	Upper	3/8/2002	BEAK	1650324.50	205239.59	778.27	778.52	18.5	10.0	8.0	18.0	6.0	1.0			
MW-301	Upper	6/23/2004	CRA	1649897.03	204499.80	771.67	771.86	30.0	10.0	18.5	28.5	16.0	1.5			
MW-302	Middle	6/5/2004	CRA	1649273.43	204025.46	767.79	768.17	62.0	10.0	50.0	60.0	48.0	44.0			
MW-303	Lower	6/3/2004	CRA	1649273.44	204017.72	766.19	766.79	95.0	10.0	79.0	89.0	77.0	73.0			
MW-311	Upper	5/27/2004	CRA	1649664.73	204579.22	774.51	774.80	38.0	10.0	25.0	35.0	23.0 54.0	1.5 50.0			
MW-312	Middle	6/4/2004	CRA	1649068.09	204147.28	771.75	772.04	68.0	10.0	56.0	66.0					
MW-313 MW-321	Lower	6/9/2004 5/25/2004	CRA CRA	1648977.22 1649316.36	204298.43	767.61 770.54	767.52 770.93	95.0 34.0	10.0 10.0	77.0 23.0	87.0 33.0	75.0 21.0	71.0 1.5			
MW-322	Middle	6/5/2004	CRA	1649169.34	204449.53	769.75	769.98	60.0	10.0	50.0	60.0	48.0	44.0			
MW-323	Lower	5/25/2004	CRA	1649183.29	204355.13	770.23	770.44	95.0	10.0	80.0	90.0	78.0	72.0			
MW-331	Upper	6/1/2004	CRA	1649179.73	204525.86	770.23	772.64	34.0	10.0	22.0	32.0	20.0	1.5			
MW-332	Middle	6/22/2004	CRA	1649258.02	204348.01	773.82	770.92	65.0	10.0	52.5	62.5	50.0	46.0			
MW-333	Lower	6/7/2004	CRA	1649356.73	203704.43	764.82	765.05	95.0	10.0	80.0	90.0	78.0	74.0			
MW-341	Upper	5/24/2004	CRA	1649165.09	204507.98	771.60	771.82	34.0	10.0	22.0	32.0	20.0	1.5			
MW-343	Lower	6/10/2004	CRA	1649721.00	203987.02	764.05	764.33	103.0	10.0	76.0	86.0	74.0	70.0			
MW401	Upper	6/4/2008	GeoTrans	1649518.25	204623.64	777.62	778.02	25.0	10.0	15.0	25.0	13.0	1.0			
MW402	Upper	6/4/2008	GeoTrans	1649460.75	204624.77	777.67	778.02	25.0	10.0	15.0	25.0	13.0	1.0			
MW402D	Upper	1/28/2011	Tetra Tech	1649465.16	204624.53	777.75	778.04	40.0	10.0	30.0	40.0	28.0	1.0			
MW403	Upper	6/5/2008	GeoTrans	1649465.25	204730.74	777.87	778.24	25.0	10.0	15.0	25.0	13.0	1.0			
MW404	Upper	6/5/2008	GeoTrans	1649364.47	204626.78	777.76	778.05	25.0	10.0	15.0	25.0	13.0	1.0			
MW405D	Upper	8/12/2008	GeoTrans	1649298.17	204669.89	777.85	778.23	35.0	9.0	26.0	35.0	25.0	23.0			
MW405S	Upper	8/12/2008	GeoTrans	1649298.20	204669.48	777.83	778.23	22.0	7.0	15.0	22.0	13.0	1.0			
MW406D	Upper	8/6/2008	GeoTrans	1649411.35	204662.09	777.53	778.00	35.0	9.0	26.0	35.0	25.0	23.0			
MW406S	Upper	8/6/2008	GeoTrans	1649411.19	204662.14	777.72	778.00	22.0	7.0	15.0	22.0	13.0	1.0			
MW407D	Upper	8/7/2008	GeoTrans	1649537.21	204722.37	777.64	778.04	35.0	9.0	26.0	35.0	25.0	23.0			
MW407S	Upper	8/7/2008	GeoTrans	1649537.38	204722.51	777.71	778.04	22.0	7.0	15.0	22.0	13.0	1.0			
MW408D	Upper	8/8/2008	GeoTrans	1649413.66	204813.02	777.79	778.26	35.0	9.0	26.0	35.0	25.0	23.0			
MW408S	Upper	8/8/2008	GeoTrans	1649413.63	204813.26	777.92	778.26	21.7	7.0	14.7	21.7	13.0	1.0			
MW409D	Upper	8/11/2008	GeoTrans	1649360.24	204789.80	777.77	778.22	35.0	9.0	26.0	35.0	25.0	23.0			
MW409S	Upper	8/11/2008	GeoTrans	1649360.24	204790.04	777.82	778.22	22.0	7.0	15.0	22.0	13.0	1.0			
MW410D	Upper	8/12/2008	GeoTrans	1649296.12	204571.85	772.20	772.76	35.0	9.0	26.0	35.0	25.0	23.0			

Table 1
Summary of Monitoring Well Construction Details
Former Indianapolis Consumer Electronics Facility (Sherman Park)
600 North Sherman Drive, Indianapolis, Indiana

				Location	n Survey											
						Top of Casing	Ground							Steel		
	Water-					Reference	Surface	Total	Screen	Top of	Bottom of	Top of	Top of	Casing	Top of Steel	Bottom of
	Bearing	Date of	Installed			Elevation (ft	Elevation (ft	7.77		Screen (ft	Screen (ft	Sandpack	Seal (ft	Dianeter	Casing (ft	Steel Casing
Wall ID	•			Na odla ima	Faction	'			Length	•						J
Well ID	Unit	Instalation	Ву	Northing	Easting	amsl)	amsl)	bgs)	(ft)	bgs)	bgs)	(ft bgs)	bgs)	(inches)	bgs)	(ft bgs)
MW410S	Upper	8/12/2008	GeoTrans	1649296.46	204571.87	772.16	772.76	22.0	7.0	15.0	22.0	13.0	1.0			
MW411D	Upper	8/12/2008	GeoTrans	1649390.43	204569.96	772.34 772.28	772.73 772.73	35.0 22.0	9.0	26.0 15.0	35.0 22.0	25.0 13.0	23.0			
MW411S	Upper	8/12/2008	GeoTrans	1649390.23 1649484.96	204570.08 204568.79	773.20	772.73	35.0	7.0	26.0	35.0	25.0	1.0 23.0			
MW412D	Upper	8/13/2008	GeoTrans	1649484.96		773.24	773.71	22.0	9.0 7.0	15.0	22.0	13.0	1.0			
MW412S MW413D	Upper Upper	8/13/2008 11/11/2008	GeoTrans GeoTrans	1649248.03	204568.96 204523.82	773.24	773.71	35.0	9.0	26.0	35.0	25.0	23.0			
MW413D		11/11/2008	GeoTrans	1649248.03	204523.82	772.21	772.59	22.0	7.0	15.0	22.0	13.0	1.0			
MW414D	Upper Upper	11/11/2008	GeoTrans	1649349.33	204529.11	771.23	771.78	35.0	9.0	26.0	35.0	25.0	23.0			
MW4145	Upper	11/12/2008	GeoTrans	1649349.16	204529.31	771.23	771.78	22.0	7.0	15.0	22.0	13.0	1.0			
MW415D	Upper	11/13/2008	GeoTrans	1649439.54	204538.81	771.96	772.31	35.0	9.0	26.0	35.0	25.0	23.0			
MW415S	Upper	11/13/2008	GeoTrans	1649439.31	204538.67	771.93	772.31	22.0	7.0	15.0	22.0	13.0	1.0			
MW416D	Upper	11/14/2008	GeoTrans	1649557.28	204541.21	773.24	773.69	36.0	10.0	26.0	36.0	25.0	23.0			
MW416S	Upper	11/14/2008	GeoTrans	1649557.20	204540.92	773.32	773.69	22.0	7.0	15.0	22.0	13.0	1.0			
MW417D	Upper	11/15/2008	GeoTrans	1649574.45	204642.06	777.64	778.00	40.0	9.0	31.0	40.0	30.0	28.0			
MW417S	Upper	11/15/2008	GeoTrans	1649574.59	204642.15	777.64	778.00	27.0	7.0	20.0	27.0	18.0	1.0			
MW418D	Upper	11/15/2008	GeoTrans	1649606.57	204748.56	777.76	778.05	41.0	10.0	31.0	41.0	30.0	28.0			
MW418S	Upper	11/15/2008	GeoTrans	1649606.34	204748.38	777.73	778.05	27.0	7.0	20.0	27.0	18.0	1.0			
MW419D	Upper	11/18/2008	GeoTrans	1649543.15	204851.08	777.91	778.31	41.0	10.0	31.0	41.0	30.0	28.0			
MW419S	Upper	11/18/2008	GeoTrans	1649543.17	204850.74	777.99	778.31	27.0	10.0	17.0	27.0	15.0	1.0			
MW420D	Upper	1/16/2009	GeoTrans	1649655.51	204845.75	777.78	778.12	38.0	9.0	29.0	38.0	28.5	26.5			
MW420S	Upper	1/16/2009	GeoTrans	1649655.46	204845.46	777.74	778.12	26.0	7.0	19.0	26.0	17.0	1.0			
MW421D	Upper	1/16/2009	GeoTrans	1649680.52	204896.99	777.92	778.32	38.0	9.0	29.0	38.0	28.5	26.5			
MW421S	Upper	1/16/2009	GeoTrans	1649680.67	204897.21	777.97	778.32	26.0	7.0	19.0	26.0	17.0	1.0			
MW422D	Upper	1/14/2009	GeoTrans	1649736.34	204843.41	777.69	778.06	38.0	9.0	29.0	38.0	28.5	26.5			
MW422S	Upper	1/14/2009	GeoTrans	1649736.55	204843.50	777.68	778.06	26.0	7.0	19.0	26.0	17.0	1.0			
MW423D	Upper	1/14/2009	GeoTrans	1649728.53	204760.37	777.69	778.02	38.0	9.0	29.0	38.0	28.5	26.5			
MW423S	Upper	1/14/2009	GeoTrans	1649728.85	204760.12	777.64	778.02	26.0	7.0	19.0	26.0	17.0	1.0			
MW424D	Upper	1/17/2009	GeoTrans	1649387.71	204619.61	777.63	777.99	38.0	9.0	29.0	38.0	28.5	26.5			
MW424S	Upper	1/17/2009	GeoTrans	1649387.47	204619.49	777.57	777.99	26.0	7.0	19.0	26.0	17.0	1.0			
MW425	Upper	1/13/2009	GeoTrans	1649169.12	204404.91	769.39	769.72	30.0	20.0	10.0	30.0	8.0	1.0			
MW426	Upper	1/12/2009	GeoTrans	1648988.24	204387.38	769.19	769.41	34.0	20.0	14.0	34.0	12.0	1.0			
MW427	Upper	2/8/2011	Tetra Tech	1649144.03	204366.86	768.79	769.13	25.0	10.0	15.0	25.0	13.0	1.0			
MW428	Upper	1/13/2011	Tetra Tech	1649677.22	204813.60	777.77	778.07	25.0	10.0	15.0	25.0	13.0	1.0			
IW-501	Upper	1/10/2011	Tetra Tech	1649710.28	204760.81	777.75	778.01	40.0	10.0	19.5	29.5	17.5	1.0			
	•••	ļ · ·							10.0	30.0	40.0	30.0	29.5			
IW-502	Upper	1/11/2011	Tetra Tech	1649702.23	204783.75	777.69	778.01	40.0	10.0	19.5	29.5	17.5	1.0			
	•••	ļ · ·	_						10.0	30.0	40.0	30.0	29.5			
IW-503	Upper	1/12/2011	Tetra Tech	1649681.81	204796.93	777.74	778.01	40.0	10.0	19.5	29.5	17.5	1.0			
		ļ							10.0	30.0	40.0	30.0	29.5			
IW-504	Upper	1/12/2011	Tetra Tech	1649680.80	204829.84	777.78	778.09	40.0	10.0	19.5	29.5	17.5	1.0			
		1			<u> </u>	ļ	Į		10.0	30.0	40.0	30.0	29.5			
IW-505	Upper							(see MW-	102 S&D)							
IVV 500	Llace	1/12/2011	Total TI	1640664.60	204625 47	777.67	770.04	40.0	10.0	19.5	29.5	17.5	1.0			
IW-506	Upper	1/13/2011	Tetra Tech	1649664.60	204635.47	777.67	778.01	40.0	10.0	30.0	40.0	30.0	29.5			
																•

Table 1
Summary of Monitoring Well Construction Details
Former Indianapolis Consumer Electronics Facility (Sherman Park)
600 North Sherman Drive, Indianapolis, Indiana

				Location	n Survey											
Well ID	Water- Bearing Unit	Date of	Installed By	Northing	Easting	Top of Casing Reference Elevation (ft amsl)	Ground Surface Elevation (ft amsl)	Total Depth (ft bgs)	Screen Length (ft)	Top of Screen (ft bgs)	Bottom of Screen (ft bgs)	Top of Sandpack (ft bgs)	Top of Seal (ft bgs)	Steel Casing Dianeter (inches)	Top of Steel Casing (ft bgs)	Bottom of Steel Casing (ft bgs)
									10.0	19.5	29.5	17.5	1.0			
IW-507	Upper	1/14/2011	Tetra Tech	1649651.57	204659.65	777.59	778.00	40.0	10.0	30.0	40.0	30.0	29.5			
IW-508	Upper	1/14/2011	Tetra Tech	1649645.63	204681.25	777.75	778.05	40.0	10.0 10.0	19.5 30.0	29.5 40.0	17.5 30.0	1.0 29.5			
IW-509	Upper	1/14/2011	Tetra Tech	1649631.51	204702.79	777.81	778.08	40.0	10.0 10.0	19.5 30.0	29.5 40.0	17.5 30.0	1.0 29.5			
IW-510	Upper	1/17/2011	Tetra Tech	1649620.20	204724.69	777.78	778.04	40.0	10.0 10.0	19.5 30.0	29.5 40.0	17.5 30.0	1.0 29.5			
IW-511	Upper	1/17/2011	Tetra Tech	1649601.70	204742.66	777.72	778.08	40.0	10.0 10.0	19.5 30.0	29.5 40.0	17.5 30.0	1.0 29.5			
IW-512	Upper	1/17/2011	Tetra Tech	1649589.90	204764.60	777.77	778.08	40.0	10.0 10.0	19.5 30.0	29.5 40.0	17.5 30.0	1.0 29.5			
IW-513	Upper	1/16/2011	Tetra Tech	1649557.45	204776.04	777.61	778.00	40.0	10.0 10.0	19.5 30.0	29.5 40.0	17.5 30.0	1.0 29.5			
IW-514	Upper	1/15/2011	Tetra Tech	1649558.16	204814.05	777.84	778.20	40.0	10.0	19.5 30.0	29.5 40.0	17.5 30.0	1.0 29.5			
IW-515	Upper	1/18/2011	Tetra Tech	1649585.18	204615.16	777.62	777.91	40.0	10.0	19.5 30.0	29.5 40.0	17.5 30.0	1.0 29.5			
IW-516	Upper						-	(see MW-4		30.0	.0.0	30.0	25.5			
IW-517	Upper	1/19/2011	Tetra Tech	1649569.24	204666.08	777.73	778.02	40.0	10.0 10.0	19.5 30.0	29.5 40.0	17.5 30.0	1.0 29.5			
IW-518	Upper	1/24/2011	Tetra Tech	1649546.84	204673.33	777.63	777.98	40.0	10.0 10.0	19.5 30.0	29.5 40.0	17.5 30.0	1.0 29.5			
IW-519	Upper	1/24/2011	Tetra Tech	1649545.52	204702.91	777.63	778.01	40.0	10.0 10.0	19.5 30.0	29.5 40.0	17.5 30.0	1.0 29.5			
IW-520	Upper	1/30/2011	Tetra Tech	1649531.38	204724.13	777.64	778.02	40.0	10.0	19.5 30.0	29.5 40.0	17.5 30.0	1.0			
IW-521	Upper	1/16/2011	Tetra Tech	1649529.66	204742.82	777.73	778.04	40.0	10.0	19.5 30.0	29.5 40.0	17.5 30.0	1.0			
IW-522	Upper	1/26/2011	Tetra Tech	1649514.21	204765.55	777.67	778.07	40.0	10.0	19.5 30.0	29.5 40.0	17.5 30.0	1.0			
IW-523	Upper	1/25/2011	Tetra Tech	1649493.33	204781.48	777.93	778.18	40.0	10.0	19.5 30.0	29.5 40.0	17.5 30.0	1.0			
IW-524	Upper				l	l	1	(see MW-4		30.0	40.0	30.0	23.3		1	
IW-525	Upper	2/12/2011	Tetra Tech	1649489.61	204597.25	776.84	777.20	35	10.0 10.0	14.5 25.0	24.5 35.0	12.5 25.0	1.0 24.5			
IW-526	Upper	1/27/2011	Tetra Tech	1649478.46	204617.28	777.41	777.95	40.0	10.0	19.5 30.0	29.5 40.0	17.5 30.0	1.0 29.5			
IW-527	Upper	1/28/2011	Tetra Tech	1649469.29	204638.10	777.75	778.04	40.0	10.0	19.5 30.0	29.5 40.0	17.5 30.0	1.0 29.5			
IW-528	Upper	1/30/2011	Tetra Tech	1649459.93	204669.52	777.82	778.12	40.0	10.0 10.0	19.5 30.0	29.5 40.0	17.5 30.0	1.0 29.5			

Table 1
Summary of Monitoring Well Construction Details
Former Indianapolis Consumer Electronics Facility (Sherman Park)
600 North Sherman Drive, Indianapolis, Indiana

Walter Bearing Date of Installed Date of Dat					Locatio	n Survey											
Wy-530 Upper 1/31/2011 Tetra Tech 164941-13 20468-12 777.70 778.06 40.0 10.0 30.0 40.0 30.0 29.5	Well ID	Bearing					Reference Elevation (ft	Surface Elevation (ft	Depth (ft	Length	Screen (ft	Screen (ft	Sandpack	Seal (ft	Casing Dianeter	Top of Steel Casing (ft bgs)	Bottom of Steel Casing (ft bgs)
NV-530 Upper 1/27/2011 Tetra Tech 1649417.80 204682.24 777.70 778.06 40.0 10.0 19.5 29.5 17.5 1.0 NV-531 Upper 1/27/2011 Tetra Tech 1649416.14 204734.47 777.93 778.23 40.0 10.0 19.5 29.5 17.5 1.0 NV-532 Upper 1/26/2011 Tetra Tech 1649399.26 204747.20 777.83 778.19 40.0 10.0 19.5 29.5 17.5 1.0 NV-533 Upper 1/26/2011 Tetra Tech 1649399.26 204747.20 777.83 778.19 40.0 10.0 19.5 29.5 17.5 1.0 NV-534 Upper 2/15/2011 Tetra Tech 164939.27 204567.33 772.04 772.37 35 10.0 14.5 24.5 12.5 1.0 NV-535 Upper 2/15/2011 Tetra Tech 1649396.71 204567.33 772.33 772.65 35 10.0 25.0 35.0 25.0 24.5 NV-536 Upper 2/14/2011 Tetra Tech 1649399.32 20482.87 772.53 773.00 35 10.0 14.5 24.5 12.5 1.0 NV-537 Upper 2/14/2011 Tetra Tech 1649385.90 204851.14 772.63 772.90 35 10.0 25.0 35.0 25.0 24.5 NV-538 Upper 1/31/2011 Tetra Tech 1649385.26 204625.57 777.71 778.05 40.0 10.0 19.5 29.5 17.5 1.0 NV-540 Upper 1/31/2011 Tetra Tech 1649384.27 204634.56 777.81 778.08 40.0 10.0 30.0 40.0 30.0 29.5 NV-541 Upper 1/31/2011 Tetra Tech 164938.71 204654.18 777.78 778.12 40.0 10.0 19.5 29.5 17.5 1.0 NV-542 Upper 2/14/2011 Tetra Tech 164938.71 204654.18 777.78 778.12 40.0 10.0 30.0 40.0 30.0 29.5 NV-543 Upper 2/14/2011 Tetra Tech 164938.71 204654.18 777.78 778.12 40.0 10.0 30.0 40.0 30.0 29.5 NV-545 Upper 2/14/2011 Tetra Tech 164938.71 204654.18 777.78 778.12 40.0 10.0 30.0 25.0 35.0 25.0 24.5 NV-546 Upper 2/14/2011 Tetra Tech 164938.71 204654.18 777.78 778.12 40.0 10.0 30.0 25.0 35.0 25.0 24.5 NV-547 Upper 2/14/2011	IW-529	Upper	1/29/2011	Tetra Tech	1649445.11	204681.92	777.72	778.07	40.0								
W-531 Upper 1/7/2011 Tetra Tech 1649416.14 204734.47 777.93 778.23 40.0 10.0 19.5 29.5 17.5 1.0	IW-530	Upper	1/27/2011	Tetra Tech	1649417.80	204682.24	777.70	778.06	40.0	10.0	19.5	29.5	17.5	1.0			
W-532 Upper 1/26/2011 Tetra Tech 1649314.74 204554.49 772.04 772.37 35 10.0 14.5 24.5 12.5 1.0	IW-531	Upper	1/27/2011	Tetra Tech	1649416.14	204734.47	777.93	778.23	40.0	10.0	19.5	29.5	17.5	1.0			
IW-534 Upper 2/15/2011 Tetra Tech 1649414.24 204554.49 772.04 772.37 35 10.0 14.5 24.5 12.5 1.0 IW-535 Upper 2/15/2011 Tetra Tech 1649396.71 204567.33 772.33 772.65 35 10.0 25.0 35.0 25.0 24.5 IW-536 Upper 2/14/2011 Tetra Tech 1649379.32 204582.87 772.53 773.00 35 10.0 14.5 24.5 12.5 1.0 IW-537 Upper 2/14/2011 Tetra Tech 1649356.90 204581.14 772.63 772.90 35 10.0 14.5 24.5 12.5 1.0 IW-538 Upper Upper 1/31/2011 Tetra Tech 1649356.90 204581.14 772.63 772.90 35 10.0 14.5 24.5 12.5 1.0 IW-539 Upper 1/31/2011 Tetra Tech 1649356.62 204625.57 777.71 778.05 40.0 10.0 19.5 29.5 17.5 1.0 IW-540 Upper 1/31/2011 Tetra Tech 164934.27 204634.56 777.81 778.08 40.0 10.0 19.5 29.5 17.5 1.0 IW-541 Upper 1/31/2011 Tetra Tech 164934.71 204654.18 777.78 778.12 40.0 10.0 30.0 40.0 30.0 29.5 IW-542 Upper 1/31/2011 Tetra Tech 164938.71 204654.18 777.78 778.12 40.0 10.0 30.0 40.0 30.0 29.5 IW-544 Upper 2/16/2011 Tetra Tech 1649383.71 204489.21 771.00 771.35 35 10.0 14.5 24.5 12.5 1.0 IW-545 Upper 2/16/2011 Tetra Tech 1649383.71 204654.69 771.40 771.77 35 10.0 14.5 24.5 12.5 1.0 IW-547 Upper 2/16/2011 Tetra Tech 1649330.53 20454.69 771.40 771.77 35 10.0 14.5 24.5 12.5 1.0 IW-547 Upper 2/15/2011 Tetra Tech 1649330.53 20454.569 771.40 771.77 35 10.0 14.5 24.5 12.5 1.0 IW-547 Upper 2/15/2011 Tetra Tech 1649330.53 20454.569 771.40 771.77 35 10.0 14.5 24.5 12.5 1.0 IW-547 Upper 2/15/2011 Tetra Tech 1649330.53 20454.569 771.40 771.77 35 10.0 14.5 24.5 12.5 1.0 IW-547 Upper 2/15/2011 Tetra Tech 1649330	IW-532	Upper	1/26/2011	Tetra Tech	1649399.26	204747.20	777.83	778.19	40.0								
W-534 Upper 2/15/2011 Tetra Tech 1649343.4.24 204564.39 7/2.04 7/2.37 35 10.0 25.0 35.0 25.0 24.5 W-536 Upper 2/14/2011 Tetra Tech 1649379.32 204582.87 772.53 773.00 35 10.0 25.0 35.0 25.0 24.5 W-537 Upper 2/14/2011 Tetra Tech 1649356.90 204581.14 772.63 772.90 35 10.0 25.0 35.0 25.0 24.5 W-538 Upper 1/31/2011 Tetra Tech 1649356.90 204581.14 772.63 772.90 35 10.0 14.5 24.5 12.5 1.0 W-539 Upper 1/31/2011 Tetra Tech 1649334.27 204634.56 777.81 778.05 40.0 10.0 19.5 29.5 17.5 1.0 W-540 Upper 1/31/2011 Tetra Tech 1649334.27 204634.56 777.81 778.08 40.0 10.0 19.5 29.5 17.5 1.0 W-541 Upper 1/31/2011 Tetra Tech 1649314.71 204654.18 777.78 778.12 40.0 10.0 19.5 29.5 17.5 1.0 W-542 Upper 1/31/2011 Tetra Tech 164938.71 204684.18 777.78 778.12 40.0 10.0 30.0 40.0 30.0 29.5 W-543 Upper 2/18/2011 Tetra Tech 164938.71 204684.89 771.68 772.00 35 10.0 14.5 24.5 12.5 1.0 W-544 Upper 2/16/2011 Tetra Tech 164938.71 204684.69 771.68 772.00 35 10.0 14.5 24.5 12.5 1.0 W-545 Upper 2/16/2011 Tetra Tech 1649366.29 204513.36 771.68 772.00 35 10.0 14.5 24.5 12.5 1.0 W-546 Upper 2/16/2011 Tetra Tech 164933.55 20456.89 771.40 771.77 35 10.0 14.5 24.5 12.5 1.0 W-547 Upper 2/16/2011 Tetra Tech 164933.55 20456.89 771.40 771.77 35 10.0 14.5 24.5 12.5 1.0 W-548 Upper 2/16/2011 Tetra Tech 164933.55 204563.70 772.01 772.31 35 10.0 14.5 24.5 12.5 1.0 W-547 Upper 2/16/2011 Tetra Tech 164933.55 204563.70 772.01 772.31 35 10.0 14.5 24.5 12.5 1.0 W-547 Upper 2/16/2011 Tetra Tech 164933.55 204563.70 772.01	IW-533	Upper							(see MW-4	115 S&D)							
W-535 Upper 2/14/2011 Tetra Tech 1649396.71 2/04582.87 772.53 773.00 35 10.0 25.0 35.0 25.0 24.5 W-537 Upper 2/14/2011 Tetra Tech 1649356.90 2/04581.14 772.63 772.90 35 10.0 14.5 24.5 12.5 1.0 W-538 Upper 1/31/2011 Tetra Tech 1649356.90 2/04581.14 772.63 772.90 35 10.0 14.5 24.5 12.5 1.0 W-539 Upper 1/31/2011 Tetra Tech 1649356.62 2/04625.57 777.71 778.05 40.0 10.0 19.5 29.5 17.5 1.0 W-540 Upper 1/31/2011 Tetra Tech 164934.27 2/04634.56 777.81 778.08 40.0 10.0 19.5 29.5 17.5 1.0 W-541 Upper 1/31/2011 Tetra Tech 1649314.71 2/04654.18 777.78 778.12 40.0 10.0 19.5 29.5 17.5 1.0 W-542 Upper 2/16/2011 Tetra Tech 1649383.71 2/04489.21 771.00 771.35 35 10.0 14.5 24.5 12.5 1.0 W-543 Upper 2/16/2011 Tetra Tech 1649364.29 2/04513.36 771.68 772.00 35 10.0 14.5 24.5 12.5 1.0 W-544 Upper 2/16/2011 Tetra Tech 164930.53 2/0458.69 771.40 771.77 35 10.0 14.5 24.5 12.5 1.0 W-545 Upper 2/16/2011 Tetra Tech 1649313.56 2/0456.70 771.00 771.71 772.31 35 10.0 14.5 24.5 12.5 1.0 W-546 Upper 2/16/2011 Tetra Tech 1649313.56 2/0456.70 772.01 772.31 35 10.0 14.5 24.5 12.5 1.0 W-547 Upper 2/16/2011 Tetra Tech 1649313.56 2/0456.70 772.01 772.31 35 10.0 14.5 24.5 12.5 1.0 W-548 Upper 2/16/2011 Tetra Tech 1649313.56 2/0456.70 772.01 772.31 35 10.0 14.5 24.5 12.5 1.0 W-549 Upper 2/16/2011 Tetra Tech 1649313.56 2/0456.70 772.01 772.31 35 10.0 14.5 24.5 12.5 1.0 W-549 Upper 2/16/2011 Tetra Tech 1649313.56 2/0456.70 772.01 772.31 35 10.0 14.5 24.5 12.5 1.0 W-549 Upper 2/16/2011 Tetra Tech 1649313.56 2/0	IW-534	Upper	2/15/2011	Tetra Tech	1649414.24	204554.49	772.04	772.37	35								
IW-536 Upper 2/14/2011 Tetra Tech 1649379.32 204582.87 772.53 773.00 35 10.0 14.5 24.5 12.5 1.0	IW-535	Upper	2/15/2011	Tetra Tech	1649396.71	204567.33	772.33	772.65	35						1		
IW-537 Upper 2/14/2011 Tetra Tech 1649356.90 204581.14 772.63 772.90 35 10.0 14.5 24.5 12.5 1.0 IW-538 Upper 1/31/2011 Tetra Tech 1649352.62 204625.57 777.71 778.05 40.0 10.0 30.0 40.0 30.0 29.5 IW-540 Upper 1/31/2011 Tetra Tech 164934.27 204634.56 777.81 778.08 40.0 10.0 19.5 29.5 17.5 1.0 IW-541 Upper 1/31/2011 Tetra Tech 1649314.71 204654.18 777.78 778.12 40.0 10.0 19.5 29.5 17.5 1.0 IW-542 Upper 1/31/2011 Tetra Tech 1649383.71 204684.18 777.78 778.12 40.0 10.0 19.5 29.5 17.5 1.0 IW-543 Upper 2/18/2011 Tetra Tech 1649383.71 204489.21 771.00 771.35 35 10.0 14.5 24.5 12.5 1.0 IW-544 Upper 2/16/2011 Tetra Tech 1649364.29 204513.36 771.68 772.00 35 10.0 14.5 24.5 12.5 1.0 IW-545 Upper 2/16/2011 Tetra Tech 1649330.53 204545.69 771.40 771.77 35 10.0 25.0 35.0 25.0 24.5 IW-547 Upper 2/15/2011 Tetra Tech 1649313.56 204563.70 772.01 772.31 35 10.0 14.5 24.5 12.5 1.0 IW-548 Upper 2/15/2011 Tetra Tech 1649313.56 204563.70 772.01 772.31 35 10.0 14.5 24.5 12.5 1.0 IW-548 Upper 2/15/2011 Tetra Tech 1649313.56 204563.70 772.01 772.31 35 10.0 14.5 24.5 12.5 1.0 IW-549 Upper 2/15/2011 Tetra Tech 1649313.56 204563.70 772.01 772.31 35 10.0 14.5 24.5 12.5 1.0 IW-549 Upper 2/15/2011 Tetra Tech 1649313.56 204563.70 772.01 772.31 35 10.0 14.5 24.5 12.5 1.0 IW-549 Upper 2/15/2011 Tetra Tech 1649313.56 204563.70 772.01 772.31 35 10.0 14.5 24.5 12.5 1.0 IW-549 Upper 2/15/2011 Tetra Tech 1649313.56 204563.70 772.01 772.31 35 10.0 14.5 24.5 12.5 1.0 IW-540 Upper 2/15/2011 Tetra Tech 1649313.56	IW-536	Upper	2/14/2011	Tetra Tech	1649379.32	204582.87	772.53	773.00	35								
W-538 Upper Upper 1/31/2011 Tetra Tech 1649352.62 204625.57 777.71 778.05 40.0 10.0 19.5 29.5 17.5 1.0	IW-537	Upper	2/14/2011	Tetra Tech	1649356.90	204581.14	772.63	772.90	35	10.0	14.5	24.5	12.5	1.0			
W-549 Upper 1/31/2011 Tetra Tech 164934.27 204634.56 777.81 778.08 40.0 10.0 30.0 40.0 30.0 29.5 1/31/2011 Tetra Tech 164934.27 204634.56 777.81 778.08 40.0 10.0 19.5 29.5 17.5 1.0 1/31/2011 Tetra Tech 164934.71 204654.18 777.78 778.12 40.0 10.0 19.5 29.5 17.5 1.0 1/31/2011 Tetra Tech 1649314.71 204654.18 777.78 778.12 40.0 10.0 19.5 29.5 17.5 1.0 1/31/2011 Tetra Tech 1649314.71 204654.18 777.78 778.12 40.0 10.0 30.0 40.0 30.0 29.5 1/31/2011 Tetra Tech 1649383.71 204489.21 771.00 771.35 35 10.0 14.5 24.5 12.5 1.0 1/31/2011 Tetra Tech 1649364.29 204513.36 771.68 772.00 35 10.0 14.5 24.5 12.5 1.0 1/31/2011 Tetra Tech 1649364.29 204513.36 771.68 772.00 35 10.0 14.5 24.5 12.5 1.0 1/31/2011 Tetra Tech 164930.53 204545.69 771.40 771.77 35 10.0 14.5 24.5 12.5 1.0 1/31/2011 Tetra Tech 1649313.56 204563.70 772.01 772.31 35 10.0 14.5 24.5 12.5 1.0 1/31/2011 Tetra Tech 1649313.56 204563.70 772.01 772.31 35 10.0 14.5 24.5 12.5 1.0 1/31/2011 Tetra Tech 1649313.56 204563.70 772.01 772.31 35 10.0 14.5 24.5 12.5 1.0 1/31/2011 Tetra Tech 1649313.56 204563.70 772.01 772.31 35 10.0 14.5 24.5 12.5 1.0 1/31/2011 Tetra Tech 1649313.56 204563.70 772.01 772.31 35 10.0 14.5 24.5 12.5 1.0 1/31/2011 Tetra Tech 1649313.56 204563.70 772.01 772.31 35 10.0 14.5 24.5 12.5 1.0 1/31/2011 Tetra Tech 1649313.56 204563.70 772.01 772.31 35 10.0 14.5 24.5 12.5 1.0 1/31/2011 Tetra Tech 1649313.56 204563.70 772.01 772.31 35 10.0 14.5 24.5 12.5 1.0 1/31/2011 Tetra Tech 1649313.56 204563.70 772.01 772.31 35 10.0 14.5 24.5 12.5	IW-538	Upper		!		!	!	!	(see MW-4		1				<u> </u>	!	!
W-540 Upper 1/31/2011 Tetra Tech 164934.27 204634.56 777.81 778.08 40.0 10.0 30.0 40.0 30.0 29.5 W-541 Upper 1/31/2011 Tetra Tech 1649314.71 204654.18 777.78 778.12 40.0 10.0 19.5 29.5 17.5 1.0 W-542 Upper Upper 2/18/2011 Tetra Tech 1649383.71 204489.21 771.00 771.35 35 10.0 14.5 24.5 12.5 1.0 W-544 Upper 2/16/2011 Tetra Tech 1649364.29 204513.36 771.68 772.00 35 10.0 14.5 24.5 12.5 1.0 W-545 Upper Upper 2/16/2011 Tetra Tech 1649364.29 204513.36 771.40 771.77 35 10.0 14.5 24.5 12.5 1.0 W-546 Upper 2/16/2011 Tetra Tech 1649330.53 204545.69 771.40 771.77 35 10.0 14.5 24.5 12.5 1.0 W-547 Upper 2/15/2011 Tetra Tech 1649313.56 204563.70 772.01 772.31 35 10.0 14.5 24.5 12.5 1.0 W-548 Upper 2/16/2011 Tetra Tech 1649313.56 204563.70 772.01 772.31 35 10.0 14.5 24.5 12.5 1.0 W-548 Upper 2/16/2011 Tetra Tech 1649313.56 204563.70 772.01 772.31 35 10.0 14.5 24.5 12.5 1.0 W-548 Upper 2/16/2011 Tetra Tech 1649313.56 204563.70 772.01 772.31 35 10.0 14.5 24.5 12.5 1.0 W-548 Upper 2/16/2011 Tetra Tech 1649313.56 204563.70 772.01 772.31 35 10.0 14.5 24.5 12.5 1.0 W-549 Upper 2/16/2011 Tetra Tech 1649313.56 204563.70 772.01 772.31 35 10.0 14.5 24.5 12.5 1.0 W-549 Upper 2/16/2011 Tetra Tech 1649313.56 204563.70 772.21 772.31 35 10.0 14.5 24.5 12.5 1.0 W-549 Upper 2/16/2011 Tetra Tech 1649313.56 204563.70 772.21 772.31 35 10.0 14.5 24.5 12.5 1.0 W-549 Upper 2/16/2011 Tetra Tech 164930.35 204563.70 772.31 35 10.0 14.5 24.5 12.5 1.0 W-540 Upper 2/16/2011 Tetra Tech 164930.35 204563.70 772.	IW-539	Upper	1/31/2011	Tetra Tech	1649352.62	204625.57	777.71	778.05	40.0						+		
W-541 Upper 1/31/2011 Tetra Tech 1649314.71 204654.18 777.78 778.12 40.0 10.0 19.5 29.5 17.5 1.0	IW-540	Upper	1/31/2011	Tetra Tech	1649334.27	204634.56	777.81	778.08	40.0						1		
IW-543 Upper 2/18/2011 Tetra Tech 1649383.71 204489.21 771.00 771.35 35 10.0 14.5 24.5 12.5 1.0 10.0 10.0 25.0 35.0 25.0 24.5 10.0 10.0 25.0 35.0 25.0 24.5 10.0 10.0 25.0 35.0 25.0 24.5 10.0 10.0 25.0 35.0 25.0 24.5 10.0 25.0 25.0 24.5 10.0 25.0 25.0 24.5 10.0 25.0 25.0 24.5 10.0 25.0 25.0 24.5 10.0 25.0 25.0 24.5 10.0 25.0 25.0 24.5 10.0 25.0 25.0 24.5 10.0 25.0 25.0 24.5 10.0 25.0 25.0 24.5 10.0 25.0 25.0 24.5 10.0 25.0 25.0 24.5 10.0 25.0 25.0 24.5 10.0 25.0 25.0 24.5 10.0 25.0 25.0 24.5 10.0 25.0 25.0 25.0 24.5 10.0 25.0 25.0 25.0 24.5 10.0 25.0 25.0 25.0 25.0 24.5 10.0 25.	IW-541	Upper	1/31/2011	Tetra Tech	1649314.71	204654.18	777.78	778.12	40.0								
W-543 Upper 2/18/2011 Tetra Tech 1649383.71 204489.21 7/1.00 7/1.35 35 10.0 25.0 35.0 25.0 24.5	IW-542	Upper							(see MW-4	105 S&D)	•				•	•	
IW-544 Upper 2/16/2011 Tetra Tech 1649364.29 204513.36 771.68 772.00 35 \frac{10.0}{10.0} \frac{14.5}{25.0} \frac{24.5}{35.0} \frac{12.5}{25.0} \frac{1.0}{25.0}	IW-543	Upper	2/18/2011	Tetra Tech	1649383.71	204489.21	771.00	771.35	35								
W-545 Upper Upper 2/16/2011 Tetra Tech 1649330.53 204545.69 771.40 771.77 35 10.0 14.5 24.5 12.5 1.0	IW-544	Upper	2/16/2011	Tetra Tech	1649364.29	204513.36	771.68	772.00	35	10.0	14.5	24.5	12.5	1.0			
W-546 Upper 2/16/2011 Tetra Tech 164930.53 204545.69 7/1.40 7/1.77 35 10.0 25.0 35.0 25.0 24.5 10.0 10	IW-545	Upper					l .	•	(see MW-4						I		
IW-547 Upper 2/15/2011 Tetra Tech 1649313.56 204563.70 772.01 772.31 35 10.0 14.5 24.5 12.5 1.0 IW-548 Upper 2/13/2011 Tetra Tech 1649313.56 204563.70 772.73 772.13 35 10.0 14.5 24.5 12.5 1.0 IW-548 Upper 2/13/2011 Tetra Tech 1649303.75 204591.35 772.73 772.13 25 10.0 14.5 24.5 12.5 1.0	IW-546	Upper	2/16/2011	Tetra Tech	1649330.53	204545.69	771.40	771.77	35						1		
W 548 Upper 2/12/2011 Tetra Tech 16/02/00 25 20/05/135 772 772 12 25 10.0 14.5 24.5 12.5 1.0	IW-547	Upper	2/15/2011	Tetra Tech	1649313.56	204563.70	772.01	772.31	35	10.0	14.5	24.5	12.5	1.0			
	IW-548	Upper	2/12/2011	Tetra Tech	1649300.25	204581.25	772.72	773.12	35	10.0	14.5	24.5	12.5	1.0			
IW-549 Upper 2/12/2011 Tetra Tech 1649266.62 204588.38 775.93 776.18 40.0 10.0 19.5 29.5 17.5 1.0	IW-549	Upper	2/12/2011	Tetra Tech	1649266.62	204588.38	775.93	776.18	40.0	10.0	19.5	29.5	17.5	1.0			
IW-550 Upper 1/30/2011 Tetra Tech 1649265.65 204620.41 777.78 778.18 40.0 10.0 19.5 29.5 17.5 1.0	IW-550	Upper	1/30/2011	Tetra Tech	1649265.65	204620.41	777.78	778.18	40.0	10.0	19.5	29.5	17.5	1.0			

Table 1
Summary of Monitoring Well Construction Details
Former Indianapolis Consumer Electronics Facility (Sherman Park)
600 North Sherman Drive, Indianapolis, Indiana

				Location	Survey											
	Water- Bearing	Date of	Installed		· · · · · · ·	Top of Casing Reference Elevation (ft	Ground Surface Elevation (ft	Total Depth (ft	Screen Length	Top of Screen (ft	Bottom of Screen (ft	Top of Sandpack	Top of Seal (ft	Steel Casing Dianeter	Top of Steel Casing (ft	Bottom of Steel Casing
Well ID	Unit	Instalation	Ву	Northing	Easting	amsl)	amsl)	bgs)	(ft)	bgs)	bgs)	(ft bgs)	bgs)	(inches)	bgs)	(ft bgs)
IW-551	Upper	2/17/2011	Tetra Tech	1649305.11	204442.74	770.49	770.84	35	10.0 10.0	14.5 25.0	24.5 35.0	12.5 25.0	1.0 24.5			
IW-552	Upper	2/16/2011	Tetra Tech	1649286.55	204462.58	770.52	770.95	35	10.0 10.0	14.5 25.0	24.5 35.0	12.5 25.0	1.0 24.5			
IW-553	Upper	2/17/2011	Tetra Tech	1649282.49	204489.58	770.60	771.18	35	10.0 10.0	14.5 25.0	24.5 35.0	12.5 25.0	1.0 24.5			
IW-554	Upper	3/16/2011	Tetra Tech	1649263.00	204512.70	771.32	771.82	35	10.0 10.0	14.5 25.0	24.5 35.0	12.5 25.0	1.0 24.5			
IW-555	Upper	2/20/2011	Tetra Tech	1649253.46	204528.56	772.31	772.67	35	10.0	14.5 25.0	24.5 35.0	12.5 25.0	1.0			
IW-556	Upper	2/19/2011	Tetra Tech	1649246.02	204547.40	772.82	773.25	35	10.0	14.5 25.0	24.5 35.0	12.5 25.0	1.0			
IW-557	Upper	2/18/2011	Tetra Tech	1649218.69	204564.87	773.18	773.60	35	10.0	14.5 25.0	24.5 35.0	12.5 25.0	1.0			
IW-558	Upper	2/11/2011	Tetra Tech	1649187.99	204369.46	770.42	770.79	35	10.0	14.5 25.0	24.5 35.0	12.5 25.0	1.0			
IW-559	Upper	2/9/2011	Tetra Tech	1649158.23	204383.48	769.25	769.62	35	10.0	14.5 25.0	24.5 35.0	12.5 25.0	1.0			
IW-560	Upper	2/9/2011	Tetra Tech	1649152.40	204409.73	769.29	769.64	35	10.0	14.5 25.0	24.5 35.0	12.5 25.0	1.0			
IW-561	Upper	2/10/2011	Tetra Tech	1649139.46	204430.83	769.94	770.29	35	10.0	14.5 25.0	24.5 35.0	12.5 25.0	1.0			
IW-562	Upper	2/12/2011	Tetra Tech	1649125.41	204451.71	770.34	770.57	35	10.0	14.5 25.0	24.5 35.0	12.5 25.0	1.0			
IW-563	Upper	2/13/2011	Tetra Tech	1649758.81	204605.20	779.29	779.63	35	10.0 10.0	14.5 25.0	24.5 35.0	12.5 25.0	1.0			
IW-564	Upper	2/13/2011	Tetra Tech	1649741.55	204624.11	777.79	778.13	35	10.0 10.0	14.5 25.0	24.5 35.0	12.5 25.0	1.0			
IW-565	Upper	2/19/2011	Tetra Tech	1649725.22	204639.85	775.88	776.24	35	10.0	14.5	24.5	12.5	1.0			
IW-566	Upper	5/17/2013	Tetra Tech	1649788.98	204662.98	777.72	778.03	36	10.0	25.0 15.5	35.0 25.5	25.0 13.5	24.5 1.0			
IW-567	Upper	5/17/2013	Tetra Tech	1649774.11	204682.82	776.66	777.01	34	10.0	26.0 13.5	36.0 23.5	26.0 11.5	25.5 1.0			
IW-568	Upper	5/15/2013	Tetra Tech	1649750.93	204842.22	778.01	778.31	30	10.0 10.0	24.0	34.0 30.0	24.0 18.0	23.5 1.0			
IW-569	Upper	5/15/2013	Tetra Tech	1649734.62	204856.18	777.70	778.10	27	10.0	17.0	27.0	15.0	1.0			
IW-570	Upper	5/16/2013	Tetra Tech	1649484.18	204691.14	777.54	777.95	36	10.0	15.5	25.5	13.5	1.0			
IW-571	Upper	5/16/2013	Tetra Tech	1649473.42	204714.94	777.95	778.23	38	10.0 10.0	26.0 17.5	36.0 27.5	26.0 15.5	25.5 1.0			
IW-571	Upper	5/16/2013	Tetra Tech	1649455.74	204738.93	777.75	778.25	36	10.0 10.0	28.0 15.5	38.0 25.5	28.0 13.5	27.5 1.0			
		, ,		1649410.14	204738.93	777.72	778.05	36	10.0 10.0	26.0 15.5	36.0 25.5	26.0 13.5	25.5 1.0			
IW-573	Upper	5/14/2013	Tetra Tech	1049410.14	204650.18	///./2	//8.05	36	10.0	26.0	36.0	26.0	25.5			

Table 1
Summary of Monitoring Well Construction Details
Former Indianapolis Consumer Electronics Facility (Sherman Park)
600 North Sherman Drive, Indianapolis, Indiana

				Location	Survey											
					,	Top of Casing	Ground							Steel		
	Water-					Reference	Surface	Total	Screen	Top of	Bottom of	Top of	Top of	Casing	Top of Steel	Bottom of
								7.77								
	Bearing	Date of	Installed			Elevation (ft	Elevation (ft		Length	Screen (ft	Screen (ft	Sandpack	Seal (ft	Dianeter	Casing (ft	Steel Casing
Well ID	Unit	Instalation	Ву	Northing	Easting	amsl)	amsl)	bgs)	(ft)	bgs)	bgs)	(ft bgs)	bgs)	(inches)	bgs)	(ft bgs)
IW-574	Upper	5/14/2013	Tetra Tech	1649391.43	204665.13	777.67	778.04	36	10.0	15.5	25.5	13.5	1.0			
	•••	, ,							10.0	26.0	36.0	26.0	25.5			
IW-575	Upper	5/14/2013	Tetra Tech	1649372.74	204682.44	777.63	778.01	36	10.0 10.0	15.5 26.0	25.5 36.0	13.5 26.0	1.0 25.5			
IW-576	Upper	8/18/2015	Tetra Tech	*	*	*	*	25	10.0	15.0	25.0	13.0	1.0			
IW-577	Upper	8/18/2015	Tetra Tech	*	*	*	*	25	10.0	15.0	25.0	13.0	1.0			
IW-578	Upper	8/17/2015	Tetra Tech	*	*	*	*	25	10.0	15.0	25.0	13.0	1.0			
IW-579	Upper	8/17/2015	Tetra Tech	*	*	*	*	25	10.0	15.0	25.0	13.0	1.0			
IW-580	Upper	8/17/2015	Tetra Tech	*	*	*	*	25	10.0	15.0	25.0	13.0	1.0			
IW-581	Upper	8/19/2015	Tetra Tech	*	*	*	*	25	10.0	15.0	25.0	13.0	1.0			
IW-582	Upper	8/19/2015	Tetra Tech	*	*	*	*	25	10.0	15.0	25.0	13.0	1.0			
EW-1	Upper	5/13/2013	Tetra Tech	1649053.57	204308.13	768.96	769.35	28	20.0	8.0	28.0	6.0	1.0			
IW-601	Upper	10/5/2022	Ramboll	1649723.898	204741.4527	777.7*	778*	38	7.0	19.0	26.0	17.0	1.0			
		,-,							9.0	29.0	38.0	28.0	27.0			ļ
IW-602	Upper	10/5/2022	Ramboll	1649745.846	204755.4394	777.7*	778*	38	7.0	19.0	26.0	17.0	1.0			
	• • •								9.0	29.0	38.0	28.0	27.0			
IW-603	Upper	10/6/2022	Ramboll	1649738.562	204779.0496	777.7*	778*	38	7.0 9.0	19.0 29.0	26.0 38.0	17.0 28.0	1.0 27.0			
IW-604	Unnor	10/12/2022	Ramboll	1649662.840	204559.1823	774.5*	774.8*	38	10.0	28.0	38.0	26.0	1.0			
IW-605	Upper Upper	10/12/2022	Ramboll	1649681.243	204559.1825	774.5*	774.8*	38	10.0	28.0	38.0	26.0	1.0			
IW-606	Upper	10/11/2022	Ramboll	1649681.652	204586.0049	774.5*	774.8*	38	10.0	28.0	38.0	26.0	1.0			
IW-607	Upper	10/23/2022	Ramboll	1649667.697	204608.0633	777.7*	778*	38	10.0	28.0	38.0	26.0	1.0			
IW-608	Upper	10/24/2022	Ramboll	1649650.390	204592.0200	777.7*	778*	38	10.0	28.0	38.0	26.0	1.0			
IW-609	Upper	10/12/2022	Ramboll	1649647.419	204571.4437	774.5*	774.8*	38	10.0	28.0	38.0	26.0	1.0			
IW-610	Upper	10/18/2022	Ramboll	1649555.605	204523.0431	773.4*	773.7*	36	7.0	15.0	22.0	13.0	1.0			
100-010	Орреі	10/16/2022	Kalliboli	1049555.005	204525.0451	773.4	773.7	30	10.0	26.0	36.0	24.0	23.0			
IW-611	Upper	10/18/2022	Ramboll	1649572.368	204527.8957	773.4*	773.7*	36	7.0	15.0	22.0	13.0	1.0			
100 011	оррег	10/10/2022	Rambon	1045572.500	204327.0337	773.4	773.7	30	10.0	26.0	36.0	24.0	23.0			
IW-612	Upper	10/22/2022	Ramboll	1649573.281	204550.5181	773.4*	773.7*	36	7.0	15.0	22.0	13.0	1.0			
	- 1-1	-, , -							10.0	26.0	36.0	24.0	23.0			
IW-613	Upper	10/22/2022	Ramboll	1649557.866	204561.7514	773.4*	773.7*	36	7.0	15.0	22.0	13.0	1.0			
									10.0 7.0	26.0 15.0	36.0 22.0	24.0 13.0	23.0 1.0			
IW-614	Upper	10/23/2022	Ramboll	1649540.486	204556.0116	773.4*	773.7*	36	10.0	26.0	36.0	24.0	23.0			
									7.0	15.0	22.0	13.0	1.0			
IW-615	Upper	10/22/2022	Ramboll	1649538.029	204534.9237	773.4*	773.7*	36	10.0	26.0	36.0	24.0	23.0			
IW-616	Upper	9/28/2022	Ramboll	1649557.539	204837.2780	777.9*	778.3*	41	10.0	31.0	41.0	29.0	1.0			
IW-617	Upper	9/28/2022	Ramboll	1649557.403	204865.0357	777.9*	778.3*	41	10.0	31.0	41.0	29.0	1.0			
IW-618	Upper	9/27/2022	Ramboll	1649528.794	204852.0445	777.9*	778.3*	41	10.0	31.0	41.0	29.0	1.0			
IW-619	Upper	10/13/2022	Ramboll	1649450.261	204474.3494	772.1*	772.5*	25	10.0	15.0	25.0	13.0	1.0			
IW-620	Upper	10/13/2022	Ramboll	1649450.125	204502.1073	772.1*	772.5*	25	10.0	15.0	25.0	13.0	1.0			
IW-621	Upper	10/13/2022	Ramboll	1649419.983	204488.5940	772.1*	772.5*	25	10.0	15.0	25.0	13.0	1.0			
IW-622	Upper	9/30/2022	Ramboll	1649406.180	204797.4692	777.9*	778.3*	35	9.0	26.0	35.0	24.0	1.0			
IW-623	Upper	9/30/2022	Ramboll	1649431.210	204808.9008	777.9*	778.3*	35	9.0	26.0	35.0	24.0	1.0			
IW-624	Upper	10/3/2022	Ramboll	1649404.487	204829.3319	777.9*	778.3*	35	9.0	26.0	35.0	24.0	1.0			
IW-625	Upper	10/17/2022	Ramboll	1649328.592	204435.7122	770.5*	770.9*	34	10.0	24.0	34.0	22.0	1.0			
IW-626	Upper	10/17/2022	Ramboll	1649323.846	204463.9616	770.5*	770.9*	34	10.0	24.0	34.0	22.0	1.0			

Table 1

Summary of Monitoring Well Construction Details Former Indianapolis Consumer Electronics Facility (Sherman Park) 600 North Sherman Drive, Indianapolis, Indiana

				Locatio	n Survey											
	Water- Bearing	Date of	Installed			Top of Casing Reference Elevation (ft	Ground Surface Elevation (ft		_	Screen (ft	•	Sandpack		Dianeter	٠,	Steel Casing
Well ID	Unit	Instalation	Ву	Northing	Easting	amsl)	amsl)	bgs)	(ft)	bgs)	bgs)	(ft bgs)	bgs)	(inches)	bgs)	(ft bgs)
IW-627	Upper	10/14/2022	Ramboll	1649305.923	204464.3876	770.5*	770.9*	34	10.0	24.0	34.0	22.0	1.0			
IW-628	Upper	10/7/2022	Ramboll	1649665.756	204799.7687	777.7*	778.1*	38	7.0	19.0	26.0	17.0	1.0			
100-020	Opper	10/7/2022	Kalliboli	1049003.730	204799.7007	111.1	776.1	30	9.0	29.0	38.0	28.0	27.0			
IW-629	Upper	10/10/2022	Ramboll	1649693.308	204819.4372	777.7*	778.1*	38	7.0	19.0	26.0	17.0	1.0			
100-629	Opper	10/10/2022	Kalliboli	1049095.506	204619.4372	111.1	776.1	30	9.0	29.0	38.0	28.0	27.0			
IW-630	Upper	10/7/2022	Ramboll	1649664.568	204829.5774	777.7*	778.1*	38	7.0	19.0	26.0	17.0	1.0			
100-030	Opper	10/ // 2022	Nattibuli	1049004.308	204629.3774	111.1	//0.1	30	9.0	29.0	38.0	28.0	27.0			

Notes:

* Denotes well was not historically surveyed

** Denotes well has not yet been surveyed and the top of casing and ground surface elevations are estimates based on LiDAR data.

D&M - Dames and Moore

SEC - Sirrine Environmental Consultants, Inc.

BEAK - BEAK International, Inc. CRA - Conestoga-Rovers & Associates ft amsl - feet above ean sea level

ft bgs - feet below ground surface

Table 2 Monitoring Program Summary Former Indianapolis Consumer Electronics Plant (Sherman Park) 600 North Sherman Drive Indianapolis, Indiana

			Top of Casing	Total	Screen			Dissolved			
			Elevation	Depth	Length	Field		Hydrocarbon			FID
Well ID	WBU	Purpose	(ft amsl)	(ft bgs)	(ft)	Parameters ^a	VOCs	Gasses ^b	TOC	PID	CH ₄ , CO ₂ , O ₂
W-2	Upper	Groundwater Monitoring	780.1	30	10		Q				
W-4R	Upper	Groundwater Monitoring	772.44	25.3	10		Q				
W-8	Upper	Groundwater Monitoring	770.53	33.5	10.4		Q	Q			
W-9	Upper	Groundwater Monitoring	771.37	43.8	9.4		Q	Q			
W-10	Upper	Groundwater Monitoring	768.61	36	10.5		Q				
MW-41	Upper	Groundwater Monitoring	771.1	26.4	5		Q				
MW-131	Upper	Groundwater Monitoring	772.88	33	10		Q				
MW-241 MW-251	Upper	Groundwater Monitoring	767.58 767.81	34	10 10		Q Q				
MW-408D	Upper Upper	Groundwater Monitoring Groundwater Monitoring	777.79	35	9		Q				
MW-4085	Upper	Groundwater Monitoring	777.92	21.7	7		Q				
MW-311	Upper	Groundwater Monitoring	774.51	38	10		Q				
MW-321	Upper	Groundwater Monitoring	770.54	34	10		Q				
MW-331	Upper	Groundwater Monitoring	772.43	34	10		Q				
MW-401	Upper	Groundwater Monitoring	777.62	25	10		Q				
MW-403	Upper	Groundwater Monitoring	777.87	25	10		Q				
MW-404	Upper	Groundwater Monitoring	777.76	25	10		Q				
MW-406D	Upper	Groundwater Monitoring	777.53	35	9		Q				
MW-406S	Upper	Groundwater Monitoring	777.72	22	7		Q				
MW-416D	Upper	Groundwater Monitoring	773.24	36	10		Q				
MW-416S	Upper	Groundwater Monitoring	773.32	22	7		Q				
MW-419D	Upper	Groundwater Monitoring	777.91	41	10		Q				
MW-419S MW-422D	Upper Upper	Groundwater Monitoring Groundwater Monitoring	777.99 777.69	27 38	10 9		Q Q				
MW-422S		Groundwater Monitoring	777.68	26	7		Q				
MW-423D	Upper Upper	Groundwater Monitoring	777.69	38	9		Q				
MW-423S	Upper	Groundwater Monitoring	777.64	26	7		Q				
MW-426	Upper	Groundwater Monitoring	769.19	34	20		Q	Q			
MW-427	Upper	Groundwater Monitoring	768.79	25	10		Q				
MW-402	Upper	Remedial Monitoring	777.67	25	10	Q	Q	S	Q		
MW-402D	Upper	Remedial Monitoring	777.75	40	10	Q	Q	S	Q		
MW-407D	Upper	Remedial Monitoring	777.64	35	9	Q	Q	S	Q		
MW-407S	Upper	Remedial Monitoring	777.71	22	7	Q	Q	S	Q		
MW-410D	Upper	Remedial Monitoring	772.2	35	9	Q	Q	S	Q		
MW-410S	Upper	Remedial Monitoring	772.16	22	7	Q	Q	S	Q		
MW-411D	Upper	Remedial Monitoring	772.34	35	9	Q	Q	S	Q		
MW-411S	Upper	Remedial Monitoring	772.28	22	7	Q	Q	S	Q		
MW-413D	Upper	Remedial Monitoring	772.21	35	9	Q	Q	S	Q		
MW-413S	Upper	Remedial Monitoring	772.13	22	7	Q	Q	S	Q		
MW-418D MW-418S	Upper Upper	Remedial Monitoring Remedial Monitoring	777.76 777.73	41 27	10 7	Q Q	Q Q	S S	Q Q		
MW-425	Upper	Remedial Monitoring	769.39	30	20	Q	Q	S	Q Q		
MW-428	Upper	Remedial Monitoring	777.77	25	10	Q	Q	S	Q		
MW-405D	Upper	Injection Monitoring	777.85	35	9	<u> </u>	S	J			
MW-405S	Upper	Injection Monitoring	777.83	22	7		S				
MW-414D	Upper	Injection Monitoring	771.23	35	9		S				
MW-414S	Upper	Injection Monitoring	771.23	22	7		S				
MW-415D	Upper	Injection Monitoring	771.96	35	9		S				
MW-415S	Upper	Injection Monitoring	771.93	22	7		S				
MW-417D	Upper	Injection Monitoring	777.64	40	9		S				
MW-417S	Upper	Injection Monitoring	777.64	27	7		S				
MW-424D	Upper	Injection Monitoring	777.63	38	9		S				
MW-424S	Upper	Injection Monitoring	777.57	26	7		S				
W-4D	Middle	Groundwater Monitoring	772.52	67.8	10.2	 	A				-
W-8D W-11D	Middle Middle	Groundwater Monitoring Groundwater Monitoring	770.7 772.17	70.2 65.5	10.4 10.5		A S				
W-11D MW-22	Middle	Groundwater Monitoring Groundwater Monitoring	769.71	60.9	10.5		S				
MW-32	Middle	Groundwater Monitoring	777.34	63.1	10		A				
MW-82	Middle	Groundwater Monitoring	774.5	60.8	5		A				
MW-92	Middle	Groundwater Monitoring	771.62	62.8	10		A				
MW-112	Middle	Groundwater Monitoring	767.58	58	10		S				
MW-122	Middle	Groundwater Monitoring	765.49	60	10		A				
MW-132	Middle	Groundwater Monitoring	772.39	69.5	10		S				
MW-142	Middle	Groundwater Monitoring	770.92	64	10		Α				
MW-302	Middle	Groundwater Monitoring	767.79	62	10		Α				
MW-312	Middle	Groundwater Monitoring	771.75	68	10		S				
MW-322	Middle	Groundwater Monitoring	769.75	60	10		S				
MW-332	Middle	Groundwater Monitoring	773.82	65	10		Α .				
MW-33	Lower	Groundwater Monitoring	777.63	105	10		Α				
MW-123	Lower	Groundwater Monitoring	765.17	91.5	10		S				
MW-133	Lower	Groundwater Monitoring	772.68	98.8	10		S				
MW-153	Lower	Groundwater Monitoring	769.24	91	10		S				
MW-163	Lower	Groundwater Monitoring	770.53	95.7	10		S			-	
MW-173 MW-183	Lower	Groundwater Monitoring	768.97 772.17	98.1 105.3	10 11.1	-	S A				-
MW-253	Lower	Groundwater Monitoring Groundwater Monitoring	767.83	93	10		S			-	
MW-273	Lower	Groundwater Monitoring	772.44	99	10		A				
19199-2/3	FOMEI	Groundwater Monitoring	112.44	22	10		Α	l			1

Table 2

Monitoring Program Summary Former Indianapolis Consumer Electronics Plant (Sherman Park) 600 North Sherman Drive Indianapolis, Indiana

Well ID	WBU	Purpose	Top of Casing Elevation (ft amsl)	Total Depth (ft bgs)	Screen Length (ft)	Field Parameters ^a	VOCs	Dissolved Hydrocarbon Gasses ^b	тос	PID	FID CH ₄ , CO ₂ , O ₂
MW-303	Lower	Groundwater Monitoring	767.71	95	10		S				
MW-313	Lower	Groundwater Monitoring	767.61	95	10		S				
MW-323	Lower	Groundwater Monitoring	770.23	95	10		S				
MW-333	Lower	Groundwater Monitoring	765.03	95	10		S				
MW-343	Lower	Groundwater Monitoring	764.05	103	10		Α				
SGP-1	Vadose	Soil Gas	8	0.5						Q	Q
SGP-2	Vadose	Soil Gas	8	0.5						Q	Q
SGP-3	Vadose	Soil Gas	8	0.5						Q	Q

- a. Field Parameters = pH, specific conductivity, temperature, dissolved oxygen (DO), oxidation-reduction potential (ORP) and turbidity.
- b. Dissolved Hydrocarbon Gases = ethane, ethene, and methane.

 A = Annual; S = Semiannual; Q = Quarterly.

 * Nitrate, sulfate and dissolved iron are analyzed by laboratory.

ft - feet

ft bgs - feet below ground surface.

ft amsl - feet above mean sea level. TOC - total organic carbon.

PID - photoionization detector. FID - flame ionization detector. CH4 - methane (in parts per million).

CO2 - carbon dioxide (in parts per million).

O2 - percent oxygen.

Table 3 Groundwater Monitoring Well Elevations Former Indianapolis Consumer Electronics Plant (Sherman Park) 600 North Sherman Drive Indianapolis, Indiana

	Location	n Survey	Top of Casing	Ground					v			v	5	Maria et al.	Vertical	5		Vertical
Well I.D.			Reference	Surface	Total Depth	WBU	Depth to Water	Water Elevation	Vertical Gradient	Depth to Water	Water Elevation	Vertical Gradient	Depth to Water July/Sept 2023 (ft	Water Elevation July/Sept 2023 (ft	Gradient	Depth to Water Oct/Nov 2023 (ft	Water Elevation Oct/Nov 2023 (ft	Gradient
	Easting	Northing	Elevation (ft amsl)	Elevation (ft amsl)	(ft bgs)		Jan 2023 (ft bgs)	Jan 2023 (ft amsl)	(Jan 2023)	Apr 2023 (ft bgs)	Apr 2023 (ft amsl)	(Apr 2023)	bgs)	amsl)	(July/Sept 2023)	bgs)	amsl)	(Oct/Nov 2023)
W-2	204667.19	1649776.67	780.02	778.19	30.0	Upper	20.97	759.05	N/A	Not G	auged	N/A	17.60	762.42	N/A	Not 0	Gauged	N/A
MW-32	204696.92	1649846.93	777.34	777.61	63.1	Middle		auged	N/A	Not G	-	N/A	13.40	763.94	1.52		Gauged	N/A
MW-33	204687.82	1649837.21	777.63	777.90	105.0	Lower		auged	N/A	Not G	-	N/A	36.47	741.16	-22.78		auged	N/A
W-4R	204492.98	1649437.05	772.44	772.72	25.3	Upper	14.12	758.32	N/A	Not G	-	N/A	13.59	758.85	N/A		Gauged	N/A
W-4D MW-273	204486.65 204476.63	1649437.84 1649438.36	772.52 772.44	772.53 772.51	67.8 99.00	Middle Lower		Gauged Gauged	N/A N/A	Not G	-	N/A N/A	30.71 32.57	741.81 739.87	-17.04 -1.94		Gauged Gauged	N/A N/A
W-8	204080.25	1648988.08	770.53	770.92	33.5	Upper	14.00	756.53	N/A	12.75	757.78	N/A	13.51	757.02	N/A	14.29	756.24	N/A
W-8D	204080.44	1648996.17	770.70	770.87	70.2	Middle	Not G	auged	N/A	Not G	auged	N/A	28.81	741.89	-15.13	Not 0	auged	N/A
MW-163	204091.18	1648990.75	770.49	770.79	95.70	Lower		auged	N/A	Not G		N/A	29.51	740.98	-0.91		auged	N/A
W-9 W-10	204585.85 203784.16	1648965.41 1648957.59	771.37 768.61	771.87 768.88	43.8 36.0	Upper Upper	14.31 12.92	757.06 755.69	N/A N/A	12.89 12.03	758.48 756.58	N/A N/A	28 12.33	743.37 756.28	N/A N/A	31.81 13.06	739.56 755.55	N/A N/A
MW-41	204009.99	1649108.45	771.10	771.34	26.4	Upper	12.18	758.92	N/A	10.88	760.22	N/A	11.26	759.84	N/A	16.45	754.65	N/A
MW-142	203986.88	1649099.71	770.92	771.26	64.00	Middle	Could N	ot Locate	N/A	Could No	ot Locate	N/A	Could No	ot Locate	N/A	Not 0	auged	N/A
MW-131	204138.18	1649174.39	772.88	773.19	33.0	Upper	15.76	757.12	N/A	14.35	758.53	N/A	15.87	757.01	N/A	17.12	755.76	N/A
MW-132	204135.64	1649152.71	772.39	772.73	69.5	Middle	31.78	740.61	-16.51	Not G	-	N/A	31.2	741.19 740.88	-15.82		Gauged Gauged	N/A
MW-133 MW-241	204137.85 203555.08	1649164.78 1648688.52	772.68 767.58	772.92 767.91	98.80 34.00	Lower Upper	32.39 12.01	740.29 755.57	-0.31 N/A	11.05	756.53	N/A N/A	31.8 12.6	740.88	-0.30 N/A	13.15	754.43	N/A N/A
MW-251	203639.45	1648961.06	767.81	768.06	30.00	Upper	11.75	756.06	N/A	26.15	741.66	N/A	11.59	755.99	N/A		Gauged	N/A
MW-253	203646.03	1648961.17	767.70	768.04	93.00	Lower	27.4	740.30	-15.76	Not G	auged	N/A	27.77	739.93	-16.06	28.7	739.00	N/A
MW-311	204579.22	1649664.73	774.51	774.80	38.00	Upper		auged	N/A	Not G		N/A	14.55	759.96	N/A		auged	N/A
MW-321 MW-331	204449.53 204525.86	1649316.36 1649179.73	770.54 772.43	770.93 772.64	34.00 34.00	Upper	Not 6 14.50	757.93	N/A N/A	Not G: 13.54	758.89	N/A N/A	12.54 13.84	758.00 758.59	N/A N/A	Not 0 16.66	755.77	N/A N/A
W-11D	204525.86	1649179.73	772.43	772.64	65.5	Upper Middle	14.50 31.48	757.93 740.69	-17.24	13.54 Not G		N/A N/A	13.84 13.36	758.59 758.81	N/A 0.22		755.77 Gauged	N/A N/A
MW-183	204522.10	1649147.67	772.17	772.47	105.25	Lower		Gauged	N/A	Not G	-	N/A	31.40	740.77	-18.04		Gauged	N/A
MW-401	204623.64	1649518.25	777.62	778.02	25.0	Upper	Not G	auged	N/A	Not G	auged	N/A	17.23	760.39	N/A	Not 0	auged	N/A
MW-402	204624.77	1649460.75	777.67	778.02	25.0	Upper		auged	N/A	Not G	-	N/A	17.35	760.32	N/A		auged	N/A
MW-402D	204624.53	1649465.16	777.75	778.04	40.0	Upper		Sauged	N/A	Not G	=	N/A	Not G	760.72	N/A		Gauged	N/A
MW-403 MW-404	204730.74 204626.78	1649465.25 1649364.47	777.87 777.76	778.24 778.05	25.0 25.0	Upper Upper		Gauged Gauged	N/A N/A	Not G	-	N/A N/A	17.15 17.14	760.62	N/A N/A		Gauged Gauged	N/A N/A
MW-405S	204669.48	1649298.20	777.83	778.23	35.0	Upper		Gauged	N/A	Not G	-	N/A	15.66	762.17	N/A		Gauged	N/A
MW-405D	204669.89	1649298.17	777.85	778.23	35.0	Upper	Not G	auged	N/A	Not G	auged	N/A	19.32	758.53	-3.65	Not 0	auged	N/A
MW-406S	204662.14	1649411.19	777.72	778.00	35.0	Upper		auged	N/A	Not G	-	N/A	17.86	759.86	N/A		Gauged	N/A
MW-406D	204662.09	1649411.35	777.53	778.00	35.0	Upper		Sauged	N/A	Not G	-	N/A	18.58	758.95	-0.91		Gauged	N/A
MW-407S MW-407D	204722.51	1649537.38 1649537.21	777.71 777.64	778.04 778.04	35.0 35.0	Upper Upper		Gauged Gauged	N/A N/A	Not G	-	N/A N/A	13.87 18.65	763.84 758.99	N/A -4.85		Gauged Gauged	N/A N/A
MW-408S	204813.26	1649413.63	777.92	778.26	35.0	Upper		Gauged	N/A	Not G	-	N/A	12.00	765.92	N/A		Gauged	N/A
MW-408D	204813.02	1649413.66	777.79	778.26	35.0	Upper	Not G	auged	N/A	Not G	auged	N/A	18.13	759.66	-6.27	Not 0	auged	N/A
MW-410S	204571.87	1649296.46	772.16	772.76	35.0	Upper		auged	N/A	Not G	-	N/A	12.41	759.75	N/A		auged	N/A
MW-410D	204571.85	1649296.12	772.20	772.76	35.0	Upper		Sauged	N/A	Not G	Ü	N/A	14.15	758.05	-1.70		Gauged	N/A
MW-411S MW-411D	204570.08 204569.96	1649390.23 1649390.43	772.28 772.34	772.73 772.73	35.0 35.0	Upper Upper		Gauged Gauged	N/A N/A	Not G	-	N/A N/A	12.32 Not G	759.96 auged	N/A N/A		Gauged Gauged	N/A N/A
MW-413S	204523.86	1649248.23	772.13	772.59	35.0	Upper		Gauged	N/A	Not G		N/A	14.33	757.80	N/A		Gauged	N/A
MW-413D	204523.82	1649248.03	772.21	772.59	35.0	Upper	Not G	auged	N/A	Not G	auged	N/A	Not G	auged	N/A	Not 0	auged	N/A
MW-414S	204529.31	1649349.16	771.23	771.78	35.0	Upper		auged	N/A	Not G	-	N/A	11.18	760.05	N/A		Gauged	N/A
MW-414D MW-415S	204529.11	1649349.33	771.23	771.78	35.0	Upper		Gauged Gauged	N/A	Not G		N/A	12.15 12.35	759.08 759.58	-0.97		Gauged Gauged	N/A
MW-4155 MW-415D	204538.67 204538.81	1649439.31 1649439.54	771.93 771.96	772.31 772.31	35.0 35.0	Upper Upper		Gauged Gauged	N/A N/A	Not G		N/A N/A	12.35 12.50	759.58 759.46	N/A -0.12		Gauged	N/A N/A
MW-416S	204540.92	1649557.20	773.32	773.69	36.0	Upper		Gauged	N/A	Not G	_	N/A	13.49	759.83	N/A		Gauged	N/A
MW-416D	204541.21	1649557.28	773.24	773.69	36.0	Upper		auged	N/A	Not G		N/A	13.50	759.74	-0.08		Gauged	N/A
MW-417S	204642.15	1649574.59	777.64	778.00	40.0	Upper		Gauged	N/A	Not G		N/A	16.84	760.80	N/A		Gauged	N/A
MW-417D	204642.06	1649574.45	777.64 777.73	778.00 778.05	40.0 41.0	Upper		Gauged Gauged	N/A	Not G		N/A	17.92	759.72 761.54	-1.07 N/A		Gauged Gauged	N/A
MW-418S MW-418D	204748.38 204748.56	1649606.34 1649606.57	777.73	778.05 778.05	41.0 41.0	Upper Upper		auged Gauged	N/A N/A	Not G	-	N/A N/A	16.19 17.97	761.54 759.79	N/A -1.75		Gauged	N/A N/A
MW-419S	204748.30	1649543.17	777.99	778.31	41.0	Upper		Gauged	N/A	Not G	_	N/A	15.10	762.89	-1./3 N/A		Gauged	N/A
MW-419D	204851.08	1649543.15	777.91	778.31	41.0	Upper		Gauged	N/A	Not G	auged	N/A	15.40	762.51	-0.37		Gauged	N/A
MW-422S	204843.50	1649736.55	777.68	778.06	26.0	Upper		auged	N/A	Not G		N/A	13.37	764.31	N/A		Gauged	N/A
MW-422D	204843.41	1649736.34 1649728.85	777.69 777.64	778.06 778.02	38.0 26.0	Upper		Sauged	N/A N/A	Not G		N/A N/A	12.30 13.95	765.39 763.69	1.08 N/A		Gauged	N/A N/A
MW-423S MW-423D	204760.12 204760.37	1649728.85	777.69	778.02	38.0	Upper Upper		Gauged Gauged	N/A N/A	Not G	-	N/A N/A	13.95	763.69	-3.51		Gauged Gauged	N/A N/A
MW-424S	204619.49	1649387.47	777.57	777.99	26.0	Upper		auged	N/A	Not G		N/A	17.22	760.35	N/A		Gauged	N/A
MW-424D	204619.61	1649387.71	777.63	777.99	38.0	Upper	Not G	auged	N/A	Not G	auged	N/A	17.15	760.48	0.12	Not 0	auged	N/A
MW-425	204404.91	1649169.12	769.39	769.72	30.0	Upper	10.4	758.99	N/A	10.4	758.99	N/A	11.48	757.91	N/A	12.89	756.50	N/A
MW-426	204387.38	1648988.24	769.19	769.41	34.0	Upper		740.40	N/A	Not G		N/A	11.35	757.84 740.97	N/A		Gauged	N/A
MW-173 MW-427	204375.76 204366.86	1648974.22 1649144.03	768.97 768.79	769.18 769.13	98.10 25.0	Lower Upper	28.57 Could N	ot Locate	N/A N/A	Not G	-	N/A N/A	28 Could No	740.97 ot Locate	-16.87 N/A		Gauged Gauged	N/A N/A
MW-322	204358.19	1649169.34	769.75	769.98	60.00	Middle	28.68	741.07	N/A	Not G		N/A	27.6	742.15	N/A		Gauged	N/A
MW-323	204355.13	1649183.29	770.23	770.44	95.00	Lower		auged	N/A	Not G	-	N/A	29.62	740.61	-1.54		Gauged	N/A
MW-428	204813.60	1649677.22	777.77	778.07	25.0	Upper	Not G	auged	N/A	Not G	auged	N/A	17.11	760.66	N/A	Not 0	Gauged	N/A

Table 3

Groundwater Monitoring Well Elevations Former Indianapolis Consumer Electronics Plant (Sherman Park)

600 North Sherman Drive Indianapolis, Indiana

	Locatio	n Survey	Top of Casing	Ground					Vertical			Vertical	Depth to Water	Water Elevation	Vertical	Depth to Water	Water Elevation	Vertical
Well I.D.	Easting	Northing	Reference Elevation (ft amsl)	Surface Elevation (ft amsl)	Total Depth (ft bgs)	WBU	Depth to Water Jan 2023 (ft bgs)	Water Elevation Jan 2023 (ft amsl)	Gradient (Jan 2023)		Water Elevation Apr 2023 (ft amsl)	Gradient	· ·	July/Sept 2023 (ft amsl)	Gradient (July/Sept 2023)		Oct/Nov 2023 (ft amsl)	Gradient (Oct/Nov 2023)
MW-22	204499.52	1648973.31	769.71	770.09	60.9	Middle	28.62	741.09	N/A	Not 0	Gauged	N/A	28.5	741.21	N/A	Not G	auged	N/A
MW-82	204778.37	1648966.92	774.50	775.25	60.8	Middle	Not G	Gauged	N/A	Not 0	auged	N/A	32.3	742.20	N/A	Not G	auged	N/A
MW-92	204532.63	1648678.14	771.62	771.88	62.8	Middle	Not G	Gauged	N/A	Not 0	auged	N/A	30.01	741.61	N/A	Not G	auged	N/A
MW-112	204315.38	1648983.97	767.58	768.03	58.0	Middle	26.89	740.69	N/A	Not 0	auged	N/A	26.26	741.32	N/A	Not G	auged	N/A
MW-313	204298.43	1648977.22	767.61	767.52	95.00	Lower	26.77	740.84	0.15	Not 0	Gauged	N/A	26.2	741.41	0.09	Not G	auged	N/A
MW-122	204180.69	1649413.25	765.49	765.88	60.0	Middle	Could N	lot Locate	N/A	Could N	ot Locate	N/A	Could N	ot Locate	N/A	Could No	ot Locate	N/A
MW-123	204189.74	1649422.02	765.17	766.08	91.5	Lower	Could N	lot Locate	N/A	Could N	ot Locate	N/A	Could N	ot Locate	N/A	Could No	ot Locate	N/A
MW-302	204025.46	1649273.43	767.79	768.17	62.00	Middle	Not G	Gauged	N/A	Not 0	Gauged	N/A	25.66	742.13	N/A	Not G	auged	N/A
MW-303	204017.72	1649273.44	766.19	76679	95.00	Lower	26.22	739.97	N/A	Not 0	Gauged	N/A	25.03	741.16	-0.97	Not G	auged	N/A
MW-312	204147.28	1649068.09	771.75	772.04	68.00	Middle	30.90	740.85	N/A	Not 0	auged	N/A	28.4	743.35	N/A	Not G	auged	N/A
MW-332	204348.01	1649258.02	773.82	770.92	65.00	Middle	Not G	Gauged	N/A	Not 0	Gauged	N/A	32.61	741.21	N/A	Not G	auged	N/A
MW-153	203974.40	1648970.72	768.95	769.61	91.00	Lower	29.7	739.25	N/A	Not 0	Gauged	N/A	27.51	741.44	N/A	Not G	auged	N/A
MW-333	203704.43	1649356.73	764.82	765.05	95.00	Lower	24.7	740.12	N/A	Not 0	auged	N/A	23.95	740.87	N/A	Not G	auged	N/A
MW-343	203987.02	1649721.00	764.05	764.33	103.00	Lower	Not G	Gauged	N/A	Not 0	Gauged	N/A	24.55	739.50	N/A	Not G	auged	N/A

ft amsl - feet above mean sea level ft bgs - feet below ground surface

WBU - water-bearing unit
Not Gauged - Well not part of that particular event

Could Not Locate - Well likely destroyed

Well Inaccessible - Well was either within an area of injection or construction, or was covered at the time of sampling

Table 4a

Stabilized pH Measurements in Low-Flow Monitoring Wells Former Indianapolis Consumer Electronics Plant (Sherman Park) 600 North Sherman Drive Indianapolis, Indiana

pH (S.U	.)															
Date	Month	MW402	MW402D	MW407S	MW407D	MW410S	MW410D	MW411S	MW411D	MW413S	MW413D	MW418S	MW418D	MW425	MW-428	MW Avg
3/17/11	Prior	6.57	6.23	6.64	6.36	6.84	6.55	6.64	6.73	6.53	6.43	6.66	6.92	6.65	6.86	6.62
1/25/16	Month 55	6.33	5.46	6.56	6.41	6.55	6.43	6.20	5.18	6.81	6.71	6.49	6.74	7.09	7.19	6.44
4/20/16	Month 58	6.29	6.71	6.81	6.49	6.89	6.59	6.35	5.72	7.21	7.02	6.44	6.54	7.35	6.95	6.67
7/20/16	Month 61	6.41	5.63	6.61	6.65	6.59	6.56	6.24	5.29	6.65	6.78	6.59	6.85	7.19	7.09	6.51
10/17/16	Month 64	6.91	7.27	7.26	7.16	7.51	7.03	6.96	NM	7.49	7.65	7.05	7.15	7.36	7.57	7.26
1/9/17	Month 66	6.80	6.43	6.76	7.05	6.97	6.84	6.67	5.53	7.42	7.57	6.90	6.88	7.20	7.03	6.86
4/25/17	Month 70	6.65	6.74	6.77	6.72	7.01	6.60	6.45	6.74	6.86	7.15	6.85	6.60	7.06	7.15	6.81
7/12/17	Month 72	6.88	7.19	6.90	6.84	7.33	6.94	6.78	7.07	7.21	7.45	6.82	6.71	7.43	7.93	7.11
10/18/17	Month 76	6.21	6.87	7.02	6.83	7.38	6.69	6.78	6.95	7.15	7.01	7.10	6.95	7.21	7.26	6.96
1/25/18	Month 79	6.30	6.75	6.72	6.44	9.53	9.38	9.88	9.92	10.62	9.62	9.95	10.48	10.14	10.54	9.02
4/19/18	Month 82	6.50	6.39	6.83	7.00	7.31	6.80	6.77	6.67	6.96	7.11	6.65	6.91	7.07	7.19	6.87
7/19/18	Month 85	6.64	6.91	7.02	6.70	7.21	7.03	6.67	7.33	7.02	7.32	7.08	6.94	7.31	7.14	7.02
10/22/18	Month 88	6.85	7.01	6.48	6.70	6.76	6.63	6.42	6.71	6.91	7.09	6.25	6.78	6.54	7.16	6.74
1/28/19	Month 91	6.26	6.64	6.65	6.39	6.59	6.51	6.30	6.93	6.73	6.92	6.67	6.28	6.74	7.41	6.64
4/8/19	Month 93	6.19	6.52	6.39	6.27	6.32	6.33	6.02	6.64	6.43	6.61	6.28	6.40	6.42	6.75	6.40
7/15/19	Month 97	6.67	6.77	7.36	6.54	6.80	6.79	6.63	7.54	6.96	7.07	7.73	7.63	6.96	7.85	7.09
10/22/19	Month 100	6.41	6.87	6.76	6.48	6.55	6.63	6.47	6.52	6.89	6.86	6.57	6.89	6.99	6.85	6.70
1/14/20	Month 102	6.35	6.81	6.68	6.33	6.59	6.60	6.44	6.99	6.93	6.99	6.68	6.65	6.96	6.84	6.70
4/13/20	Month 105	6.42	7.01	6.72	6.59	6.59	6.58	6.62	6.67	6.94	6.93	6.55	6.71	6.92	6.84	6.72
7/21/20 ^a	Month 108	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
10/19/20	Month 112	6.49	6.94	6.73	6.56	6.62	6.56	6.39	6.64	6.92	6.91	6.55	6.58	6.93	6.78	6.69
1/6/21	Month 114	6.83	6.91	6.85	6.70	6.68	6.57	6.50	6.85	7.06	6.47	6.47	6.59	7.02	6.61	6.72
4/19/21	Month 118	6.58	6.97	4.70	6.73	6.84	6.72	6.61	6.65	7.07	7.10	3.70	6.59	7.09	6.88	6.45
7/20/21	Month 121	6.42	6.71	6.84	6.54	6.75	7.08	6.63	6.38	7.27	7.02	6.29	6.23	-	6.50	6.67
10/4/21	Month 123	6.11	6.21	6.25	5.94	5.95	-	5.84	6.40	6.32	6.27	5.86	5.86	-	4.65	6.03
2/21/22	Month 128	6.59	6.88	6.87	6.74	6.88	6.79	6.65	6.74	7.18	7.11	6.75	6.83	7.13	-	6.86
4/21/22	Month 130	6.57	6.88	6.86	6.74	6.91	6.84	6.67	6.71	7.12	7.07	6.76	6.74	7.06	6.90	6.85
7/27/22	Month 133	6.75	7.00	6.94	6.83	6.96	6.98	6.69	6.82	7.15	7.10	6.86	6.66	7.10	6.92	6.91
10/25/22	Month 136	-	-	6.76	6.74	6.77	6.81	-	-	7.01	6.97	7.00	6.64	6.89	6.80	6.84
1/23/23 ^b	Month 139	-	-	-	-	-	-	-	-	-	-	-	-	6.90	-	6.90
4/25/23 ^b	Month 142	-	-	-	-	-	-	-	-	-	-	-	-	7.29	-	7.29
7/17/23 ^c	Month 145	6.57	-	6.64	6.73	6.65	6.73	6.34	-	6.76	-	6.90	6.70	6.96	7.00	6.73
10/17/23 ^b	Month 148	-	-	-	-	-	-	-	-	-	-	-	-	7.17	-	7.17

^{&#}x27;-' = Sample not collected

a. pH readings were not obtained during the 7/21/2020 event due to a faulty sensor

b. Samples were not collected from remedial wells during the January, April and October 2023 events due to not enough timing from recent amendment injections.

c. Samples were not collected from selected wells during the 7/2023 event due to existing amendment within the wells.

Table 4b

Stabilized Temperature Measurements in Low-Flow Monitoring Wells Former Indianapolis Consumer Electronics Plant (Sherman Park) 600 North Sherman Drive Indianapolis, Indiana

Temp	(degre	es Ce	Isius)													
Date	Month	MW402	MW402D	MW407S	MW407D	MW410S	MW410D	MW411S	MW411D	MW413S	MW413D	MW418S	MW418D	MW425	MW-428	MW Avg
3/17/11	Prior	16.22	16.3	18.20	18.10	14.10	15.42	14.95	16.23	13.26	14.14	18.70	18.75	12.56	16.00	15.92
1/25/16	Month 55	14.08	10.33	10.96	10.56	14.24	12.26	14.06	12.30	13.59	12.85	11.71	11.46	11.89	11.36	12.26
4/20/16	Month 58	16.53	18.73	19.17	19.57	16.69	20.84	17.17	18.81	17.86	17.91	17.18	15.23	16.72	16.03	17.75
7/20/16	Month 61	24.77	24.23	24.65	24.13	24.97	25.19	25.63	24.68	26.33	26.63	24.06	24.21	24.22	24.56	24.88
10/17/16	Month 64	21.11	20.27	20.24	20.66	20.07	19.19	21.82	19.47	21.68	20.93	21.31	20.07	20.69	20.20	20.55
1/9/17	Month 66	11.97	11.18	11.36	11.83	13.60	11.92	13.38	11.84	13.27	12.45	11.53	11.32	11.90	11.70	12.09
4/25/17	Month 70	17.04	19.04	16.62	17.52	15.90	17.78	17.80	19.04	15.82	16.75	16.37	17.16	16.87	18.55	17.30
7/12/17	Month 72	21.17	20.51	20.56	20.18	19.53	19.39	19.81	19.82	20.13	19.10	22.32	20.63	19.33	20.04	20.18
10/18/17	Month 76	17.22	16.58	17.73	16.61	17.05	16.78	17.20	16.29	16.87	16.47	17.97	17.03	16.73	17.51	17.00
1/25/18	Month 79	15.79	16.23	14.99	15.85	13.86	12.72	13.74	14.39	9.33	14.62	13.21	13.30	10.40	13.99	13.74
4/19/18	Month 82	14.61	14.72	14.45	14.09	13.62	13.11	13.31	13.38	13.07	13.14	14.31	13.43	13.58	13.11	13.71
7/19/18	Month 85	21.86	23.59	23.09	-	24.76	23.04	25.61	21.97	22.64	20.97	21.25	23.78	20.66	22.36	22.74
10/22/18	Month 88	18.97	18.47	17.94	18.06	19.12	22.10	18.65	17.88	18.40	17.87	17.98	18.26	18.26	18.23	18.59
1/28/19	Month 91	15.10	14.10	12.70	14.60	10.20	11.20	12.20	11.10	11.40	11.90	12.10	13.50	10.60	12.20	12.35
4/8/19	Month 93	14.45	15.75	14.08	14.73	14.63	17.38	12.58	13.69	18.10	17.42	15.04	15.75	12.89	15.08	15.11
7/15/19	Month 97	20.01	22.56	31.39	24.23	17.58	17.64	18.56	17.06	22.79	19.33	29.91	29.41	19.67	27.53	22.69
10/22/19	Month 100	17.40	17.10	19.40	17.40	18.50	17.60	16.60	16.50	17.80	17.00	17.60	17.60	18.60	17.10	17.59
1/14/20	Month 102	16.00	15.90	13.30	16.30	15.80	15.70	15.60	15.90	14.90	14.90	13.90	13.20	14.50	14.30	15.01
4/13/20	Month 105	13.80	14.70	14.00	14.20	13.70	14.70	13.40	14.30	12.90	14.00	13.40	14.20	12.00	12.90	13.73
7/21/20	Month 109	18.40	18.20	20.10	18.40	18.70	18.00	20.80	18.60	17.70	17.10	19.10	20.10	18.00	18.00	18.66
10/19/20	Month 112	16.80	16.40	17.80	17.20	18.50	17.00	17.80	16.70	18.10	16.80	16.90	16.30	18.60	15.70	17.19
1/6/21	Month 114	16.10	15.30	15.20	15.90	15.80	15.30	15.40	15.60	15.80	15.70	14.50	13.90	15.60	13.10	15.23
4/19/21	Month 118	16.80	17.70	15.50	18.70	13.20	14.60	15.70	16.10	13.60	13.90	15.00	15.00	12.10	13.60	15.11
7/20/21	Month 121	18.30	19.10	20.10	18.80	20.20	19.80	19.90	17.50	18.70	18.80	17.50	17.00	-	17.40	18.70
10/4/21	Month 123	19.30	18.20	19.70	19.10	20.90	-	19.70	19.00	21.00	19.60	18.80	18.90	-	17.60	19.39
2/21/22	Month 128	14.31	16.40	13.13	16.30	15.89	16.40	16.69	14.30	13.54	14.47	15.35	12.86	12.38	-	14.77
4/21/22	Month 130	14.55	15.49	15.07	16.28	13.14	14.53	15.62	17.25	14.88	15.80	15.49	16.55	12.30	14.86	15.13
7/27/22	Month 133	20.11	18.57	19.51	21.73	18.17	17.68	18.79	18.08	17.49	16.85	18.07	17.93	16.72	18.31	18.43
10/25/22 ^a	Month 136	-	-	19.76	18.60	20.90	18.62	-	-	19.40	17.48	19.50	18.12	20.76	18.60	19.17
1/23/23 ^a	Month 139	-	-	-	-	-	-	-	-	-	-	-	-	14.12	-	14.12
4/25/23 ^a	Month 142	-	-	-	-	i	-	-	-	-	-	-	-	11.84	-	11.84
7/17/23 ^b	Month 145	20.33	-	23.46	18.40	20.78	19.99	18.40	-	18.19	-	19.55	20.42	17.70	20.11	19.76
10/17/23 ^a	Month 148	-	-	-	-	-	-	-	-	-	-	-	-	17.80	-	17.80

a. Samples were not collected from remedial wells during these events due to not enough timing from recent amendment injections.

b. Samples were not collected from selected wells during the 7/2023 event due to existing amendment within the wells.

Table 4c

Stabilized Specific Conductivity Measurements in Low-Flow Monitoring Wells Former Indianapolis Consumer Electronics Plant (Sherman Park) 600 North Sherman Drive Indianapolis, Indiana

Specific Conductivity [micro-Siemens per centimeter (µS/cm)] Date MW402 MW402D MW407S MW407D MW410S MW410D MW411S MW411D MW413S MW413D MW418S MW418D MW425 MW-428 Month MW Avg 3/17/11 Prior 2.62 1.21 1.42 1.21 1.70 2.34 1.35 1.19 1.60 1.62 1.96 1.48 1.77 1.73 1.15 1/25/16 Month 55 6.27 2.02 1.91 2.74 2.29 2.08 3.34 2.00 2.01 1.68 2.89 1.95 1.30 1.74 2.44 4/20/16 Month 58 7.26 1.91 1.73 2.83 1.42 2.81 2.96 1.37 2.02 1.76 3.15 1.31 1.53 1.73 2.41 7/20/16 Month 61 4.26 2.20 2.05 2.34 2.37 2.02 3.12 1.87 2.55 1.94 1.56 2.39 6.75 2.49 1.09 2.64 1.45 2.45 2.64 2.78 0.99 3.59 2.23 1.17 1.64 2.39 10/17/16 Month 64 1.61 1/9/17 Month 66 6.15 2.31 1.52 2.23 2.66 2.09 1.64 2.06 1.49 1.09 2.81 2.61 1.20 1.79 2.26 4/25/17 Month 70 6.54 2.59 1.48 2.73 1.35 2.35 3.15 2.17 1.42 1.20 1.67 1.53 1.43 1.29 2.21 1.21 1.02 7/12/17 Month 72 7.08 2.56 1.27 0.28 1.29 2.35 2.35 2.08 1.34 2.29 1.44 0.46 1.93 10/18/17 Month 76 9.42 2.45 1.22 0.34 1.02 2.44 2.24 2.27 1.22 0.92 2.05 1.22 1.57 0.52 2.06 1/25/18 Month 79 8.68 2.31 1.35 0.40 0.09 0.97 0.29 1.58 2.08 1.38 1.28 0.39 1.29 1.02 0.97 4/19/18 Month 82 3.35 2.20 1.01 0.53 2.12 2.51 2.71 0.81 1.02 1.46 1.82 1.32 1.15 1.64 7/19/18 Month 85 11.41 2.25 1.08 1.30 1.31 2.10 2.41 1.29 1.30 1.26 3.31 0.95 1.24 1.60 2.34 2.12 1.42 10/22/18 Month 88 1.14 1.21 1.14 1.24 1.24 0.66 1.21 1.20 3.03 3.04 1.22 1.26 1.51 1/28/19 Month 91 1.36 2.34 1.37 1.57 1.36 2.10 1.18 0.52 1.06 1.38 3.50 0.83 1.43 0.47 1.46 4/8/19 Month 93 1.46 2.25 0.88 1.54 1.16 1.85 1.89 1.19 0.95 1.19 2.56 1.34 1.36 0.96 1.47 7/15/19 Month 97 8.30 1.87 0.24 1.04 0.93 1.54 2.19 0.31 0.81 1.09 0.09 0.08 0.83 0.14 1.39 2.04 2.42 2.21 10/22/19 Month 100 12.56 1.39 1.37 1.05 1.65 1.10 1.04 1.19 2.14 0.59 0.92 1.47 1/14/20 1.79 0.65 1.75 1.29 0.84 0.87 1.10 2.20 1.44 Month 102 10.28 1.18 1.19 0.66 0.93 1.87 4/13/20 Month 105 1.33 1.42 1.28 1.77 1.44 0.63 1.07 2.22 1.86 9.31 1.13 0.91 1.16 0.89 1.46 7/21/20 Month 109 9.36 1.39 1.28 1.20 0.99 1.43 1.80 1.18 0.85 0.95 1.85 1.18 0.39 1.37 1.80 10/19/20 Month 112 10.10 1.19 1.04 1.18 0.90 1.18 1.25 1.02 0.90 0.95 1.72 1.22 0.67 1.25 1.75 8.14 1.79 1.22 1.41 1.21 1.40 1.86 1.36 1.18 2.08 1.36 1.40 1.87 1/6/21 Month 114 0.88 0.87 4/19/21 Month 118 7.07 2.08 2.18 1.36 1.10 1.60 2.13 1.90 0.91 1.13 2.16 1.17 0.85 1.52 1.94 7/20/21 Month 121 5.70 1.97 1.17 1.11 1.06 1.48 1.79 0.20 0.87 1.13 1.87 0.95 1.46 1.60 10/4/21 Month 123 3.40 1.58 0.64 1.27 0.84 _ 1.11 0.68 0.81 0.93 0.46 0.17 1.39 1.04 2/21/22 Month 128 7.16 1.31 1.21 1.28 0.93 1.30 1.34 1.66 0.87 1.14 1.62 1.34 0.89 1.70 4/21/22 Month 130 6.03 1.23 1.35 1.29 0.88 1.17 2.08 2.13 0.93 1.11 1.64 1.19 0.79 1.36 1.66 1.78 1.15 1.45 1.52 1.87 7/27/22 Month 133 9.18 1.30 1.34 1.32 0.94 1.16 1.92 0.90 0.85 1.35 10/25/22^a Month 136 1.20 1.28 1.49 1.14 0.95 1.09 0.02 1.01 0.95 1.24 1.04 1/23/23^a Month 139 0.88 0.88 4/25/23 Month 142 0.85 0.85 -_ ----_ ---_ --7/17/23^b Month 145 4.81 2.11 1.99 1.17 1.86 2.20 1.09 1.07 1.31 0.99 0.71 1.76 10/17/23^a Month 148 0.92

0.92

a. Samples were not collected from remedial wells during these events due to not enough timing from recent amendment injections.

b. Samples were not collected from selected wells during the 7/2023 event due to existing amendment within the wells.

Table 4d

Stabilized Dissolved Oxygen Measurements in Low-Flow Monitoring Wells Former Indianapolis Consumer Electronics Plant (Sherman Park) 600 North Sherman Drive Indianapolis, Indiana

Dissol	ved Oxy	gen [milligr	ams/L	iter (m	ıg/L)]										
Date	Month	MW402	MW402D	MW407S	MW407D	MW410S	MW410D	MW411S	MW411D	MW413S	MW413D	MW418S	MW418D	MW425	MW-428	MW Avg
									1			1				
3/17/11	Prior	1.79	0.60	-	0.83	0.67	0.54	0.67	0.48	0.65	0.61	-	3.11	0.61	-	0.96
1/25/16	Month 55	0.81	0.55	0.78	0.61	0.63	0.60	0.74	0.67	0.50	0.45	0.46	0.60	0.65	0.33	0.60
4/20/16	Month 58	0.57	0.38	0.62	0.40	0.28	0.34	0.36	0.32	0.33	0.28	0.31	0.97	0.35	0.76	0.45
7/20/16	Month 61	0.72	0.41	0.68	0.53	0.48	0.52	0.70	0.56	0.49	0.46	0.48	0.53	0.70	0.42	0.55
10/17/16	Month 64	0.94	0.56	0.84	0.55	0.63	0.57	0.76	0.64	0.67	0.63	0.95	0.80	0.74	1.03	0.74
1/9/17	Month 66	0.76	0.71	0.65	0.74	0.74	0.69	0.56	0.67	0.47	0.70	0.57	0.49	0.76	0.63	0.65
4/25/17	Month 70	0.94	0.61	0.71	0.28	5.50	0.39	0.38	0.62	4.20	3.90	0.94	1.10	0.85	0.87	1.52
7/12/17	Month 72	0.52	0.68	0.79	0.49	0.38	0.26	0.33	0.25	0.56	0.20	0.44	0.38	0.94	2.58	0.63
10/18/17	Month 76	0.86	0.51	0.74	0.66	0.65	0.68	0.44	0.29	0.96	0.77	0.52	0.41	1.03	1.20	0.69
1/25/18	Month 79	1.30	2.74	5.14	2.40	0.76	0.89	0.67	0.65	0.89	0.78	0.65	0.65	1.09	0.65	1.38
4/19/18	Month 82	0.82	0.68	0.75	1.10	0.98	0.94	0.69	0.58	0.82	1.06	0.62	1.17	1.14	0.97	0.88
7/19/18	Month 85	0.67	0.76	1.05	0.38	0.61	0.47	0.81	0.68	0.42	0.28	1.06	1.24	0.52	1.19	0.72
10/22/18	Month 88	0.44	0.48	1.11	1.87	0.84	0.61	1.11	0.42	0.60	0.47	1.18	1.36	1.44	1.02	0.93
1/28/19	Month 91	0.14	0.22	0.55	0.27	0.20	0.19	0.22	0.23	0.27	0.12	1.17	1.10	0.19	3.04	0.57
4/8/19	Month 93	0.01	0.00	1.69	2.28	0.00	0.00	0.00	0.24	0.00	0.00	0.00	1.54	0.00	0.08	0.42
7/15/19	Month 97	3.02	0.02	0.86	0.11	1.79	0.00	4.61	1.88	2.20	0.00	3.66	3.86	1.98	7.60	2.26
10/22/19	Month 100	0.23	0.37	1.21	0.30	0.27	0.20	0.28	0.13	0.30	0.29	1.15	1.21	0.29	2.47	0.62
1/14/20	Month 102	0.98	1.01	5.27	1.02	0.97	0.99	0.87	0.93	1.09	1.03	4.90	5.13	1.09	3.84	2.08
4/13/20	Month 105	0.24	0.22	1.70	0.35	0.21	0.24	0.20	0.24	0.28	0.28	1.70	1.48	0.34	3.01	0.75
7/21/20	Month 109	0.64	0.57	1.61	0.64	0.60	0.57	0.50	0.49	0.56	0.56	2.19	2.51	0.82	2.51	1.06
10/19/20	Month 112	0.89	0.96	5.73	1.30	1.10	1.00	0.90	0.94	1.05	1.10	3.38	4.82	1.02	3.71	1.99
1/6/21	Month 114	0.84	0.94	2.73	1,1	0.95	0.95	0.89	0.90	0.96	0.94	2.74	3.29	0.95	2.41	1.50
4/19/21	Month 118	4.92	5.56	5.11	4.67	5.63	5.32	5.07	4.98	5.51	5.54	5.26	5.41	5.91	6.74	5.40
7/20/21	Month 121	1.58	1.84	4.80	1.59	1.52	1.82	1.31	1.90	1.52	1.56	6.90	1.80	-	5.90	2.62
10/4/21	Month 123	2.30	1.80	4.91	1.81	1.66	-	1.57	2.28	1.62	2.17	2.45	3.39	-	4.68	2.40
2/21/22	Month 128	0.18	0.01	0.17	0.00	0.59	0.00	0.03	0.18	0.00	0.01	0.03	0.13	0.00	-	0.10
4/21/22	Month 130	0.04	0.05	0.07	0.00	0.00	0.04	0.00	0.05	0.00	0.09	0.00	0.00	0.01	0.15	0.04
7/27/22	Month 133	0.00	0.01	0.01	0.05	0.00	0.04	0.00	0.01	0.03	0.03	0.02	0.01	0.01	0.15	0.03
10/25/22 ^a	Month 136	-		0.35	0.00	0.00	0.00	-	-	0.00	0.00	0.02	0.03	0.05	0.15	0.06
1/23/23 ^a	Month 139	-		-	-	-	-		-	_		-	-	0.00	-	0.00
4/25/23 ^a	Month 142	1	-	-	ı	-	-	-	-	-	-	-	-	0.05	-	0.05
7/17/23 ^b	Month 145	0.02		0.02	0.00	0.00	0.78	0.00		0.00		0.03	0.01	0.00	0.09	0.09
10/17/23 ^a	Month 148	-	-	-	-	-	-	-	-	-	-	-	-	0.04	-	0.04

a. Samples were not collected from remedial wells during these events due to not enough timing from recent amendment injections.

b. Samples were not collected from selected wells during the 7/2023 event due to existing amendment within the wells.

Table 4e

Stabilized Oxidation Reduction Potential Measurements in Low-Flow Monitoring Wells Former Indianapolis Consumer Electronics Plant (Sherman Park) 600 North Sherman Drive Indianapolis, Indiana

Oxidation Reduction Potential [millivolts (mV)] MW402 MW402D MW407S MW407D MW410S MW410D MW411S MW411D MW413S MW413D MW418S MW418D MW425 MW-428 Date Month MW Avg 3/17/11 Prior 73.0 29.0 28.0 49.0 53.0 76.0 35.0 163.0 36.0 21.0 35.0 54.4 1/25/16 Month 55 161.0 5.0 -62.0 -62.0 -106.0 -93.0 -81.0 -24.0 -126.0 -114.0 -74.0 -90.0 -138.0 -59.0 -61.6 4/20/16 Month 58 138.0 -171.0 -110.0 -85.0 -173.0 -151.0 -102.0 -50.0 -137.0 -120.0 -113.0 -79.0 -127.0 59.0 -87.2 7/20/16 Month 61 155.0 28.0 -36.0 -41.0 -88.0 -75.0 -71.0 -12.0 -115.0 -103.0 -66.0 -78.0 -128.0 -44.0 -48.1 200.0 -25.0 -77.0 10/17/16 Month 64 30.0 -60.0 29.0 15.0 -21.0 31.0 -81.0 13.0 -18.0 33.0 131.0 14.3 1/9/17 Month 66 171.0 -28.0 -30.0 37.0 25.0 -54.0 -24.0 -38.0 -2.5 -9.0 24.0 -11.0 -70.0 -44.0 16.0 4/25/17 Month 70 8.0 -93.0 -72.0 -70.0 -184.0 -137.0 -95.0 -213.0 -207.0 -153.0 -21.0 -36.0 -67.0 -92.0 -102.3 7/12/17 Month 72 21.0 -117.0 -89.0 -11.0 -174.0 -151.0 -125.0 -215.0 -152.0 -167.0 -95.0 -72.0 -105.0 -60.0 -108.0 10/18/17 Month 76 -107.0 -105.0 -62.0 9.0 -112.0 -117.0 -139.0 -164.0 -122.0-140.0 -78.0 -66.0 -88.0 -44.0 -95.4 Month 79 -125.0 -74.0 1/25/18 -113.0 -98.0 -102.5 4/19/18 Month 82 -122.0-132.0-16.0 -13.0 -102.0 -115.0 -90.0 -99.0 -52.0 -40.0 -13.0 -43.0 -45.0 -80.0 -68.7 7/19/18 Month 85 -226.0 -171.0 -124.0 -132.0 -119.0 -106.0 -111.0 -107.0 -79.0 -94.0 -117.0 -101.0 -85.0 -115.0 -120.5 10/22/18 Month 88 -277.0 -224.0 -64.0 -89.0 -115.0 -80.0 -178.0 -256.0 -161.0 -180.0 -70.0 -64.0 -48.0 -207.0 -143.8 1/28/19 Month 91 -21.7 -36.8 124.3 -25.6 -31.3 -64.5 -285.7 -269.3 -75.1 -67.7 42.9 138.3 -62.2 50.4 -41.7 -201.0 -83.0 -107.0 -126.0 -102.0 -97.0 -242.0 -182.0 -181.0 -114.0 -92.0 -88.0 -88.0 -121.3 4/8/19 Month 93 5.0 7/15/19 Month 97 -230.0 -89.0 -60.0 -94.0 -67.0 -78.0 -240.0 -58.0 -145.0 -88.0 51.0 100.0 -75.0 70.0 -71.6 10/22/19 -204.1 -109.2 -86.8 -67.9 -112.7 -107.8 -162.5 -126.4 -99.8 -78.1 -35.9 -98.7 22.3 -96.9 Month 100 -89.6 -77.2 -44.9 -214.5 -232.8 -308.7 -108.4 -65.8 -82.4 -117.1 1/14/20 Month 102 -102.1 -41.5 -256.2 -99.0 -6.8 8.0 4/13/20 -340.2 -262.3 -62.3 Month 105 -56.3 -153.2 -175.9 -316.1 -240.8 -102.3 -74.1 -57.2 -53.6 -76.3 6.2 -140.3 7/21/20 Month 109 -249.9 -201.3 -59.4 -89.8 -156.4 -161.7 -286.5 -268.3 -171.4 -132.2 -49.4 -28.3 -74.3 23.9 -136.1 10/19/20 Month 112 -342.7 -272.8 -74.0 -79.9 -228.2 -238.9 -294.1 -279.6 -272.3 -210.7 -101.6 -66.8 -188.8 28.3 -187.3 Month 114 -197.0 -84.0 -126.0 1/6/21 -261.0 -78.3 -155.0 -127.8 -247.0 -223.0 -111.8 -69.3 -65.6 -113.9 3.2 -132.6 4/19/21 Month 118 -100.0 -141.5 -77.8 -84.5 -84.2 -120.7 -285.0 -258.0 -125.1 -119.0 -39.0 26.7 -88.7 -89.1 -113.3 7/20/21 Month 121 -83.4 -70.3 -86.7 -59.1 -58.3 -66.1 -202.0 -203.0 -97.1 -82.0 -66.2 -34.2 107.0 -77.0 10/4/21 Month 123 -78.4 -64.5 -17.8 -42 6 -64.5 _ -58.9 57.5 -96.5 -78.5 24.0 8.4 -187.1 -20.7 2/21/22 Month 128 -210.4 -175.4 -111.2 -101.4 -152.1 -171.4 -197.7 -193.3 -135.7 -107.1 -117.1 -105.7 -111.2 -145.4 4/21/22 Month 130 -84 3 -86.9 -120.3 -101.7 -91.6 -110.8 -135.0 -284.5 -107.7 -88 4 -109.4 -89 7 -85 4 -5.8 -107.3 7/27/22 -281.2 -159.0 -133.4 -113.5 -187.6 -182.0 -216.9 -273.2 -180.6 -155.4 -142.3 -102.0 -119.1 -110.4 -168.3 Month 133 10/25/22 Month 136 -79.4 -75.2 -153.1 -145.8 -117.5 -77.2 -103.2 -63.2 -106.0 2.9 -91.8 1/23/23 Month 139 -189.1 -189.1 4/25/23 Month 142 -180.3 -180.3 -_ _ _ _ _ _ _ _ _ _ -_ 7/17/23^t Month 145 -180.9 -132.3 -94.8 -112.8 -89.5 -85.1 -115.6 -73.7 -142.2 -58.8 -107.7 -98.6 10/17/23^a Month 148 -124.90 -124.9

a. Samples were not collected from remedial wells during these events due to not enough timing from recent amendment injections.

b. Samples were not collected from selected wells during the 7/2023 event due to existing amendment within the wells.

Table 5 Groundwater VOC Analytical Results - 2023 Former Indianapolis Consumer Electronics Plant (Sherman Park)

600 North Sherman Drive Indianapolis, Indiana

AD-100-012323 (MW-425)	Sample Type	9 g g g g g g g g g g g g g g g g g g g	ن ۱٬۱٬۱-Trichloroethane	رن 1,1,2,2-Tetrachloroethane	∯1,1,2-Trichloroethane	71.5	0.5/1,1-Dichloroethene	6.9 1,2-Dichloroethane	0.g^ 0.go 0.go 0.go 0.go 0.go 0.go 0.go 0.go	2-8utanone (MEK)	7	0.972 0.974 - Methyl-2-pentanone (MIBK)	Acetone >100	Benzene 45.0	ن ن Bromochloromethane	S-S Bromoform	o. 9 Bromomethane	0.01>	ې c Sarbon tetrachloride	Chlorobenzene	Chloroethane	Chloroform	S Chloromethane	234.2-Dichloroethene	cis-1,3-Dichloropropene	0. Dibromochloromethane	0.5> Ethylbenzene	0.9 Methylene Chloride	Styrene	ې O Tetrachloroethene	ې Toluene	ن o trans-1,2-Dichloroethene	ې ن trans-1,3-Dichloropropene	ଦ୍ର Trichloroethene	205 Vinyl chloride	×ylene (Total)
MW-112	Sample	1/23/2023	<5.0	<5.0	<5.0	8.6	<5.0	<5.0	<5.0	<25.0	<25.0	<25.0	<100	<5.0	<5.0	<5.0	<5.0	<10.0	<5.0	<5.0	<5.0	<5.0	<5.0	235	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	312	<10.0
MW-132	Sample	1/23/2023	<5.0	<5.0	<5.0	74.6	<5.0	<5.0	<5.0	<25.0	<25.0	<25.0	<100	<5.0	<5.0	<5.0	<5.0	<10.0	<5.0	<5.0	22.5	<5.0	<5.0	526	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	38.4	<5.0	627	175	<10.0
MW-133	Sample	1/23/2023	<5.0	<5.0	<5.0	8.4	5.5	<5.0	<5.0	<25.0	<25.0	<25.0	<100	<5.0	<5.0	<5.0	<5.0	<10.0	<5.0	<5.0	<5.0	<5.0	<5.0	583	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	81.2	<5.0	42.9	345	<10.0
MW-153	Sample	2/20/2023	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<25.0	<25.0	<25.0	<100	<5.0	<5.0	<5.0	<5.0	<10.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	2.3	<10.0
MW-163	Sample	1/24/2023	<250	<250	<250	<250	<250	<250	<250	<1250	<1250	<1250	<5000	<250	<250	<250	<250	<500	<250	<250	<250	<250	<250	7070	<250	<250	<250	<250	<250	<250	<250	<250	<250	<250	1460	<500
MW-173	Sample	2/20/2023	<125	<125	<125	<125	<125	<125	<125	<625	<625	<625	<2500	<125	<125	<125	<125	<250	<125	<125	<125	<125	<125	988	<125	<125	<125	<125	<125	<125	<125	<125	<125	<125	91.6	<250
MW-22	Sample	2/20/2023	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<25.0	<25.0	<25.0	<100	<5.0	<5.0	<5.0	<5.0	<10.0	<5.0	<5.0	<5.0	<5.0	<5.0	64	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	121	<10.0
MW-253	Sample	1/24/2023	<5.0	<5.0	<5.0	671	33.7	123	<5.0	<25.0	<25.0	<25.0	<100	25.2	<5.0	<5.0	<5.0	<10.0	<5.0	<5.0	797	<5.0	<5.0	19300	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	188	<5.0	<5.0	2300	<10.0
MW-303	Sample	1/24/2023	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<125	<125	<125	<500	<25.0	<25.0	<25.0	<25.0	<50.0	<25.0	<25.0	<25.0	<25.0	<25.0	1060	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	402	<50.0
MW-322	Sample	2/20/2023	<125	<125	<125	<125	<125	<125	<125	<625	<625	<625	<2500	<125	<125	<125	<125	<250	<125	<125	2340	<125	<125	645	<125	<125	<125	<125	<125	<125	<125	<125	<125	<125	815	<250
MW-331	Sample	2/20/2023	<5.0	<5.0	<5.0	5.4	< 5.0	< 5.0	<5.0	<25.0	<25.0	<25.0	<100	<5.0	<5.0	<5.0	<5.0	<10.0	<5.0	<5.0	<5.0	<5.0	<5.0	26.6	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	2.4	<10.0
MW-333	Sample	1/24/2023	<5.0	<5.0	<5.0	<5.0	23	28.5	<5.0	<25.0	<25.0	<25.0	<100	10.1	<5.0	<5.0	<5.0	<10.0	<5.0	<5.0	<5.0	<5.0	<5.0	11000	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	108	<5.0	1800	<10.0
MW-425	Sample	1/23/2023	<5.0	<5.0	<5.0	21.8	<5.0	<5.0	<5.0	<25.0	<25.0	<25.0	<100	<5.0	<5.0	<5.0	<5.0	<10.0	<5.0	<5.0	167	<5.0	<5.0	737	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	5.9	497	<10.0
W-10	Sample	2/20/2023	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<25.0	<25.0	<25.0	<100	<5.0	<5.0	<5.0	<5.0	<10.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0	<10.0
W-11D	Sample	1/24/2023	<5.0	<5.0	<5.0	127	<5.0	<5.0	<5.0	<25.0	<25.0	<25.0	<100	<5.0	<5.0	<5.0	<5.0	<10.0	<5.0	<5.0	<5.0	<5.0	<5.0	14.6	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	3.4	<10.0
MW-312	Sample	1/23/2023	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<25.0	<25.0	<25.0	<100	<5.0	<5.0	<5.0	<5.0	<10.0	<5.0	<5.0	<5.0	<5.0	<5.0	86.6	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	55.5	35	<10.0
MW-313	Sample	1/23/2023	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<25.0	<25.0	<25.0	<100	<5.0	<5.0	<5.0	<5.0	<10.0	<5.0	<5.0	<5.0	<5.0	<5.0	282	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	6.5	<5.0	5.9	20.3	<10.0
W-8	Sample	2/20/2023	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<25.0	<25.0	<25.0	<100	<5.0	<5.0	<5.0	<5.0	<10.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0	<10.0
W-9	Sample	2/20/2023	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<25.0	<25.0	<25.0	<100	<5.0	<5.0	<5.0	<5.0	<10.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	22.3	<10.0

All results are in micrograms per liter (µg/L).

'< - Concentration is less than the laboratory reporting limit.
'J' - Constituent detected above the method detection limit but below the laboratory's reporting limit and is an estimate.

BOLD values represent concentrations above laboratory reporting limits.

Table 5 Groundwater VOC Analytical Results - 2023 Former Indianapolis Consumer Electronics Plant (Sherman Park)

600 North Sherman Drive Indianapolis, Indiana

GIII		Sample Type	Sample Date	1,1,1-Trichloroethane	1,1,2,2-Tetrachloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	1,2-Dichloroethane	1,2-Dichloro pro pane	2-Butanone (MEK)	2-Hexanone	4-Methyl-2-pentanone (MIBK)	Acetone	Benzene	Bromochloromethane	Bromoform	Bromomethane	Carbon disulfide	Carbon tetrachloride	Chlorobenzene	Chloroethane	Chloroform	Chloromethane	cis-1,2-Dichloroethene	cis-1,3-Dichloropropene	Dibromochloromethane	Ethylbenzene	Methylene Chloride	Styrene	Tetrachloroethene	Toluene	trans-1,2-Dichloroethene	trans-1,3-Dichloropropene	Trichloroethene	Vinyl chloride	Xylene (Total)
AD-100-04252	23 (MW-425)	Sample	4/25/2023	<5.0	<5.0	<5.0	17.1	<5.0	<5.0	<5.0	<25.0	<25.0	<25.0	<100	<5.0	<5.0	<5.0	<5.0	<10.0	<5.0	<5.0	150	<5.0	<5.0	99.6	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	5.8	279	<10.0
MW	-41	Sample	4/25/2023	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<25.0	<25.0	<25.0	<100	<5.0	<5.0	<5.0	<5.0	<10.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0	<10.0
MW-	241	Sample	4/25/2023	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<25.0	<25.0	<25.0	<100	<5.0	<5.0	<5.0	<5.0	<10.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0	<10.0
MW-	253	Sample	4/25/2023	<5.0	<5.0	<5.0	308	<5.0	98.8	<5.0	<25.0	<25.0	<25.0	<100	25.2	<5.0	<5.0	<5.0	<10.0	<5.0	<5.0	732	<5.0	<5.0	17300	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	233	<5.0	<5.0	1770	<10.0
MW-		Sample	4/25/2023	<5.0	<5.0	<5.0	5.4	<5.0	<5.0	<5.0	<25.0	<25.0	<25.0	<100	<5.0	<5.0	<5.0	<5.0	<10.0	<5.0	<5.0	56.4	<5.0	<5.0	30.7	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	379	<10.0
MW-		Sample	4/25/2023	<5.0	<5.0	<5.0	17.4	<5.0	<5.0	<5.0	<25.0	<25.0	<25.0	<100	<5.0	<5.0	<5.0	<5.0	<10.0	<5.0	<5.0	131	<5.0	<5.0	87.7	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	242	<10.0
W-	10	Sample	4/25/2023	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<25.0	<25.0	<25.0	<100	<5.0	<5.0	<5.0	<5.0	<10.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0	<10.0
W-		Sample	4/25/2023 4/25/2023	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<25.0	<25.0	<25.0 <25.0	<100 <100	<5.0	<5.0	<5.0	<5.0	<10.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0 <5.0	<2.0	<10.0 <10.0

All results are in micrograms per liter (µg/L).
'<' - Concentration is less than the laboratory reporting limit.
'J' - Constituent detected above the method detection limit but below the laboratory's reporting limit and is an estimate.
BOLD values represent concentrations above laboratory reporting limits.

Table 5 Groundwater VOC Analytical Results - 2023 Former Indianapolis Consumer Electronics Plant (Sherman Park) 600 North Sherman Drive Indianapolis, Indiana

	Гуре	Date	chloroethane	etrachloroethane	chloroethane	oroethane	oroethene	oroethane	oropropane	one (MEK)	euo	-2-pentanone (MIBK)			ıloromethane	rm	ethane	disulfide	etrachloride	snzene	thane	m	ethane	ichloroethene	ichloropropene	chloromethane	zene	ne Chloride		oroethene		-Dichloroethene	-Dichloropropene	ethene	oride	rotal)
QI II	ample.	ample	1,1-Tri	1,2,2-T	1,2-Tri	1-Dich	1-Dich	2-Dich	2-Dich	-Butano	-Hexan	-Methyl	cetone	enzene	romod	romofc	готош	arbon	arbon 1	hlorob	hloroel	hlorofc	hlorom	ls-1,2-⊡	ls-1,3-⊡	ibromo	thylber	ethyler	tyrene	etrachl	oluene	ans-1,2	ans-1,3	richlor	inyl ch	ylene (
AD-100-071723 MW-410D-071723	Sample Sample	7/17/2023 7/17/2023		<5.0 <5.0	<5.0 <5.0	13.8	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0				<100 <100	<5.0 <5.0		<5.0 <5.0		<10.0 <10.0	<5.0 <5.0		4800 6130		<5.0 <5.0	<5.0 762		<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0	<5.0 <5.0	<5.0 <5.0	15.2 30.0	<5.0 <5.0	<5.0 <5.0		<10.0 <10.0
MW-410S-071723 MW-413S-071723	Sample Sample	7/17/2023 7/17/2023	<5.0 <5.0	<5.0 <5.0		12.9 18.2	<5.0	<5.0 <5.0		<25.0			<100 <100	<5.0 <5.0	<5.0	<5.0	<5.0	<10.0 <10.0	<5.0 <5.0		5210					<5.0	<5.0 <5.0		<5.0		<5.0 <5.0	15.0 <5.0	<5.0 <5.0		<2.0	<10.0 <10.0
MW-425-071723 Trip Blank-071723	Sample Sample	7/17/2023 7/17/2023	<5.0		<5.0	15.5 <5.0	<5.0	<5.0	<5.0		<25.0	<25.0	<100 <100	<5.0	<5.0	<5.0 <5.0	<5.0	<10.0 <10.0	<5.0 <5.0	<5.0	274 <5.0	<5.0	<5.0 <5.0	<5.0 <5.0	<5.0		<5.0 <5.0	<5.0 <5.0	<5.0	<5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0	<2.0	<10.0 <10.0
AD-200-071823 MW-402-071823	Sample Sample	7/18/2023 7/18/2023 7/18/2023	<5.0 60.8 <5.0	<5.0 <5.0 <5.0	<5.0	<5.0 253 <5.0	6.9	<5.0 <5.0	<5.0 <5.0 <5.0	<25.0	<25.0	<25.0	282 <100 239	<5.0 <5.0 <5.0	<5.0	<5.0 <5.0 <5.0	<5.0 <5.0 <5.0	<10.0 <10.0	<5.0 <5.0 <5.0	<5.0 <5.0	31.0 880 18.6	<5.0	<5.0 <5.0 <5.0	<5.0 5240 <5.0	<5.0 <5.0	<5.0 <5.0 <5.0	<5.0 <5.0 <5.0	<5.0 13.5 <5.0	<5.0	<5.0 <5.0	<5.0 <5.0 <5.0	<5.0 57.3 <5.0	<5.0 <5.0 <5.0	<5.0 102 <5.0	264	<10.0 <10.0 <10.0
MW-407S-071823 MW-411S-071823 AD-300-071923	Sample Sample Sample	7/18/2023 7/19/2023	<250		<250	<250		<250	<250	<1250	<1250	<1250	<5000	<250	<250	<250		<10.0 <500 <100	<250		28000	<250	<250	<250	<250	<250 <50.0	<250	<250	<250	<5.0 <250 <50.0	<250	<250	<250	<250		<500
MW-407D-071923 MW-418D-071923	Sample Sample	7/19/2023 7/19/2023	<5.0 <5.0	<5.0 <5.0		7.9 <5.0	<5.0	<5.0	<5.0	<25.0 <25.0	<25.0	<25.0	<100	<5.0 <5.0	<5.0	<5.0 <5.0	<5.0	<10.0 <10.0	<5.0 <5.0	<5.0 <5.0	290 7.7		<5.0 <5.0	9.9	<5.0		<5.0 <5.0	<5.0		<5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0		<10.0 <10.0
MW-418S-071923 MW-428-071923	Sample Sample	7/19/2023 7/19/2023		<5.0	<5.0	119 <5.0	<5.0	<50.0 <5.0	<50.0 <5.0		<25.0	<25.0	<1000 <100	<50.0 <5.0			<50.0 <5.0	<100 <10.0	<50.0 <5.0	<50.0 <5.0	131 <5.0		<50.0 <5.0	11400 <5.0		<5.0	<50.0 <5.0	<50.0 <5.0	<5.0	<50.0 <5.0	<50.0 <5.0	<50.0 <5.0	<50.0 <5.0	<50.0 <5.0		<100 <10.0
Trip Blank-071923 AD-400-072023	Sample Sample	7/19/2023 7/20/2023		<5.0	<5.0	<5.0 <5.0	<5.0		<5.0 <5.0	<25.0			<100 <100	<5.0 <5.0		<5.0 <5.0	<5.0 <5.0	<10.0 <10.0	<5.0 <5.0		<5.0 <5.0		<5.0 <5.0			<5.0 <5.0	<5.0 <5.0		<5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0		<10.0 <10.0
MW-112-072023 MW-132-072023 MW-153-072023	Sample Sample	7/20/2023 7/20/2023 7/20/2023	<5.0 <5.0	<25.0 <5.0 <5.0		<25.0 56.8 <5.0		<25.0 <5.0 <5.0	<25.0 <5.0 <5.0		<125 <25.0 <25.0	<125 <25.0 <25.0	<500 <100 <100	<25.0 <5.0 <5.0		<25.0 <5.0 <5.0	<25.0 <5.0 <5.0	<50.0 <10.0 <10.0	<25.0 <5.0 <5.0	<25.0 <5.0 <5.0	<25.0 <5.0 <5.0		<25.0 <5.0 <5.0	369 528 <5.0		<25.0 <5.0 <5.0	<25.0 <5.0 <5.0	<25.0 <5.0 <5.0		<25.0 <5.0 <5.0	<25.0 <5.0 <5.0	<25.0 38.9 <5.0	<25.0 <5.0 <5.0	<25.0 530 <5.0		<50.0 <10.0 <10.0
MW-163-072023 MW-241-072023	Sample Sample	7/20/2023 7/20/2023 7/20/2023		<25.0		<25.0 <25.0					<125	<125.0 <125 <25.0	<500 <100	<25.0 <25.0 <5.0				<50.0 <10.0	<25.0 <5.0	<25.0 <25.0 <5.0		<25.0	<25.0 <5.0			<25.0 <5.0	<25.0 <5.0		<25.0	<25.0 <25.0 <5.0	<25.0 <25.0 <5.0	76.8 <5.0	<25.0 <25.0 <5.0	<25.0 <25.0 <5.0		
MW-251-072023 MW-253-072023	Sample Sample	7/20/2023 7/20/2023	<5.0 <50.0	<5.0		<5.0 159	<5.0 <50.0	<5.0 78.6	<5.0 <50.0	<25.0 <25.0 <250		<25.0 <25.0 <250	<100 <100 <1000	<5.0 <50.0	<5.0	<5.0 <50.0	<5.0 <50.0	<10.0 <10.0 <100	<5.0 <50.0	<5.0 <50.0	<5.0 957		<5.0 <50.0	<5.0 15400	<5.0 <50.0	<5.0	<5.0 <50.0	<5.0 <50.0		<5.0 <50.0	<5.0 <50.0	<5.0 <5.0	<5.0 <50.0	<5.0 <50.0		<10.0 <10.0 <100
MW-311-072023 MW-312-072023	Sample Sample	7/20/2023 7/20/2023	<50.0 <5.0	<50.0 <5.0		<50.0 <5.0			<50.0 <5.0	<250 <25.0		<250 <25.0	<1000 <100	<50.0 <5.0		<50.0 <5.0	<50.0 <5.0	<100 <10.0	<50.0 <5.0		411 <5.0		<50.0 <5.0		<50.0 <5.0	<50.0 <5.0	<50.0 <5.0		<50.0 <5.0	<50.0 <5.0	<50.0 <5.0	<50.0 <5.0	<50.0 <5.0	<50.0 23.1	<20.0 38.6	<100 <10.0
MW-313-072023 MW-32-072023	Sample Sample	7/20/2023 7/20/2023	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	5.1 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<100 <100	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<10.0 <10.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	728 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	62.2 <2.0	<10.0 <10.0
MW-33-072023 MW-331-072023	Sample Sample	7/20/2023 7/20/2023	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 6.2	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<100 <100	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<10.0 <10.0	<5.0 <5.0	<5.0 <5.0	<5.0 610	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<2.0 2.5	<10.0 <10.0
MW-333-072023 MW-343-072023	Sample Sample	7/20/2023 7/20/2023	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	28.9 <5.0	32.0 <5.0	<5.0 <5.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<100 <100	13.1	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<10.0 <10.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	10100 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	162 <5.0	<5.0 <5.0	<5.0 <5.0	2340 <2.0	<10.0 <10.0
MW-41-072023 Trip Blank-072023	Sample Sample	7/20/2023 7/20/2023	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<100 <100	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<10.0 <10.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<2.0 <2.0	<10.0 <10.0
W-10-072023 W-8-072023	Sample	7/20/2023	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<25.0	<25.0	<25.0	<100 <100 <100	<5.0	<5.0	<5.0	<5.0	<10.0 <10.0 <10.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0	<10.0 <10.0
W-9-072023	Sample Sample Sample	7/20/2023 7/20/2023 9/7/2023	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<100	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<10.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 8.8	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<2.0 5.5	<10.0 <10.0
AD-101-090723 MW-273-090723	Sample	9/7/2023	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<100	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<10.0	<5.0 <5.0	<5.0 <5.0	168 <5.0	<5.0 <5.0	<5.0 <5.0	19.8 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 7.8	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	8.0 <5.0	<5.0 <5.0	<5.0 <5.0	4.8 <2.0	<10.0
MW-321-090723 MW-322-090723	Sample	9/7/2023 9/7/2023	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	5.5 8.9	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<100 <100	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<10.0 <10.0	<5.0 <5.0	<5.0 <5.0	243	<5.0 <5.0	<5.0 <5.0	5.3 623	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 20.7	<5.0 <5.0	<5.0 30.3	6.1 734	<10.0 <10.0
MW-323-090723 MW-401-090723	Sample Sample	9/7/2023 9/7/2023	<5.0 <250	<5.0 <250	<5.0 <250	<5.0 <250	<5.0 <250	<5.0 <250	<5.0 <250	<25.0 <1250	<25.0 <1250	<25.0 <1250	<100 <5000	<5.0 <250	<5.0 <250	<5.0 <250	<5.0 <250	<10.0 <500	<5.0 <250	<5.0 <250	<5.0 509	<5.0 <250	<5.0 <250	36.1 1820	<5.0 <250	<5.0 <250	<5.0 <250	<5.0 255	<5.0 <250	<5.0 <250	<5.0 <250	<5.0 <250	<5.0 <250	<5.0 <250	16.0 278	<10.0 <500
MW-403-090723 MW-404-090723	Sample Sample	9/7/2023 9/7/2023	40.2 45800	<5.0 <250	<5.0 <250	140 42400	<5.0 938	<5.0 711	<5.0 <250	<25.0 <1250	<25.0 <1250	<25.0 <1250	<100 <5000	<5.0 <250	<5.0 <250	<5.0 <250	<5.0 <250	<10.0 <500	<5.0 <250	<5.0 <250	354 10500	<5.0 <250	<5.0 <250	74.4 47000	<5.0 <250	<5.0 <250	<5.0 <250	<5.0 <250	<250	<5.0 <250	<5.0 <250	<5.0 1180	<5.0 <250	<5.0 <250	39.6 14400	<10.0 <500
MW-405D-090723 MW-405S-090723	Sample Sample	9/7/2023 9/7/2023	44.5 <5.0	<5.0 <5.0	<5.0 <5.0	3030 <5.0	8.7 <5.0	8.3 <5.0	<5.0 <5.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<100 <100	7.3 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<10.0 <10.0	<5.0 <5.0	<5.0 <5.0	3330 26.2	<5.0 <5.0	<5.0 <5.0	2890 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	72.9 <5.0	<5.0 <5.0	<5.0 <5.0	920 <2.0	<10.0 <10.0
MW-406D-090723 MW-406S-090723	Sample Sample	9/7/2023 9/7/2023	<25.0 488	<25.0 <25.0	<25.0 <25.0	2000 1690	398 62.1	<25.0 <25.0	<25.0 <25.0	<125 <125	<125 <125	<125 <125	<500 <500	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<50.0 <50.0	<25.0 <25.0	<25.0 <25.0	310 479	<25.0 <25.0	<25.0 <25.0	21800 14300	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 39.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	134 152	<25.0 <25.0	191 349	932 253	<50.0 <50.0
MW-414D-090723 MW-414S-090723	Sample Sample	9/7/2023 9/7/2023	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<100 <100	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<10.0 <10.0	<5.0 <5.0	<5.0 <5.0	10.0 291	<5.0 <5.0	<5.0 <5.0	5.1 7.5	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<2.0 <2.0	<10.0 <10.0
MW-415D-090723 MW-415S-090723	Sample Sample	9/7/2023 9/7/2023	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<100 <100	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<10.0 <10.0	<5.0 <5.0	<5.0 <5.0	<5.0 634	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<2.0 <2.0	<10.0 <10.0
MW-416D-090723 MW-416S-090723	Sample Sample	9/7/2023 9/7/2023	<25.0 <5.0	<25.0 <5.0	<25.0 <5.0	45.4 25.5	<25.0 <5.0	<25.0 <5.0	<25.0 <5.0	<125 <25.0	<125 <25.0	<125 <25.0	<500 <100	<25.0 <5.0	<25.0 <5.0	<25.0 <5.0	<25.0 <5.0	<50.0 <10.0	<25.0 <5.0	<25.0 <5.0	436 567	<25.0 <5.0	<25.0 <5.0	<25.0 <5.0	<25.0 <5.0	<25.0 <5.0	<25.0 <5.0	<25.0 <5.0	<25.0 <5.0	<25.0 <5.0	<25.0 <5.0	<25.0 5.5	<25.0 <5.0	<25.0 <5.0	12.1 2.6	<50.0 <10.0
MW-417D-090723 MW-417S-090723	Sample Sample	9/7/2023 9/7/2023	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	35.9 <5.0	<5.0 <5.0	<5.0 5.8	<5.0 <5.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<100 <100	9.1 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<10.0 <10.0	<5.0 <5.0	<5.0 <5.0	582 192	<5.0 <5.0	<5.0 <5.0	22.0 19.8	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 8.2	<5.0 <5.0	<5.0 <5.0	15.1 5.8	<10.0 <10.0
MW-419D-090723 MW-419S-090723	Sample Sample	9/7/2023 9/7/2023	<100 <5.0	<100 <5.0	<100 <5.0	<100 <5.0	<100 <5.0	<100 <5.0	<100 <5.0	<500	<500 <25.0	<500 <25.0	<2000 <100	<100 <5.0	<100 <5.0	<100 <5.0	<100 <5.0	<200 <10.0	<100 <5.0	<100 <5.0	<100 <5.0	<100 <5.0	<100 <5.0	2780 30.3	<100 <5.0	<100 <5.0	<100 <5.0	<100 <5.0	<100 <5.0	<100 <5.0	<100 <5.0	<100 <5.0	<100 <5.0	<100 <5.0	<40.0	<200 <10.0
MW-422D-090723 MW-422S-090723	Sample	9/7/2023 9/7/2023	<5.0		<5.0	<5.0 <5.0	<5.0	6.8	<5.0	<25.0	<25.0		<100 <100 <100	<5.0	<5.0	<5.0 <5.0	<5.0	<10.0 <10.0	<5.0 <5.0	<5.0	<5.0 <5.0	<5.0	<5.0 <5.0	170	<5.0	<5.0 <5.0	<5.0 <5.0	<5.0		<5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0	493	<10.0
MW-423D-090723	Sample	9/7/2023	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<25.0	<25.0	<25.0	<100 <100 <100	<5.0	<5.0	<5.0	<5.0	<10.0	<5.0	<5.0	21.8	<5.0	<5.0	6.2	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	7.0	<10.0 <10.0 <10.0
MW-423S-090723 MW-424D-090723	Sample Sample	9/7/2023 9/7/2023	20.7 <5.0	<5.0 <5.0	<5.0 <5.0	922 6.1	<5.0	21.5 <5.0	<5.0 <5.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<100	<5.0 <5.0	<5.0	<5.0 <5.0	<5.0 <5.0	<10.0 <10.0	<5.0 <5.0	<5.0 <5.0	948 256	<5.0 <5.0	<5.0 <5.0	86.1 79.8	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	5.7 <5.0		<5.0 <5.0	<5.0 <5.0	9.5	<5.0 <5.0	<5.0 6.5	75.3 21.6	<10.0
MW-424S-090723 W-2-090723	Sample Sample	9/7/2023 9/7/2023	15.5 226	<5.0 <5.0	<5.0 <5.0	45.0 1290	14.9	<5.0 <5.0	<5.0	<25.0	<25.0	<25.0 <25.0	<100 3830 J	<5.0 <5.0	<5.0	<5.0 <5.0	<5.0 <5.0	<10.0 <10.0	<5.0 <5.0	<5.0	723 30.5	<5.0	<5.0 <5.0	88.3 5700	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 8.2	<5.0	<5.0 <5.0	<5.0 <5.0	19.4 57.2	<5.0 <5.0	11.1 258	18.5 129	<10.0 <10.0
W-4D-090723 W-4R-090723	Sample Sample	9/7/2023 9/7/2023	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 10.1	<5.0	<5.0 <5.0	<5.0		<25.0	<25.0 <25.0	<100 <100	<5.0 13.3	<5.0	<5.0 <5.0	<5.0 <5.0	<10.0 <10.0	<5.0 <5.0	<5.0	<5.0 512	<5.0	<5.0 <5.0	<5.0 29.5	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0	<5.0 <5.0	<5.0 <5.0	<5.0 8.8	<5.0 <5.0	<5.0 <5.0		<10.0 <10.0
AD-201-090823 MW-131-090823	Sample Sample	9/8/2023 9/8/2023	147 155	<5.0 <5.0	<5.0 <5.0	15.7 16.4	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<25.0 <25.0		<25.0 <25.0	<100 <100	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<10.0 <10.0	5.4 5.7	<5.0 <5.0	<5.0 <5.0		<5.0 <5.0	5.9 6.2	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	44.2 44.9	<2.0 <2.0	<10.0 <10.0
MW-133-090823 MW-173-090823	Sample Sample	9/8/2023 9/8/2023	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	19.9 <5.0	<5.0 <5.0	<5.0 9.9	<5.0 <5.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<100 <100	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<10.0 <10.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0		<5.0 <5.0	16.8 1080	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 16.9	<5.0 <5.0	<5.0 <5.0	<2.0 64.6	<10.0 <10.0
MW-183-090823 MW-22-090823	Sample Sample	9/8/2023 9/8/2023	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0		<5.0 <5.0	<5.0 <5.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<100 <100	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<10.0 <10.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0		<5.0 <5.0	<5.0 139	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0		<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	5.8 153	<10.0 <10.0
MW-302-090823 MW-303-090823	Sample Sample	9/8/2023 9/8/2023	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0			<25.0 <25.0	<100 <100	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<10.0 <10.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0	<5.0 <5.0	<5.0 917	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0	<5.0 <5.0	<5.0 <5.0	<5.0 5.2	<5.0 <5.0	<5.0 <5.0		<10.0 <10.0
MW-426-090823 MW-92-090823	Sample Sample	9/8/2023 9/8/2023	<5.0 <5.0	<5.0	<5.0 <5.0	42.2 <5.0		10.5	<5.0 <5.0	<25.0 <25.0	<25.0	<25.0 <25.0	<100 <100	<5.0 <5.0		<5.0 <5.0	<5.0 <5.0	<10.0 <10.0	<5.0 <5.0	<5.0 <5.0		<5.0	<5.0 <5.0	1170 106	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0	<5.0 <5.0	<5.0 <5.0	16.6	<5.0 <5.0	<5.0 <5.0		<10.0 <10.0
Trip Blank-090823 W-82-090823	Sample Sample	9/8/2023 9/8/2023	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0		<5.0 <5.0			<25.0	<25.0 <25.0	<100 <100 <100	<5.0 <5.0			<5.0 <5.0	<10.0 <10.0 <10.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0		<5.0 <5.0	<5.0 <5.0	<5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0		<10.0 <10.0
W-8D-090823	Sample	9/8/2023	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<25.0	<25.0 <25.0	<25.0	<100	<5.0	<5.0	<5.0	<5.0	<10.0	<5.0	<5.0	<5.0	<5.0	<5.0	34.7	<5.0 <5.0	<5.0	<5.0	<5.0		<5.0	<5.0	<5.0	<5.0	<5.0	77.8	<10.0
W-9-090823	Sample	9/8/2023	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<25.0	<25.0	<25.0	<100	<5.0	<5.0	<5.0	<5.0	<10.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0	<10.0

^{&#}x27;<' - Concentration is less than the laboratory reporting limit.

All results are in micrograms per liter (µg/L).

BOLD values represent concentrations above laboratory reporting limits.

'J' - Constituent detected above the method detection limit but below the laboratory's reporting limit and is an estimate.

Table 5

Groundwater VOC Analytical Results - 2023 Former Indianapolis Consumer Electronics Plant (Sherman Park) 600 North Sherman Drive

Indianapolis, Indiana

Well ID	Sample Type	Sample Date	1,1,1-Trichloroethane	1,1,2,2-Tetrachloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	1,2-Dichloroethane	1,2-Dichloropropane	2-Butanone (MEK)	2-Hexanone	4-Methyl-2-pentanone (MIBK)	Acetone	Benzene	Bromochloromethane	Bromoform	Bromomethane	Carbon disulfide	Carbon tetrachloride	Chlorobenzene	Chloroethane	Chloroform	Chloromethane	cis-1,2-Dichloroethene	cis-1,3-Dichloropropene	Dibromochloromethane	Ethylbenzene	Methylene Chloride	Styrene	Tetrachloroethene	Toluene	trans-1,2-Dichloroethene	rans-1,3-Dichloropropene	Trichloroethene	Vinyl chloride	Kylene (Total)
AD-100-042523 (MW-425)	Sample	10/17/2023	<5.0	<5.0	<5.0	21.2	<5.0	<5.0	<5.0	<25.0	<25.0	<25.0	<100	<5.0	<5.0	<5.0	<5.0	<10.0	<5.0	<5.0	284	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	4.6	<10.0
MW-41	Sample	10/17/2023	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<25.0	<25.0	<25.0	<100	<5.0	<5.0	<5.0	<5.0	<10.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0	<10.0
MW-131	Sample	10/17/2023	132	<5.0	<5.0	14.3	<5.0	<5.0	<5.0	<25.0	<25.0	<25.0	<100	<5.0	<5.0	<5.0	<5.0	<10.0	<5.0	<5.0	9.3	<5.0	<5.0	8.8	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	38	<2.0	<10.0
MW-241	Sample	12/11/2023	- 0																												.5.0	4F 0	4F 0	·F 0		40.0
	oumpic	12/11/2023	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<25.0	<25.0	<25.0	<100	<5.0	<5.0	<5.0	<5.0	<10.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.U	<5.U	<5.0	<2.0	<10.0
	Sample	10/17/2023	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 123	<5.0 <5.0	<5.0 68.5	<5.0 <5.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<100 <100	<5.0 <50.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<10.0 <10.0	<5.0 <5.0	<5.0 <5.0	<5.0 1030	<5.0 <5.0	<5.0 <5.0	<5.0 17800	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	161	<5.0 <5.0	<5.0 <5.0	<2.0 2480	<10.0
MW-253 MW-331	Sample Sample	10/17/2023 10/17/2023	<5.0 <5.0			<5.0 123 <5.0	5.0	<5.0 68.5 <5.0	-0.0	<25.0 <25.0 <25.0	<25.0 <25.0 <25.0	<25.0 <25.0 <25.0	<100 <100 <100	<5.0 <50.0 <5.0	-0.0		0.0	<10.0 <10.0 <10.0	5.0	- 0.0	1030 689	<5.0 <5.0 <5.0	5.0	<5.0 17800 <5.0	<5.0 <5.0 <5.0	<5.0 <5.0 <5.0	<5.0 <5.0 <5.0	<5.0 <5.0 <5.0	<5.0 <5.0 <5.0	<5.0 <5.0 <5.0	<5.0 <5.0 <5.0	161 <5.0	<5.0 <5.0 <5.0	<5.0 <5.0 <5.0	2480 <2.0	<10.0 <10.0
MW-253 MW-331 MW-425	Sample	10/17/2023 10/17/2023 10/17/2023	<5.0	<5.0	<5.0	<5.0 123 <5.0 21.2	<5.0	<5.0 68.5 <5.0 <5.0	-0.0	<25.0 <25.0 <25.0 <25.0	<25.0 <25.0 <25.0 <25.0	<25.0 <25.0 <25.0 <25.0	<100 <100 <100 <100	<5.0 <50.0 <5.0 <5.0	-0.0		0.0	<10.0 <10.0 <10.0 <10.0	<5.0	<5.0	<5.0 1030 689 275	<5.0 <5.0 <5.0 <5.0	5.0	<5.0 17800 <5.0 <5.0	<5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0 <5.0	<5.0 161 <5.0 <5.0	<5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0 <5.0	2480 <2.0	<10.0 <10.0 <10.0
MW-253 MW-331 MW-425 W-10	Sample Sample Sample	10/17/2023 10/17/2023 10/17/2023 12/11/2023	<5.0 <5.0 <5.0 <5.0	<5.0 <5.0	<5.0 <5.0 <5.0 <5.0	<5.0 123 <5.0 21.2 <5.0	<5.0 <5.0	<5.0	<5.0 <5.0 <5.0 <5.0 <5.0	<25.0 <25.0 <25.0 <25.0 <25.0	<25.0 <25.0 <25.0 <25.0 <25.0	<25.0 <25.0 <25.0 <25.0 <25.0	<100	<5.0 <50.0 <5.0 <5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<10.0 <10.0 <10.0 <10.0 <10.0	<5.0 <5.0	<5.0 <5.0	1030 689	<5.0 <5.0 <5.0 <5.0 <5.0	<5.0 <5.0	17800 <5.0	<5.0 <5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0 <5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0 <5.0 <5.0	<5.0	<5.0 <5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0	2480 <2.0 4.7 <2.0	<10.0 <10.0 <10.0 <10.0
MW-253 MW-331 MW-425 W-10	Sample Sample Sample	10/17/2023 10/17/2023 10/17/2023	<5.0 <5.0 <5.0	<5.0 <5.0 <5.0	<5.0 <5.0 <5.0	<5.0 123 <5.0 21.2 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0	<5.0	<5.0 <5.0 <5.0	<25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0	<25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0	0.5.0	<100	<5.0 <50.0 <5.0 <5.0 <5.0 <5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0 <5.0	<10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0	<5.0 <5.0 <5.0	<5.0 <5.0 <5.0	1030 689 275	<5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0	17800 <5.0 <5.0	<5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	<5.0 161 <5.0 <5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	<5.0	2480 <2.0 4.7	<10.0 <10.0 <10.0

All results are in micrograms per liter (µg/L).

'<' - Concentration is less than the laboratory reporting limit.

'J' - Constituent detected above the method detection limit but below the laboratory's reporting limit and is an estimate.

BOLD values represent concentrations above laboratory reporting limits.

Table 6a

Concentrations of Methane in Selected Monitoring Wells Former Indianapolis Consumer Electronics Plant (Sherman Park) 600 North Sherman Drive Indianapolis, Indiana

Metha	ane [mi	crogr	ams p	er Lite	r (µg/l	_)]												
Date	Month	MW402	MW402D	MW407S	MW407D	MW410S	MW410D	MW411S	MW411D	MW413S	MW413D	MW418S	MW418D	MW425	MW-426*	MW-428	W-9*	MW Avg
3/17/11	Prior	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
1/25/16	Month 55	22900	15200	19500	14600	22000	14700	16700	17800	19200	19100	12900	10000	24800	11100	648	22000	16447
4/20/16	Month 58	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
7/20/16	Month 61	22100	8210	15600	13700	19900	9550	16200	8310	17900	21500	12800	8810	4160	23500	24500	279	14189
10/17/16	Month 64	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
1/9/17	Month 66	29100	15500	19400	19700	34700	39600	28000	26800	31300	8120	18100	26900	24800	22700	5530	23000	23328
4/25/17	Month 70	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
7/12/17	Month 72	26200	20700	19600	27700	28500	31800	24300	27000	25700	2860	22900	27300	8800	11800	117	10800	19755
10/18/17	Month 76	-	-	-	-	-	-	-	-	-	-	-	-	-	14400	-	16600	10400
1/25/18	Month 79	25200	28800	-	-	30900	32900	27700	19300	34700	5080	31600	17500	5600	20100	5640	11800	19799
4/19/18	Month 82	-	-	-	-	-	-	-	-	-	-	-	-	-	5670	-	1890	2580
7/19/18	Month 85	36600	27300	28100	28400	29700	37300	13200	8320	33400	5830	38400	27300	12100	17100	5310	2080	20629
10/22/18	Month 88	18100	13600	22100	24100	25300	28600	17800	740	20100	2990	25300	23400	7150	156	1130	< 10	13593
1/28/19	Month 91	23400	19500	15600	25300	25900	16900	23500	6650	21500	2330	25700	22300	13800	-	155	< 10	16169
4/8/19	Month 93	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
7/15/19	Month 97	25000	18900	3050	27400	36500	31700	28700	589	29100	2770	304	138	8280	4900	< 10	924	12840
10/22/19	Month 100	-	-	-	-	-	-	-	-	-	-	-	-	-	19200	-	477	6643
1/14/20	Month 102	32200	19400	50000	33600	39600	32600	38600	6200	39300	2970	24600	28700	5190	6960	69880	662	25324
4/13/20	Month 105	-	-	-	-	-	-	-	-	-	-	-	-	-	7530	-	1320	2952
7/21/20	Month 109	20900	9860	24900	27200	29300	30800	26000	9570	15600	1370	25100	25500	2160	< 4	1800	< 4	14710
10/19/20	Month 112	-	-	-	-	-	-	-	-	-	-	-	-	-	17600	-	391	6008
1/6/21	Month 114	20600	10500	17300	25100	22100	22500	25200	9750	18600	1970	19300	25100	2310	13600	2860	291	13946
4/19/21	Month 118	-	-	-	-	-	-	-	-	-	-	-	-	-	14700	-	90	4957
7/20/21	Month 121	33200	27200	28200	48100	50100	53500	47400	34200	42500	973	37200	145000	-	19400	6560	1180	35920
10/4/21	Month 123	-	-	-	-	-	-	-	-	-	-	-	-	-	641	-	1230	628
2/21/22	Month 128	13000	3300	18000	18000	18000	12000	18000	12000	10000	770	16000	16000	2000	-	1900	-	11355
4/21/22	Month 130	-	-	-	-	-	-	-	-	-	-	-	-	-	1300	-	900	1100
7/27/22	Month 133	15000	4100	13000	16000	17000	6400	24000	12000	15000	1600	11000	15000	2300	-	2600	-	11071
10/25/22	Month 136	-	-	-	-	-	-	-	-	-	-	-	-	-	6600	-	1700	4150
1/23/23 ^a	Month 139	-	-	-	-	-	-	-	-	-	-	-	-	800	-	-	-	800
4/25/23	Month 142	-	-	-	-	-	-	-	-	-	-	-	-	840	-	-	-	840
7/17/23 ^b	Month 145	7300	-	5100	6700	9200	8800	7300	-	10000	-	8300	8900	20000	<50	8800	47000	12283
10/17/23	Month 148	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	57400	57400

^{&#}x27;-' = Sample not collected

a. Samples were not collected from remedial wells during this event due to not enough timing from recent amendment injections.

b. Samples were not collected from selected wells during the 7/2023 event due to existing amendment within the wells.

<' = Methane not detected above laboratory reporting limits

^{*} Samples collected from MW-426 and W-9 were collected via PDB, which is not the preferred method of sample collection for DHG analysis. Results may not be accurate.

Table 6b

Concentrations of Ethane in Selected Monitoring Wells Former Indianapolis Consumer Electronics Plant (Sherman Park) 600 North Sherman Drive Indianapolis, Indiana

Date	Month	MW402	MW402D	MW407S	MW407D	MW410S	MW410D	MW411S	MW411D	MW413S	MW413D	MW418S	MW418D	MW425	MW-426*	MW-428	W-9*	MW Avg
3/17/11	Prior	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
1/25/16	Month 55	100	51	90	103	125	102	173	113	< 10	< 10	< 10	36	< 10	94	<10	72	68
4/20/16	Month 58	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
7/20/16	Month 61	120	14	50	61	99	90	118	54	<10	325	234	<10	4	116	137	<10	90
10/17/16	Month 64	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
1/9/17	Month 66	105	36	712	55	488	675	137	282	310	67	317	34	44	78	6	<50	223
4/25/17	Month 70	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
7/12/17	Month 72	44	173	815	29	84	326	234	2140	427	94	44	47	26	42	<10	<50	285
10/18/17	Month 76	-	-	-	-	-	-	•	-	•	-	-	-	-	53	-	38	32
1/25/18	Month 79	95	234	-	1	65	41	65	361	618	70	97	60	24	102	25	50	127
4/19/18	Month 82	-	-	-	•	-				•	-	-	-	-	39	-	27	24
7/19/18	Month 85	28	353	745	125	34	<50	<50	36	557	63	<50	49	41	55	<10	29	129
10/22/18	Month 88	151	379	795	116	54	251	207	43	752	44	212	91	39	<20.0	4	< 10	187
1/28/19	Month 91	84	326	326	177	39.2 J	39.8 J	66	< 50	445	45	85	51	79	-	8.2 J	9.0 J	120
4/8/19	Month 93	-	-	-	•	-				•	-	-	-	-	-	-	-	-
7/15/19	Month 97	77	642	16	64.8 J	< 100	< 100	< 100	< 10	480	21	< 10	< 10	31	47	< 10	28	93
10/22/19	Month 100	-	-	-	•	-				•	-	-	-	-	61	-	37	35
1/14/20	Month 102	484	510	317	112	< 100	209	505	63	1130	24	595	85.2 J	41	17	20	42	248
4/13/20	Month 105	-	-	-	•	-				•	-	-	-	-	38	-	41	28
7/21/20	Month 109	253	407	161	285	< 50	< 50	< 50	120	380	9.00 J	1290	93	12	63	< 10	31	188
10/19/20	Month 112	-	-	-	•	-				•	-	-	-	-	56	-	29	30
1/6/21	Month 114	269	572	111	268	<100	<100	<100	95	636	12	990	98.9 J	17	35.6 J	<20.0	24	194
4/19/21	Month 118	-	-	-	-	-	-	-	-	-	-	-	-	-	129	-	7.2 J	47
7/20/21	Month 121	196	1680	<400	428	<100	<100	109	89	817	4.9 J	1060	335	-	51	6.3 J	22	316
10/4/21	Month 123	-	-	-	-	-	-	-	-	-	-	-	-	-	<20.0	-	20	12
2/21/22	Month 128	210	260	110	200	31	21	80	200	46	6	940	80	12	-	4	-	157
4/21/22	Month 130	-	-	-	-	-	-	-	-	-	-	-	-	-	10	-	14	10
7/27/22	Month 133	130	230	<0.17	<0.17	32	30	31	36	230	17	<0.17	<0.17	13	-	5	-	75
10/25/22	Month 136	-	-	-	-	-	-	-	-	-	-	-	-	-	22	-	26	22
1/23/23 ^a	Month 139	-	-	-	-	-	-	-	-	-	-	-	-	11	-	-	-	11
4/25/23	Month 142	-	-	-	1	-	1	ı	1	ı	-	-	-	7	-	-	-	7
7/17/23 ^b	Month 145	93	-	12	40	34	44	5	-	36	-	300	36	<100	<100	5	328	85
10/17/23	Month 148	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	302	302

^{&#}x27;-' = Sample not collected

- a. Samples were not collected from remedial wells during this event due to not enough timing from recent amendment injections.
- b. Samples were not collected from selected wells during the 7/2023 event due to existing amendment within the wells.
- <' = Ethane not detected above laboratory reporting limits
- J' = Concentration is below laboratory reporting limits but above method detection limited and is considered an estimated value
- * Samples collected from MW-426 and W-9 were collected via PDB, which is not the preferred method of sample collection for DHG analysis. Results may not be accurate.

Table 6c

Concentrations of Ethene in Selected Monitoring Wells Former Indianapolis Consumer Electronics Plant (Sherman Park) 600 North Sherman Drive Indianapolis, Indiana

Ethene [micrograms per liter (µg/L)]																		
Date	Month	MW402	MW402D	MW407S	MW407D	MW410S	MW410D	MW411S	MW411D	MW413S	MW413D	MW418S	MW418D	MW425	MW-426*	MW-428	W-9 *	MW Avg
3/17/11	Prior	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
1/25/16	Month 55	1410	166	3960	2270	7220	8390	6560	3900	601	47	28600	98	382	6390	31	39	4379
4/20/16	Month 58	-	-	-	-	-	-	-	-	-	-	-	-	•	-	-	-	
7/20/16	Month 61	1440	112	676	1040	4050	8930	11200	4390	767	48	27700	68	20	2250	1200	327	4014
10/17/16	Month 64	-	-	-	-	-	-	-	-	-	•	-	-	•	-	-	-	
1/9/17	Month 66	1130	68	603	1080	3610	17600	13500	2000	1710	895	23400	65	125	1620	148	63	4226
4/25/17	Month 70	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
7/12/17	Month 72	832	787	596	733	3090	14500	16900	2850	2730	16	16000	229	<20	451	10	23.6	3982
10/18/17	Month 76	-	-	-	-	-	-	-	-	-	-	-	-	-	1280	-	<50	437
1/25/18	Month 79	3200	64	-	-	3060	12200	11400	2100	2110	37	14500	28	7	2980	50	50	3699
4/19/18	Month 82	-	-	-	-	-	-	-	-	-	-	-	-	-	381	-	<20	381
7/19/18	Month 85	5380	<50	18	1230	3420	12800	8670	2810	5340	48	9960	42	34	944	61	<10	2988
10/22/18	Month 88	2990	76	173	1500	3070	9360	10200	1310	4180	140	8480	57	33	<20.0	24	< 10	2448
1/28/19	Month 91	1180	27	194	1130	1200	4550	4540	3720	4070	21	1730	25	69	-	7	7.3	1605
4/8/19	Month 93	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
7/15/19	Month 97	2350	41	< 10	1350	2320	3210	5310	190	5940	< 10	22	< 10	47	< 10	< 10	< 10	1224
10/22/19	Month 100	-	-	-	-	-	-	-	-	-	-	-	-	-	40	-	< 10	17
1/14/20	Month 102	1670	84	888	1280	1210	2380	7350	719	3330	31	3990	47.8 J	47	31	34	7.4 J	1359
4/13/20	Month 105	-	-	-	-	-	-	-	-	-	-	-	-	-	26	-	< 10	12
7/21/20	Month 109	1190	50	1030	1460	606	2840	6670	742	2280	65	8440	29.7 J	25	40	9.90 J	< 10	1499
10/19/20	Month 112	-	-	-	-	-	-	-	-	-	-	-	-	-	393	-	< 10	134
1/6/21	Month 114	921	<100	554	2290	262	1930	6150	3210	1570	38	8940	<100	23	357	<20.0	<10.0	1551
4/19/21	Month 118	-	-	-	-	-	-	-	-	-	-	-	-	-	577	-	<10.0	196
7/20/21	Month 121	973	97.6 J	1090	2050	122	3410	6270	10600	1490	25	19900	427	-	462	10	<10.0	2934
10/4/21	Month 123	-	-	-	-	-	-	-	-	-	-	-	-	-	16.3 J	-	<10.0	9
2/21/22	Month 128	480	43	90	1600	17	740	3800	450	19	11	6800	1	37	-	8	-	1007
4/21/22	Month 130	-	-	-	-	-	-	-	-	-	-	-	-	-	16	-	<0.24	16
7/27/22	Month 133	890	120	440	1100	70	380	2700	5900	490	36	11000	97	38	-	15	-	1663
10/25/22	Month 136	-	-	-	-	-	-	-	-	-	-	-	-	-	260	-	<0.24	260
1/23/23 ^a	Month 139	-	-	-	-	-	-	-	-	-	-	-	-	40	-	-	-	40
4/25/23	Month 142	-	-	-	-	-	-	-	-	-	-	-	-	1100	-	-	-	1100
7/17/23 ^b	Month 145	98	-	1	68	96	290	360	-	140	-	1900	53	4500	<100	75	<50	689
10/17/23	Month 148	-	-	-	-	-	-	-	-	-	-	-	-	•	-	-	-	-

^{&#}x27;-' = Sample not collected

- a. Samples were not collected from remedial wells during this event due to not enough timing from recent amendment injections.
- b. Samples were not collected from selected wells during the 7/2023 event due to existing amendment within the wells.
- <' = Ethene not detected above laboratory reporting limits
- J' = Concentration is below laboratory reporting limits but above method detection limited and is considered an estimated value
- * Samples collected from MW-426 and W-9 were collected via PDB, which is not the preferred method of sample collection for DHG analysis. Results may not be accurate.

FIGURES

Site Former Indianapolis CE Plant Facility 600 N Sherman Dr. 1,000 2,000

KEY MAP (not to scale)

RAMBOLL AMERICAS ENGINEERING SOLUTIONS, INC. A RAMBOLL COMPANY

Indianapolis, Indiana

Notes

Sampled Semi-Annually

Sampled Annually

- * Former Extraction Well
- ♦ Lower Water-Bearing Unit Monitoring Well Location ☐ Demolished Building
- ♦ Middle Water-Bearing Unit Monitoring Well Location Soil Management Area
- Upper Water-Bearing Unit Monitoring Well Location Covenant Not To Sue Area (CNTS)
- RWP Source Area

- **▶** Environmental Restrictive Covenant Area

- Property Boundary

2023 ANNUAL PROGRESS REPORT

Former Indianapolis CE Plant Facility 600 N Sherman Dr. Indianapolis, Indiana

- 2022/2023 Injection Wells for Supplemental Injection Upper Zone Only
- ▲ 2022/2023 New Injection Point Locations
- 2022/2023 New Injection Point Locations Upper Zone Only
- Lower Water-Bearing Unit Monitoring Well Location
- → Middle Water-Bearing Unit Monitoring Well Location
- Upper Water-Bearing Unit Monitoring Well Location
- Demolished Building
- Soil Management Area Covenant Not To Sue Area (CNTS)
- Property Boundary

Former Indianapolis CE Plant Facility

600 N Sherman Dr. Indianapolis, Indiana

Notes

Sampled Semi-Annually

Sampled Annually

Sampled Middle Water-Bearing Unit Monitoring Well Location

Sampled Upper Water-Bearing Unit Monitoring Well Location

♦ Abandoned/Not Located Monitoring Well Location

* Former Extraction Well

◆ Lower Water-Bearing Unit Monitoring Well Location

→ Middle Water-Bearing Unit Monitoring Well Location

RWP Source Area

Surface Cap Area

■ Environmental Restrictive Covenant Area

Demolished Building

Soil Management Area

Covenant Not To Sue Area (CNTS)

Property Boundary

MONITORING WELL SAMPLING LOCATION MAP 2023 ANNUAL PROGRESS REPORT

Former Indianapolis CE Plant Facility 600 N Sherman Dr. Indianapolis, Indiana

Potentiometric contours were derived from

water levels collected during the July 2023

annual sampling event.

Covenant Not To Sue Area (CNTS)

Property Boundary

RWP Source Area

Surface Cap Area

ENGINEERING SOLUTIONS, INC.

A RAMBOLL COMPANY

Former Indianapolis CE Plant Facility 600 N Sherman Dr.

Indianapolis, Indiana

RAMBOLL

→ Flow Direction

- Groundwater Elevation Contour

- RWP Source Area

Surface Cap Area

Demolished Building

Soil Management Area

Covenant Not To Sue Area (CNTS)

Property Boundary

POTENTIOMETRIC SURFACE MAP (MIDDLE WATER-BEARING UNIT **2023 ANNUAL PROGRESS REPORT**

Notes

(755.83) - Groundwater elevation.
NL - Could not locate.
MW-32 and W-11D were not used in contouring. Potentiometric contours were derived from water levels collected during the July 2023 annual sampling event.

Former Indianapolis CE Plant Facility 600 N Sherman Dr. Indianapolis, Indiana

FIGURE 05b

→ Flow Direction

Groundwater Elevation Contour

- RWP Source Area

Surface Cap Area

Demolished Building

Soil Management Area

Covenant Not To Sue Area (CNTS)

Property Boundary

POTENTIOMETRIC SURFACE MAP (LOWER WATER-BEARING UNIT **2023 ANNUAL PROGRESS REPORT**

Notes
(755.83) - Groundwater elevation.
NL - Could not locate.
Potentiometric contours were derived from water levels collected during the July 2023 annual sampling event.

Former Indianapolis CE Plant Facility 600 N Sherman Dr. Indianapolis, Indiana

FIGURE 05c

Surface Cap Area

■ Environmental Restrictive Covenant Area

— 5 μg/L

— 50 μg/L

Notes

μg/L - Micrograms per liter.

TCE - Trichloroethene.

NS - Not sampled.

ND - Not detected.

Samples were collected from July 17 though September 8, 2023.

- Demolished Building
- Soil Management Area
- Covenant Not To Sue Area (CNTS)
- Property Boundary

TCE CONCENTRATIONS IN GROUNDWATER (UPPER WATER-BEARING UNIT) **2023 ANNUAL PROGRESS REPORT**

> Former Indianapolis CE Plant Facility 600 N Sherman Dr. Indianapolis, Indiana

Surface Cap Area

■ Environmental Restrictive Covenant Area

- Demolished Building
- Soil Management Area
- Covenant Not To Sue Area (CNTS)
- Property Boundary

- 70 μg/L
- 500 μg/L
- 5,000 μg/L
- 30,000 μg/L

Notes

μg/L - Micrograms per liter

Samples were collected from July 17 though September 8, 2023.

cDCE - cis-1,2-Dichloroethene. NS - Not sampled. ND - Not detected.

(UPPER WATER-BEARING UNIT) **2023 ANNUAL PROGRESS REPORT**

Former Indianapolis CE Plant Facility 600 N Sherman Dr. Indianapolis, Indiana

Surface Cap Area

■ Environmental Restrictive Covenant Area

Demolished Building

Soil Management Area

Covenant Not To Sue Area (CNTS)

Property Boundary

Notes

— 50 μg/L

— 500 μg/L

— 5,000 μg/L

μg/L - Micrograms per liter. Samples were collected from July 17 though September 8, 2023.

VC - Vinyl Chloride. NS - Not sampled.

ND - Not detected.

(UPPER WATER-BEARING UNIT) **2023 ANNUAL PROGRESS REPORT**

Former Indianapolis CE Plant Facility 600 N Sherman Dr. Indianapolis, Indiana

Surface Cap Area

■ Environmental Restrictive Covenant Area

Demolished Building

Soil Management Area

Covenant Not To Sue Area (CNTS)

Property Boundary

— 200 µg/L

— 500 μg/L

— 1,500 μg/L — 10,000 μg/L

Notes

μg/L - Micrograms per liter. Samples were collected from July 17 though September 8, 2023.

TCA - 1,1,1-Trichloroethane.

NS - Not sampled. ND - Not detected. **2023 ANNUAL PROGRESS REPORT**

Former Indianapolis CE Plant Facility 600 N Sherman Dr. Indianapolis, Indiana

(UPPER WATER-BEARING UNIT)

FIGURE 06d

Surface Cap Area

▶ Environmental Restrictive Covenant Area

Demolished Building

Soil Management Area

Covenant Not To Sue Area (CNTS)

Property Boundary

Notes

— 7 μg/L

— 20 μg/L

— 100 μg/L

— 500 μg/L

μg/L - Micrograms per liter.

Samples were collected from July 17 though September 8, 2023. 11DCE - 1,1-Dichloroethene.

NS - Not sampled.

ND - Not detected.

11DCE CONCENTRATIONS IN GROUNDWATER (UPPER WATER-BEARING UNIT) **2023 ANNUAL PROGRESS REPORT**

> Former Indianapolis CE Plant Facility 600 N Sherman Dr. Indianapolis, Indiana

Surface Cap Area

Environmental Restrictive Covenant Area

Demolished Building

Soil Management Area

Covenant Not To Sue Area (CNTS)

Property Boundary

— 28 μg/L

— 100 μg/L

— 500 μg/L - 10,000 μg/L

Notes

ND - Not detected.

 $\mu g/L$ - Micrograms per liter. Samples were collected from July 17 though September 8, 2023.

11DCA - 1,1-Dichloroethane. NS - Not sampled.

(UPPER WATER-BEARING UNIT) **2023 ANNUAL PROGRESS REPORT**

> Former Indianapolis CE Plant Facility 600 N Sherman Dr. Indianapolis, Indiana

Surface Cap Area

■ Environmental Restrictive Covenant Area

□ Demolished Building

Soil Management Area

Covenant Not To Sue Area (CNTS)

Property Boundary

Notes

— 5 μg/L

— 50 μg/L

— 500 μg/L

μg/L - Micrograms per liter. Samples were collected from July 17 though September 8, 2023.

TCE - Trichloroethene. NS - Not sampled.

ND - Not detected.

(MIDDLE WATER-BEARING UNIT) 2023 ANNUAL PROGRESS REPORT

Former Indianapolis CE Plant Facility 600 N Sherman Dr. Indianapolis, Indiana

FIGURE 07a

Surface Cap Area

▶ Environmental Restrictive Covenant Area

- Demolished Building
- Soil Management Area
- Covenant Not To Sue Area (CNTS)
- Property Boundary

Notes

— 70 μg/L

— 500 μg/L

μg/L - Micrograms per liter. Samples were collected from July 17 though September 8, 2023. cDCE - cis-1,2-Dichloroethene.

NS - Not sampled.

ND - Not detected.

cDCE CONCENTRATIONS IN GROUNDWATER (MIDDLE WATER-BEARING UNIT) 2023 ANNUAL PROGRESS REPORT

> Former Indianapolis CE Plant Facility 600 N Sherman Dr. Indianapolis, Indiana

FIGURE 07b

Surface Cap Area

▶ Environmental Restrictive Covenant Area

Demolished Building

Soil Management Area

Covenant Not To Sue Area (CNTS)

Property Boundary

Notes

— 2 μg/L

— 50 μg/L

— 500 μg/L

μg/L - Micrograms per liter. Samples were collected from July 17 though September 8, 2023. VC - Vinyl Chloride.

NS - Not sampled.

ND - Not detected.

(MIDDLE WATER-BEARING UNIT) 2023 ANNUAL PROGRESS REPORT

Former Indianapolis CE Plant Facility 600 N Sherman Dr. Indianapolis, Indiana

FIGURE 07c

- RWP Source Area
- Surface Cap Area
- Environmental Restrictive Covenant Area
- Demolished Building
- Soil Management Area
- Covenant Not To Sue Area (CNTS)
- Property Boundary

Notes

μg/L - Micrograms per liter. Samples were collected from July 17 though September 8, 2023.

TCA - 1,1,1-Trichloroethane.

NS - Not sampled. ND - Not detected.

TCA CONCENTRATIONS IN GROUNDWATER (MIDDLE WATER-BEARING UNIT) 2023 ANNUAL PROGRESS REPORT

> Former Indianapolis CE Plant Facility 600 N Sherman Dr. Indianapolis, Indiana

FIGURE 07d

Middle Water-Bearing Unit Monitoring Well Location

- RWP Source Area
- Surface Cap Area
- **▶** Environmental Restrictive Covenant Area
- Demolished Building
- Soil Management Area
- Covenant Not To Sue Area (CNTS)
- Property Boundary

Notes

μg/L - Micrograms per liter. Samples were collected from July 25-29, 2022.

11DCE - 1,1-Dichloroethene. NS - Not sampled. ND - Not detected.

11DCE CONCENTRATIONS IN GROUNDWATER (MIDDLE WATER-BEARING UNIT) **2023 ANNUAL PROGRESS REPORT**

> Former Indianapolis CE Plant Facility 600 N Sherman Dr. Indianapolis, Indiana

FIGURE 07e

Middle Water-Bearing Unit Monitoring Well Location

RWP Source Area

Surface Cap Area

▶ Environmental Restrictive Covenant Area

Demolished Building

Soil Management Area

Covenant Not To Sue Area (CNTS)

Property Boundary

Notes

μg/L - Micrograms per liter. Samples were collected from July 17 though September 8, 2023. 11DCA - 1,1-Dichloroethane.

NS - Not sampled.

ND - Not detected.

11DCA CONCENTRATIONS IN GROUNDWATER (MIDDLE WATER-BEARING UNIT) 2023 ANNUAL PROGRESS REPORT

Former Indianapolis CE Plant Facility 600 N Sherman Dr. Indianapolis, Indiana

FIGURE 07f

◆ Lower Water-Bearing Unit Monitoring Well Location

- RWP Source Area
- Surface Cap Area
- Environmental Restrictive Covenant Area
- Demolished Building
- Soil Management Area
- Covenant Not To Sue Area (CNTS)
- Property Boundary

Notes

μg/L - Micrograms per liter. Samples were collected from July 17 though September 8, 2023.

TCE - Trichloroethene.

NS - Not sampled.

ND - Not detected.

TCE CONCENTRATIONS IN GROUNDWATER (LOWER WATER-BEARING UNIT) **2023 ANNUAL PROGRESS REPORT**

> Former Indianapolis CE Plant Facility 600 N Sherman Dr. Indianapolis, Indiana

FIGURE 08a

- - RWP Source Area

Surface Cap Area

▶ Environmental Restrictive Covenant Area

Demolished Building

Soil Management Area

Covenant Not To Sue Area (CNTS)

Property Boundary

— 70 μg/L

— 5,000 μg/L

— 500 μg/L

Notes

 $\mu g/L$ - Micrograms per liter. Samples were collected from July 17 though September 8, 2023.

cDCE - cis-1,2-Dichloroethene. NS - Not sampled.

ND - Not detected.

cDCE CONCENTRATIONS IN GROUNDWATER (LOWER WATER-BEARING UNIT) 2023 ANNUAL PROGRESS REPORT

> Former Indianapolis CE Plant Facility 600 N Sherman Dr. Indianapolis, Indiana

FIGURE 08b

RWP Source Area

Surface Cap Area

▶ Environmental Restrictive Covenant Area

Demolished Building

Soil Management Area

Covenant Not To Sue Area (CNTS)

Property Boundary

Notes

- - 2 μg/L

— 50 μg/L

— 500 μg/L

μg/L - Micrograms per liter. Samples were collected from July 17 though September 8, 2023. VC - Vinyl Chloride.

NS - Not sampled.

ND - Not detected.

VC CONCENTRATIONS IN GROUNDWATER (LOWER WATER-BEARING UNIT) 2023 ANNUAL PROGRESS REPORT

> Former Indianapolis CE Plant Facility 600 N Sherman Dr. Indianapolis, Indiana

FIGURE 08c

◆ Lower Water-Bearing Unit Monitoring Well Location

- RWP Source Area
- Surface Cap Area
- **▶** Environmental Restrictive Covenant Area
- Demolished Building
- Soil Management Area
- Covenant Not To Sue Area (CNTS)
- Property Boundary

Notes

 $\mu g/L$ - Micrograms per liter. Samples were collected from July 17 though September 8, 2023. TCA - 1,1,1-Trichloroethane. NS - Not sampled. ND - Not detected.

TCA CONCENTRATIONS IN GROUNDWATER (LOWER WATER-BEARING UNIT) **2023 ANNUAL PROGRESS REPORT**

> Former Indianapolis CE Plant Facility 600 N Sherman Dr. Indianapolis, Indiana

FIGURE 08d

- RWP Source Area

Surface Cap Area

▶ Environmental Restrictive Covenant Area

Demolished Building

Soil Management Area

Covenant Not To Sue Area (CNTS)

Property Boundary

Notes

— 20 μg/L

μg/L - Micrograms per liter. Samples were collected from July 17 though September 8, 2023. 11DCE - 1,1-Dichloroethene.

NS - Not sampled.

ND - Not detected.

2023 ANNUAL PROGRESS REPORT

Former Indianapolis CE Plant Facility 600 N Sherman Dr. Indianapolis, Indiana

(LOWER WATER-BEARING UNIT)

- RWP Source Area

Surface Cap Area

■ Environmental Restrictive Covenant Area

- Demolished Building
- Soil Management Area
- Covenant Not To Sue Area (CNTS)
- Property Boundary

— 28 μg/L

— 100 µg/L

 μ g/L - Micrograms per liter. Samples were collected from July 17 though September 8, 2023. 11DCA - 1,1-Dichloroethane.

NS - Not sampled. ND - Not detected. 11DCA CONCENTRATIONS IN GROUNDWATER (LOWER WATER-BEARING UNIT) 2023 ANNUAL PROGRESS REPORT

> Former Indianapolis CE Plant Facility 600 N Sherman Dr. Indianapolis, Indiana

APPENDIX A FIELD NOTES AND FORMS

APPENDIX A-1
JANUARY/FEBRUARY 2023 GROUNDWATER SAMPLING FIELD NOTES

						Ţ
		MW-9 MW-9	MW-3 MW-3 WW-11 WW-13 MW-13	MW-2 MW-2 MW-1 WW-1 W-8	MW.	well
		127	033 241 D	53	-313 -112 -123 -133 -133 -131	ID
		1110	950 1000 1030 1050 1100	965	1535 1540 1545 1600 1600 1600	me 10 1500
,		28,6 €	26.22 13.20 12.81 51.48 14.50 12.40	27.40 11.75 12.42 30.16	13.63 26.77 26.89 28.57 28.62 31.78 22-39 15.01	LDTW
		* No. bo	24.70 *	or No bo	x. No b	Indy (
<u>.</u>			lo bag	Stringe)a9 bou	CE PL
		VI	e w/n	d, bay		B Sa
			cfal det	1-24-2 gove	1-23-	mpling
	3		ector, acu	3	23	
	,		it locato *			
				0000	0000	300

			•				a L	
					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			+++++
	well	JD (Time	PHIL	014	CO2 1	20 8	
S	GP-		1435	0.0	0 1/6	Oppm	20 9	
	SA ()	4 11	205	0.0	0%	 	26.6	
	201							
1 1 1 1 1 1 1								
				1111111				
		1++++						

N Rite in the Rain.

RAMBOLL	Groundwater Low Flow Form
Sample Location: Jndy CF. Well ID: MW-427 Sampling Personnel M. Starrett, C. Novokte 1-33-83 Weather	
MEASUREMENT SUMMARY: Measuring Point TOC Initial Depth to Water Total Well Depth Casing Diameter Screen Interval	-23
1 02 00	
SAMPLING SUMMARY: Date and Time 1-23-23	
Sampling Method: Grab x Composite GeoSub Bladder Pump x Peristaltic Pump	Bailer
Pump Started 1258 Pump Stopped 1350 Total Gallons 2, 0 9al	
pH SC D.O. ORP Time DTW Flow Rate 0.1 Temp 3% 10% 10	Turb.
(24-hr), (ft), (ml/min) (S.U.) (°C) (J45/cm) (mg/L) (mV)	(NTU)
1258 1145 150 6.71 14.48 0.88 0.28 -83	9 56.6
1308 1145 150 6.83 1416 11.88 0.10 -169 1313 1145 150 6.88 3.92 0.87 0.05 -180	18.3
1318 150 691 404 0.88 6.07 =186 1373 1145 150 6,93 14,04 0.88 0.01 =186	1. × 40.6 6 31.
1328 11.45 150 6.95 4.12 0.87 0.00 -187. 1333 11.45 150 6.95 4.14 0.87 0.00 -188	b 11.6
1338 1145 150 696 14:08 0.87 0.00 =188 1543 1145 150 6.4 14:12 0.88 0.00 =188	3 447
N. A. Colon	
Comments: DUI TAKEN -	
Calibration: Date and Time: Equipment:	
VOC's Total Metals* Dissolved Metals	
Equip. Blank Blind Dup Blind Dup Name	ТВ

1-30-23 PDB Deployment WID Jame DIW W-9 1240 14 MW-173 1250 28 MW-313 1365 26 188 trestrung after vandalism 188 trestrung attend due to vandalism 195 to same as above cure 27.62 X me as above x 24.75 Mw-22 \ Mw-333 MW-253 35 W-10 1400 W-8 1420 12.21 x restrung due to vandalism 3.16 x restrung due to vandalism 30.40x * bug a locally placed, misidentified last time out to MW-163 MW-153 sect 1 MW-322 1510 MW-322 1515 28.55 trestrung due to vandatism't

APPENDIX A-2 APRIL 2023 GROUNDWATER SAMPLING FIELD NOTES

4-25-23 Well ID MW-427 MW-331 MW-331 MW-251 W-0 MW-131 MW-131 MW-241	GETAL CE T.ME IDIW - Reannot locates* 1100 13.54 1130 12.89 *DHG * 1205 12.75 *DHG * 1215 12.75 * No bag , whole assembly stolen * 1730 1745 11.05	
woter intube 7	Well ID I'me PID CH4 CO2 OZ SGP-1 1312 G. Open G. Open 20.9 SGP-3 1320 O. Open O. Open 20.9 SGP-3 1320 O. Open O. Open 20.9	

RAMBOLL	Groundwater Low Flow Form
Sampling Personnel MS Date 4-25-23 Weather 40510	475 oudy
MEASUREMENT SUMMARY: Measuring Point TOC Initial Depth to Water Total Well Depth Casing Diameter Total Well Depth Screen Interval	4-25-23
SAMPLING SUMMARY: Date and Time 4-25-23 Sampling Method: Grab X Composite Hurricane Bladder Pump X Peris Pump Started (0.5 Pump Stopped (0.5 Total Gallons 3.5 9 Q Time DTW Flow Rate 0.1 Temp 3% 10% (24-hr) (3.5 Gallons 10% (ORP Turb. 10 10% (mV) (NTU) -223.8 73.1 -185.5 62.4 -180.4 47.3 -180.4 41.8
Comments: DuP taken	
Calibration: Date and Time: Equipment: Sample Name Time Dissolved Metals Total Metals*	
Equip. Blank Blind Dup Blind Dup Name AD-10	50-0485 T 1200

APPENDIX A-3
JULY/SEPTEMBER 2023 GROUNDWATER SAMPLING FIELD NOTES

Indu CE PDBS 1AMP *no bagi restrung 12.00 MW-4085 600 * no assembly, no sample & 605 MW-4080 MW-404 15.66 MW-405S 610 MW-405D MW-4245 プログラファラ 161 MW-424D Mw-403 18.97 18.97 18.97 18.97 MW-461 MW-4175 MW-417D MW-4725 MW-427D MW-4235 MW-423D * no loag restrung \$30 95 50 * No bag restrung * no bugirestring * No cap, no assembly 848 * 850 1254 MW-322 * no assembly 27.60 MW-323 MW-321 29.62 852 . (1 13.36 13.84 11.18 W-11D MW-331 855 910 * no bag, no assembly MW-414S * no bag no asembly/ * Could not locate w/ metal detector x MW-414D 12:19 NW-427 MW-4165 13,49 13,50 14,55 18,17 926 693550 693550 600 MW-416D Mw-311 17.60 + strang new bagt Hould not locate, over grown to * Indirtino capino assembly * added egp* W-4R= MW-4159 12.35 MW-415D 28.00 * DHG & VOCS* W-9. 1015 35 * restrung no bag *
30 * assembly missing * MW-426 MW-173 MW-913 1020 MW-Mw-112 055 105 MW- 85 MW- 25 W-10 m -MW-15 W-8 * DHQ & VOCSX

O'Brien	& Gere Engine	eere Inc						
Date	7-17-03					<u>id Water S</u>	ampling Lo	g
Site Name	Tarley	_ Perso	nnel (3)	udde M.	Starrett	Weather	MW-4	25
Site Location	Indy F	Evacu	ation Metho	a pumptur	CHACLO	Well#	7588	202
	41001110	_ Samp	ling Method	Lan	Flow	Project #		
Well inform	ation:				1.000			
Depth of We	II *	ft.						
Depth to Wa	ter*	ft.		* Measure	ments taken from	- 7		1
Length of Wa Depth to Inta	ater Column	ft.			<u>×</u>	Top of Well Ca		j
Depth to Inta	ke *	ft.				Top of Protectif (Other, Specify		İ
Start Purge 7	ime:						, 	
Elapsed								
Time	Depth /To/Water				Oxidation	Dissolved		
(Time)	OTAC .	Temperature		Conductivity	Reduction	Oxygen	Turbidity	Flow
1121.	11:40	(0()	pH	(ns/cm)	Potential	(mg/l)	(NTU)	Rate (ml/min).
1176	11.48	193141	6.87	0.90	-115.9	0 75	168	768-200
1137	11.48	53,87	69/3	0.97	-199,9	0.24	25.0	200
1136	1148	74 85	6.04	13:41	=169,3	19.10	156	200
1141	1148	15,05	6.95	18-46	-173,1	0.404	18.5	1 200
1146	11:48	78.76	6 99	0:24	-1577	0.86	16/2 /3	1900
1156	11.48	17:92	648	7,90	1557	0.00	75.7	200
1201	11.48	17.66	6,47	8.94	-149.1	11.00	49.9	200
1236	11 48	14.5	6.96	(5.92	-145.6	0.00	38,9	200
(11.10	14.10	6:46	0.99	-142,2	0.00	31.0	1208
/								
								1
/_								
/						1		+,
/		$\langle \cdot \rangle$						
		(,				1/-
			-1	1				
			/	H/	-//-/	/ / _		
×)	/-/-	11 1	///		1 / /	/ \
			/	1/ //	11	 	 / /	1
			10	¥			 	+
End Purge Tim	16*							
					/			
Nater sample	1. / / / (Á		1 -	1
ime collected				Total volume of	purged water rer	noved:	$\gamma_{\alpha}(\gamma)$	901
	arance at start	راء ماء			Physical appear	ance at samplin	<u> </u>	J-1
	Color DIACK (10004				Color	•	
	Odor hone					Odor		_
Sheen/Free Pro	Dauct				Sheen/Fre	ee Product		
ield Test Res	ulter Dissabled	ferrous iron:						
icia restries	Dissolved		-					
		total manganese:	-					İ
	Dissolved	total manganese.	-	-+				
nalytical Para	meters:							
Container Si	ze Contain	er Type	# Collecte	d Field	d Filtered	Preserva	tive	Container pH
	 							
						· · · · · · · · · · · · · · · · · · ·		

O'Brien	& Gere Engine	ers, Inc.		I OW E	low Group	nd Water S	ampling Loc	1
Date	7-17-23	Person	nel	LOWF	iow Groun		TOTAL PO	2
Site Name	11-0					Weather	14.1.4	177 I
Site Location			ation Method	<u> </u>		_ Well #	MW- 71	./-
		. Sampli	ing Method			Project #		
Well informa								
Depth of Well		ft.		* Measure	ments taken fro	m		
Depth to Wate	er* 14,2	<u>ft.</u>			\ \ \	Top of Well Car	sing	
Length of War Depth to Intak	ter Column	ft.				Top of Protective		
		ft.				(Other, Specify))	
Start Purge Ti	ime: _[33]							
Elapsed	Depth		Ι	T	Ouldetter	Dissolved		
Time	To Water	Temperature		Conductivity	Oxidation Reduction	Oxygen	Turbidity	Flow
(Time)	(btoc)	(°C)	рН	(AS/cm)	Potential	(mg/l)	(NTU)	Rate (ml/min).
1536	14.59	18.15	6.70	1.18	-63.1	0.03	792	200
1346	13.60	18:07	6.7	117	1-104.8	0.00	1.8.8	100
1351	14.5%	12 11	16.75	1.15	-1059	0.00	1,5,2	1222
1356	14.50	18.14	6.73	114	-(08,3	0.00	18.	200
1401	14,58	18.06	6:27	11/1/	111/2	8.00	134	200
1406	14.45	18.12	G. 45	110	-112.7	10.00	10.9	200
Hill	14.50	18.15	6.76	(1)0	-114.4	(1.00)	8.5	200
1477	14.51	18:14	13:45	1.09	-115.7	0.00	5.75	200
1 1 1 - 1	11131	18114	6.76	11.09	-1.15.6	10.00	6.70	200
							3.7	
							-	
	/			/				
/	/			/-/	 	 /		
		$\overline{)}$		/	 	+		1/
•			ann	01.4				
	/)/	V/	1/10				
 	/	1	<i> </i>	1111			- /	
			1		//		+/	+ /
			-				/	
End Purge Tir	ne: 1435							
	A						7 /	- ,
Water sample Time collected	1111/1			Total values a			4.5	$\sim a/$
1		,		Total volume of	f purged water re		- 30	494
Physical appe	Color With	claude			Physical appe	arance at samplir Color	19 Floar	J
	Odor Odor	Mary				Odor	aga	_
Sheen/Free P	roduct				Sheen/F	ree Product		
				1				
Field Test Re		ferrous iron:			-			
		total iron:						
	Dissolved	i total manganese	:		-			
Analytical Pa	rameters:							
Container S	Size Contai	ner Type	# Collec	ted Fie	eld Filtered	Preserva	ative	Container pH

O'Brien & Gere Engineers, Inc. Low Flow Ground Water Sampling Log										
Date	7-17 112		. 121 -		low Groun					
Site Name	1 1 - 6)	- Persor	Plu	doer M.	darrett.	Weather	MW-41	<u>w</u>		
Site Location		- Evacua	ation Method	Protone	CONC	Well #	1538/1	00 ×		
		- Sampli	ing Method	Low	Flow	Project #				
Well informa										
Depth of Well		ft.		* Measuro	ments taken fron					
Depth to Wate	er* [2,4			Weasure	X X	Top of Well Ca	sina			
Length of Wat	ter Column	ft.				Top of Protectiv				
Depth to Intak	e *	ft.			8	(Other, Specify				
Start Purge Ti	me: [458									
Elapsed	Depth			T						
Time	To Water	Temperature			Oxidation	Dissolved				
(71Mz)	(bloce)	(0(,)	pH	(MS/cM)	Reduction Potential	Oxygen	Turbidity	Flow Raté (ml/min)		
1503	12.67	2603	6.65	1737011	~ 99, Z	(mg/l)	(NTU) 5.3/	750		
15/18	7.69	20.21	6.65	1.14	-1037	6 84	327	1220		
15/2	13.60	70,79	6.64	1,14	-187.1	0.31	2.54	250		
1323	1.69	70.05	les 65	1115	-10975	601	2:04	750		
578	19.90	70.40	12.62	1,16	-116.2	0:01	167	1250		
533	7-15	168-48	19.95	41.5	-117.5	0:00	0,98	1350		
		AU ILO	6.65	14+	-11218	0.00	0.69	1250		
								 		
/		/				Λ				
						-/	ļ	1/		
7								/		
					7	 / 	 	4		
			1,			1	/			
				100						
	-/ `		1/	/ 		 				
) /-	// /	1111	H	/ \ 	 /	 		
10				1///			/	/		
					$\overline{}$	-	/ 	 		
				//						
End Purge Tin	ne:									
Water sample	· mr		厚				0 -	, i		
Time collected	11 11			Total volume of	purged water rei	moved:	3.5	cal		
Physical appe	arance at start					rance at samplin		74/		
	Color				Triyotcat appear	Color	g			
•	Odor					Odor		-		
Sheen/Free Pi	roduct				Sheen/Fre	ee Product		_		
Field Teat De	- tr							_		
Field Test Re		ferrous iron:			-			,		
		I total iron:			•					
	DISSOIVE	I total manganese	•		•					
Analytical Par	rameters:									
	N:			\						
Container S	oize Contai	ner Type	# Collect	ed Fie	d Filtered	Preserva	tive	Container pH		
						 				
					·					

O'Brien & Gere Engineers, Inc. Low Flow Ground Water Sampling Log										
Date	7-17-73	Persor	nel	M	Jarcett	Weather	1941-4	NOD		
Site Name	+ +1 -5	-		7		- Well #	1542	000		
Site Location		_	ation Method		Cart	_	1000			
		_ Sampl	ing Method	LOW	Flow	Project #				
Well informa										
Depth of Wel		ft.		* Measure	ments taken fro	m		į		
Depth to Wat		15 ft.			X	Top of Well Cas		1		
Length of Wa	+	ft.				Top of Protective	e Casing			
Depth to Inta	Ke "	ft.			L	(Other, Specify)				
Start Purge T	ime: 1556									
Elapsed	Depth			I	Oxidation	Dissolved				
Time	O To Water	Temperature		Conductivity	Reduction	Oxygen	Turbidity	Flow		
(I.Me)	(ff btoc)	(O()	pH,	(mS/(m)	Potential	(mg/l)	(NTU)	Rate (ml/min).		
1601	1402	71,76	1.11	1.87	-117 4	0.58	4.89	200		
1606	4	10.60	6.73	1 64	-164.5	0.98	5:42	200		
161	147 100	90.35	6.73	1.82	-99.0	0.95	9.39	1200		
16,60	(4.1	70:04h	6.73	17.84	1-95.0	0.86	3.59	1300		
16/1	14.1	126,28	6.73	1,84	-93, 1	0.83	11.7	1 32/2		
14.76	14.11	126,00	12.73	1.85	-96.7	1/2.58	7.81	1800		
1621	14,11	19,99	G.73	1,86	-8915	0.75	(9.75			
	/									
	/				 / - - - - - - - - - 		/			
	 	 / 	 	ļ		-	/			
		\overline{X}	 	 	1	+ /				
-/	 		 		1	1/1		7		
			 	/	7	1/11				
			1		1/	11				
		1	1		1/	/				
		1	1//	7						
		1	1/1/	11/1/		0				
			17 //			X / \				
	1		V //	1//	1/	//				
		100	1 /			4 \	1 /			
		ļ <u> </u>	" /				-			
	<u></u>	<u> </u>								
End Purge Ti	me:									
-							\bigcirc	0 /		
Water sampl				Total volume o	of purged water	removed:	11.0	Taal		
Time collecte				Total volume c				77		
Physical appe	earance at start				Physical app	earance at sampli	ng	9		
l						Color				
	Odor				01	Odor				
Sheen/Free F	Product				Sneen/	Free Product				
	35-1600s. no			\mathcal{L}						
Field Test Re		d ferrous iron:			_					
		d total iron:								
	Dissolve	d total manganes	e:							
										
Analytical Pa	rameters:			`						
O	Pino I Contr	inor Typo	# Collec	ted I E	ield Filtered	Preser	vative 1	Container pH		
Container:	oize Conta	iner Type	# COILEC	, Cu F	IOIG I INGIGU	110001				
		2000								
			 							
						1				

O'Brien & Gere Engine	ers, Inc.		Low F	low Groun	d Water Sa	ampling Log	
Date 7-18-23		nel Pr			Weather	MAAI-41	15
Site Name Tody CF	Fyacus	ation Method	adder M. C	2416/1-	Well#	15001	200
Site Location	- Sampli	na Mothad	Pumerture		-	1000	
	. Sampii	ng Method	LOW	Flow	Project #		
Well information:							
Depth of Well * Depth to Water *	ft.		* Measure	ments taken from	7		
Length of Water Column	57ft.				Top of Well Cas		
Depth to Intake *	ft.				Top of Protectiv (Other, Specify)		
	".			L	J(Other, opecity)		
Start Purge Time:							
Elapsed Depth			I	Oxidation	Dissolved		
Time To Water	Temperature		Conductivity	Reduction	Oxygen	Turbidity	Flow
(Time) (Pt bine)	(°C)	pH	(mS(cm)	Potential	(mg/l)	(NTU)	Rate (ml/min).
959 3 49	19.67	14.17	1613	-46.4	8.85	1818	700
604 65.46	18.41	12.76	215	-27	18,89	27.6	200
1609 3, 16, 84	18.25	6.48	7.16	-80.2	0.00	72.3	200
1014 16:15	18.36	6.29	2.16	-82,8	6.00	77.5	200
1014 10,43	18.32	6.31	12.19	-84, 8	0.00	73.8	1788
10 69 11/100	18.40	6,34	12,20	-851	0.00	142.2	700
				/		<i>Y</i>	
		$\overline{}$	/		 	1	
)					
		7	1.0	1		1	
					//	<i>VI</i>	
) /	111	117		1	
			/ / /				 /
			V			ļ	<u> </u>
						/	
10116				<u> </u>			
End Purge Time:							,
Water sample:						0 1	~_//
Time collected: (029			Total volume of	purged water re	moved:	2.5	99
Physical appearance at start				Physical appear	rance at samplin		
					Color	***	- 1
Odor				Chan/Er	Odor ee Product	-	-
Sheen/Free Product				SHEETVER	ee Product	·	-
Field Test Results: Dissolved	ferrous iron:		\				
Dissolved	total iron:			-			
Dissolved	total manganese:						
							
Analytical Parameters:			•				
Container Size Contain	ner Type	# Collect	ed Fie	ld Filtered	Preserva	ative	Container pH
					ļ		
					 		

O'Brien	& Gere Engine	eers. Inc.		Low F	low Group	d Water S	ampling L	og
Date	7-18-73		onnel	NA .			1411-4	02
Site Name	Tida	_			Sarrett	Weather	1500	10 (m)
Site Location	- HARY CE		uation Method	1 - U	160A	Well #	10001	· O C A
		_ Sam	pling Method	Low	Flow	Project #		
Well informa	ation:							
Depth of We	II *	4						
Depth to Wa	ter *	57		* Measure	ments taken from	-		
Length of Wa	ater Column	75ft.			Χ	Top of Well Ca		
Depth to Inta	ke *	ft. ft.				Top of Protecti		
		· · · · · · · · · · · · · · · · · · ·				(Other, Specify	')	
Start Purge T	ime:	2						
Elapsed	Depth	T		Υ	-			
Time	To Water	T	1		Oxidation	Dissolved		
(Impe)	(A btoc)	Temperature		Conductivity	Reduction	Oxygen	Turbidity	Flow
1721	12 69	1a G B	pH	(m)(m)	Potential	(mg/l)	(NTU)	Rate (ml/min).
11212	I NOWE	1-12/20	15.5	3.53	-174.	0.04	121,4	1288
11:37	38.32	10,47	6.57	5110	-165.4	0.04	10.4	1200
1101	4170	1000	16.58	1736	- 174.0	10.05	1/1/2	700
1150	X/ 4/2 11442	10.68	6:58	4.98	-169,9	10,02	9.67	1200
1154	THE PUMPS	10.33	6.57	4.80	-1809	0,05	7.96	1200
17 20	11.52 × 40	mora t	ant For	recharg	24		<u> </u>	
100	- 13 c 1 30	THE REAL PROPERTY	-	,		ļ		
			1			-	4	
		/				/		
	/	/				/		
/		/				-/	-	
	7					/		
	/		 	/		/		_/
,,			 	/	/		ļ	/
	11	7	1/		<u> </u>			
	/ /	\	-		11			
			1	1	11			
	/	- 3 //	1-h/11	(-)	/ / / /			
	/	11	 	111	/ / / -		 /	
		/ /					/	
								-
		2						 /
						l		
End Purge Tim	ne:							
Nater sample	:006			¥ = 0			10	1
Fime collected				Total volume of	nurged water rei	moved:	1,61	aa
-	arance at start							741-
	Color (P)				Physical appear	ance at samplin	g Clanc	,
	Odor CTC/					Color	CICII	
						Odor		
Sheen/Free Pro	Dauct				Sheen/Fre	ee Product		
				1				
ield Test Res		ferrous iron:	_	-				
	Dissolved		-					
	Dissolved	total manganese	: _					
nalytical Para	ameters:			-				
- C								
Container Si	ze Contain	er Type	# Collecte	d Field	d Filtered	Preserva	tive	Container pH
				L				

And Company of the Party of the

O'Brien 8	& Gere Engine	ers, Inc.		Low F	low Groun	nd Water S	ampling L	og_
Date	7-18-23	Perso	nnel	M	Charcott	Weather	MW-L	1075
Site Name	Indu (F	-	ation Method	1	CUAR	 Well #	7538	100 B
Site Location	The state of the s	-	ling Method		Flow	 Project #		
Well informati	ion	-		HUW	1 10 00			
Depth of Well *		£,		2.0				
Depth to Water		C7 ft.		* Measure	ements taken fro	-		
Length of Water		8 / ft. ft.			 	Top of Well Ca		
Depth to Intake		ft.				(Other, Specify)		
21.12						7/2000		
Start Purge Tin	ne:		79 - 79 - 79 - 79 - 79 - 79 - 79 - 79 -					
Elapsed	Depth				Oxidation	Dissolved		
Time	To Water	Temperature		Conductivity	Reduction	Oxygen	Turbidity	Flow
(1.Me) (19,24	(°C)	pH	(mS/(m)	Potential	(mg/l)	(NTU)	Rate (ml/min).
502	15:57	19.39	677	7.10	-158,4	0.07	539	- 1388 -
1507	15(79	23.44	777	7.06	-13/2	18,02	36.1	500
1512	(6,0)	21.24	8:84	2.05	-131.6	0.03	34,3	200
15/7	6124	26.47	6,63	2,06	-130.6	0.03	29.9	200
15/12	16.74.38	41,93	6.63	2.09	-131.2	0,02	28.7	200
12/2/	19.69	43346	16,6,3	2.19	-133.0	A.R.S	111	100
000	\\U + F\U	1.3.70	6,64	2,11	[-[]/.'S	O.U.	400	100
								1
-/				/	ļ ,			
					2	· ·	·	
					-	1		1/
						/ * X		
			//	Δ / Δ				
	/		/ / /		HV		/	/
/			/ / 	1 1 17	H			-
		- 	/ / 	- 	/		/	
			0					
End Purge Time	: :		Y	INTO	an a	71000	`	
Water sample:			*	K HD- (0-00	41812	Δ.	,
Time collected:	1535	Co			purged water ren		3,00	a
Physical appeara		. 5	\`~{ <i>//0C</i>)	Physical appear	ance at sampling		
- NO.	olor ·	ū	000		т туском мрром	Color		
Od	dor					Odor		_
Sheen/Free Prod	duct				Sheen/Fre	e Product		
E-147 B	h. District			,				
Field Test Resu	Dissolved	ferrous iron:	-	$\overline{}$				
		total manganese:	-	$\overline{}$				1
	Dissolved	.o.ai manyanese.						
Analytical Paran	neters:							
Container Size	e Contain	er Type	# Collected	d Field	Filtered	Preservativ	/e	Container pH

O'Brie	n & Gere Engi	neers, Inc.		Low	Flow Grou	nd Water S	Sampling L	og
Date	7-19-23	80 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	sonnel	Μ.	Charcell	Weather	MW-40	
Site Name	JOHN CE	Evad	cuation Metho	od Hit	NUM	Well#	75881	002 ()
Site Location	onn	Sam	pling Method	Low	Flow	Project #		
Well inform	nation:							
Depth of W		ft.		* Measur	ements taken fro	om		
Depth to W		165 ft.			×	Top of Well Ca		
Depth to Int	/ater Column	ft.				Top of Protecti		
		ft.				Other, Specify	') ————————————————————————————————————	
Start Purge	Time: 854							
Elapsed	Depth		3900000		Oxidation	Dissolved		
Time	To Water	Temperature		Conductivity	Reduction	Oxygen	Turbidity	Flow
(Time) 859	(4+ 6+85)	(°C)	pH	(mS/cm)	Potential	(mg/l)	(NTU)	Rate (ml/min).
GOL	17 80	18.73	6.86	1,94	-88.1	0,10	10	1200
9/30	19990	18/10	6.80	1,95	-90,2	0,01	241	200
914	24.75	18'86	6.79	1.97	-9/.9	0.00	42/2	1200
419	25.25	118 26	12.77	1,05	- 97 7	0.00	1/32/	230
124	25.43	18.36	6.76	1.96	-93.6	0.00	837	1300
929	5.46	18,96	6,750	1.97	-84.2	0.00	77.6	208
737	79.50	18,37	6.73	1.98	-94,6	0.00	73.3	1200
137	25.57	18.40	6.73	1.99	-948	0.00	745	200
	/				/	 		
		1						
		1/					/	
/								
/		1						
-		<u> </u>	1					
			21	200	I	1		
	- /		/ 	// /. / _ /	$ \mathcal{U}$	1		
		1 //	-/ //	/ 	11 H	/ -		4
			/ //		P 11	/		
	J			N				
d Purge Tim	e:			0				
iter sample:					1			
ne collected:			7			v	00	./
· ·			Ţ	otal volume of p		-	E. 0 99	(
	rance at start Color			F	Physical appeara	ance at sampling	•	
	Odor					Color	·	_
een/Free Pro					Ob (E	Odor		_
					Sheen/Free	e Product		-
ld Test Resu	ults: Dissolved	ferrous iron:		1				
	Dissolved	total iron:	_					
	Dissolved	total manganese:						
lytical Parar	neters:							
ontainer Size	e Containe	er Type	# Collected	Field	iltered	Preservative	<u> </u>	Container pH
						. reservative	<u> </u>	ortalitei pri
-				 				
								1000
	+							

O'Brien	& Gere Engin	eers Inc		Low F	low Groun	d Water S	ampling Lo	g
Date	7-19-23	Perso	mal M			Weather	14W-415	8S
Site Name	1-11-20	_	uation Method	dde	arcett	Well#	15381	008
Site Location				Pung Low	Floris	Project #	7	
		_ Samp	ling Method	LOW	FIUW	_		
Well informa								
Depth of Wel		ft.		* Measure	ments taken from			
Depth to Wat Length of Wa		/9ft.			×	Top of Well Ca Top of Protective		*
Depth to Inta		ft.				(Other, Specify		
	14							
Start Purge T					,		T	
Elapsed	Depth				Oxidation	Dissolved	Touch I dian.	Flow
Time	To Water	Temperature	l	Conductivity	Reduction	Oxygen (mg/l)	Turbidity (NTU)	Rate (ml/min).
(im c)	(1/ b/oc.)	Total.	C.V/A	(mS/m)	Potential	(mg/l)	567	700
1000	16.63	11.01	17:04	D-H	-1/3/2	11.77	645	200
1029	17.80	17111	6.81		-104,4	0.15	617	200
1634	17.25	74.11	6.87		-1051	0.17	989	1,00
1539	13.3	70.95	6.57	1:00	-105.9	0.07	245	+ 300 -
1049	17.59	20.43	181	1100	-10517	14:42	दक्त	1 288
1554	18 59	19.129	6.3h	1.07	-44.0	18:15%	332	200
17750	18579	14,55	6,90	1757	-98.6	0:03	747	200
	/	/			/			
	/					1	/	
		/	 	/		/		
	/	1		/				
	/	<u> </u>	I A		} 	 /) 	V - A	
	 		1/11/	 V 	11 		1-/1-	1
	/		 /			1	//	
			I = A					
			1/1	1 //)	<u> </u>	1/
				<i> </i> -			\`	Ψ ————————————————————————————————————
			<u> </u>	16	11 > 1	. AD-3		1
End Purge Tir	me:			* tu	uubur	AD	200-0	71/173
Nater sample	11/3/3				. 9 - 4	. 110		71423
Time collected	<u>d: [[()()</u>			Total volume of	purged water re	moved:	2.09a	
	earance at start				Physical appear	rance at samplin	g ,	57:120
	Color ·					Color Odor		-
Sheen/Free P	Odor				Sheen/Fre	ee Product		-
					S.,, S. 11			- [
ield Test Re	sults: Dissolve	d ferrous iron:		\				
		d total iron:	3	1				
	Dissolve	d total manganese	:		•			
nalytical Par	rameters:		-					
-		• • •			TE::	·		Gt-inov!!
ontainer S	Size Conta	iner Type	# Collecte	ed Fiel	d Filtered	Preserva	tive	Container pH

O'Brien & Gere Engineers, Inc. Low Flow Ground Water Sampling Log											
Date	7-19-23	Persor	nnel	M	2 arcott	Weather	Mh1-418	0			
Site Name		2000		1/1100	34141	- Well #	1532	202			
Site Location		Evacuation Method Sampling Method Low Flow Project #									
		_ Sampi	ing ivietnod	LOW	PIOW	-					
Well informa											
Depth of Wel		ft.		* Measure	ments taken fror						
Depth to Wat		(7ft.			X	Top of Well Cas					
Length of Wa Depth to Intal		ft.					Top of Protective Casing				
Deptil to Ilitai	(e	ft.			L	(Other, Specify)					
Start Purge T	ime:1/_38										
Elapsed	Depth				Oxidation	Dissolved	F	T			
Time	To Water	Temperature		Conductivity	Reduction	Oxygen	Turbidity	Flow			
(sma)	()	(CC)	рН	(mS/Cm)	Potential	(mg/l)	(NTU)	Rate (ml/min).			
1143	70.41	19.70	1. 1.7	1.46	88.7	0.20	154	200			
1148	72.51	19.56	6.67	1.46.	-66.5	0.10	131	200			
1153	24.08	19,57	6.68	1,46	-66,2	0:00	198	200			
1158	24,40	90,11	6.65	646	-67.6	19 01	1 35	1200			
MARO	25,43	50.30	6.69	11.4%	1-45.5	18.00		1 700			
4842	76.82	176.67	4,63	134	1-27-3-	18.89	333	1 3/2/2			
1/1/2	24.09	10170	Gild	1,24	1747	18:01	770	1300			
1610	7110	20,97	6.70	11.31	77.1	10.01		100			
/					/	/					
		,						1			
						+					
1				/	-						
				/	 	 		/			
				-		 - 					
	/ ()		1) 					
		11	10/	1							
	/			h = f		<i>Y /X</i>					
						1 7					
						<u> </u>	L				
End Purge Tim	ne:		1 1	A							
Water sample								,			
rvater sample Fime collected	11/1/11/1			Total valume of	purged water re	mound	3.0 9	a			
-				Total volume of			-11 y	4			
	arance at start				Physical appea	rance at samplin Color	g –				
	Color .				Odor						
Sheen/Free Pr	Odor				Shoon/Er	ee Product					
oneer/riee ri					StieetyFi	ee Froduct		_			
Field Test Res	sults: Dissolved	ferrous iron:		\							
,0.0 .001.1.0	Dissolved		1.5		-						
		total manganese:			-						
					•						
nalytical Par	ameters:										
Container S	ize Contain	ier Type	# Collected Fie		ld Filtered	Preserva	itive	Container pH			
						1					
						300 000					
						 					

O'Brien & Gere Engineers, Inc. Low Flow Ground Water Sampling Log										
Date	7-19-23	Perso	nnel	M .	Farcett	Weather	MW-42	8		
Site Name	INCL (F	-	uation Method	HITT	COVIE	- Well#	153X/10	00 R		
Site Location	Trong Ci	_	oling Method		Flow	Project #	7			
		<u>-</u>	ming Method	μωω	1 10 00					
Well information Depth of Well		ft.		* Measure	ments taken fron	n				
Depth to Wat		ft.		Wicasare	×	Top of Well Cas	ing			
Length of Wa		ft.				Top of Protectiv				
Depth to Intak	(e *	ft.				(Other, Specify)				
Start Purge T	ime:						-			
Elapsed	Depth				Oxidation	Dissolved	· · · · · · · · · · · · · · · · · · ·	1		
Time	O To Water	Temperature		Conductivity	Reduction	Oxygen	Turbidity	Flow		
(Time)	(++ btoc)	(0()	pН	(MS/(M)	Potential	(mg/l)	(NTU)	Rate (ml/min).		
1466	17.71	71.03	7.06	0.73	-50.4	0,55	347	200		
1411	17.31	20.77	7.04	0.71	-52.9	0:19	314	200		
1416	1 4 4	70.63	7.03	0,69	-54,0	0.76	2494	208		
19/	(7,7)	14 5t	7,03	0.68	-5512	19-14	183	200		
1431	1741	70.87	7.02	0.68	-52,4	0.12	163	200		
1436	1331	100,65	7.02	9.00	-58,7	0.11	147	300		
1447	17.7	10 98	7.01	(i, #()	-50.0	Oici	127	281		
1446	17,71	2071	200	0.71	-58.8	0.00	7118	260 200		
00										
				/		/				
	/	/	-			///				
		/			1	/ /				
			 				 			
			,		5//	7				
				V Y)//				
		//	/ X	1 1 /			/			
			 / 	HHH		 	 			
	-/	\rightarrow	{ 	 	$H \sim$	-V	 			
	- 4		 \ 	1//			·			
End Purge Tim	ie.			V						
Water sample							21-3			
Time collected:	1111/1			Total volume of	purged water rer	noved:	2,50	a 1		
- Physical appea					Physical appearance at sampling					
	Color .				Color					
(Odor				Odor					
Sheen/Free Pro					Sheen/Fre	ee Product				
Field Test Res	ults: Dissolved	ferrous iron:	426.63	\						
	Dissolved	total iron:	_		•					
	Dissolved	total manganese	: [
nalytical Para	ematare:									
uiaiyucai Fafa	iniciera.			•						
Container Siz	ze Contain	er Type	# Collecte	d Fiel	d Filtered Prese		rvative Container pH			
					•			8 38 38 and 1 and		

9-7-23 E CON. Sampling THE THE THE TO THE STATE OF THE Annual MW-362 MW-363 MW-97 MW-332 13.59 added locki MW-273 MW-4156 MW415D MW-416S 55 x DUP 1: AD - 101-090723 ST:1200-k MW-4065 18 9 0 L * buy Stolen, bolts are Stripped, no sample 198-23 * Resampled due to potential well switch up x 1,46 547 DUP2: AD-201-090823 ST:1200

APPENDIX A-4 OCTOBER/DECEMBER 2023 GROUNDWATER SAMPLING FIELD NOTES

Indy CE 2023 16.66 XDHG * No sample * bag faken* MW-13 MW-41 * Covered by Corsx * Dup taken (AD-100-101723) 57:1200 MW-427 x could not locatex Gas SGP-1 0. Oppm 6. 6% 000 Gpm SGP-3 0.5ppm 17.0 0% 0ppm THE PART OF THE PART OF THE

RAMBOLL Groundwater Low Flow Form
Sampling Personnel MS P1 Date 10-17-23 Weather 505 Cloudy
MEASUREMENT SUMMARY: Measuring Point TOC Initial Depth to Water Total Well Depth Casing Diameter Total Well Depth Casing Diameter Total Well Depth Total Well Depth Total Well Depth Total Well Depth Total Well Depth Total Total Well Depth Total Well Well Depth Total Well Depth Total Well Depth Total Well Depth
SAMPLING SUMMARY: Date and Time 10-17-23 Sampling Method: Grab Composite Hurricane Bladder Pump Peristaltic Pump Bailer Pump Started 1057 Pump Stopped Total Gallons 1590
Time DTW Flow Rate 0.1 Temp 3% 10% 10 (NTU) (NTU) (SU) (C) (mS/cm) (mg/L) (mV) (NTU)
Calibration: Date and Time: Equipment:
Calibration: Date and Time: Equipment: Sample Name Time 175
VOC's Total Metals* Dissolved Metals Equip. Blank Blind Dup Blind Dup Name TB

S#

Q-23 Gort. Sampling

APPENDIX B SUPPLEMENTAL AMENDMENT INJECTION SUMMARY REPORT

General Electric Company

January 17, 2024

Final Report

SUPPLEMENTAL AMENDMENT INJECTION SUMMARY REPORT FORMER INDIANAPOLIS CONSUMER ELECTRONICS PLANT (SHERMAN PARK FACILITY), INDIANAPOLIS, INDIANA (VRP #6020801)

SUPPLEMENTAL AMENDMENT INJECTION SUMMARY REPORT FORMER INDIANAPOLIS CONSUMER ELECTRONICS PLANT (SHERMAN PARK FACILITY), INDIANAPOLIS, INDIANA (VRP #6020801)

Project name Former Indianapolis Consumer Electronics Plant (Sherman Park,

Indianapolis, IN

Project no. 1940103494
Document type Final Report
Date January 17, 2024

Prepared by **Desmond Weber – Ramboll**

Checked by Chase Forman, Paul Hare - Ramboll

CONTENTS

1.	Introduction	1
2.	Summary of Work Plan and Schedules	4
2.1	Work Plan Summary	4
2.2	Site Development and Initial Schedule	4
2.3	Work Plan and Schedule Modifications	5
3.	Additional Injection Well Installation Activities	6
3.1	Injection Well Installation Efforts	6
3.2	Deviations from Work Plan	6
3.3	Investigation-Derived Waste	6
4.	Summary of Supplemental Injection Activities	8
4.1	Supplemental Injections Completed in 2022	8
4.1.1	Modifications from Work Plan	8
4.2	Supplemental Injections Completed in 2023	9
4.2.1	Modifications from Work Plan	10
4.3	Spoiled Product and Disposal	11
5.	Completion Summary	12

LIST OF TABLES

Table 1 – Summary of Supplemental Amendment Injection Efforts

LIST OF FIGURES

Figure 1 – Site Location Map

Figure 2 – Site Layout

Figure 3 - Injection Well Locations

LIST OF APPENDICES

Appendix A – Photographic Log

1. INTRODUCTION

Ramboll has prepared this Supplemental Amendment Injection Summary Report (the "Report") in order to summarize the supplemental amendment injection activities performed between October 2022 and April 2023 for the Sherman Park Facility (also known as the Former Indianapolis Consumer Electronics [CE] Plant) (hereafter the "Site") located at 604 North Sherman Drive in Indianapolis, Marion County, Indiana (**Figure 1**). The Site is approximately 50 acres and is currently owned by the City of Indianapolis (the "City") and is zoned "C-S", which designates Customized Commercial Mixed-Use. The Site is in a mixed-use setting that includes areas of industrial, commercial, and residential land use, and is generally bounded by North Sherman Drive to the east, East Michigan Street to the south, LaSalle Street and Tuxedo Street to the west, and 9th Street, St. Clair Street, and North Street to the north.

As noted in prior documentation, including the most recently submitted 2022 Annual Progress Report (APR), chlorinated volatile organic compounds (CVOCs) are present in groundwater in the upper water-bearing unit (UWBU) near the west side of the former main building as a result of the former use of chemicals near the former Chemical Storage Building (CSB), the former Solvent Tank Area (STA), the former Metal Plating Area (MPA) and the former 1,1,1-Trichloroethane Still Area (TSA). The CSB, STA, MPA and TSA are each collectively referred to as the "on-site source areas" and are shown on **Figure 2**.

On November 12, 2003, GE entered into a Voluntary Remediation Agreement (VRA) with the Indiana Department of Environmental Management (IDEM) under IDEM's Voluntary Remediation Program (VRP) and was assigned Site #6020801. Since 2003, there have been a significant number of environmental investigations performed at the Site to characterize the geologic/hydrogeologic conditions at the Site, define the nature and extent of various contaminants of concern (COCs) and evaluate potential remedial options. The investigations identified several CVOCs as the COCs, primarily trichloroethene (TCE) and 1,1,1-trichloroethane (TCA) and their degradation products (i.e., cis-1,2-dichloroethene [cDCE], 1,1-dichloroethene [11DCE], 1,1-dichloroethane [11DCA], vinyl chloride [VC] and chloroethane [CA]).

GE submitted a Remediation Work Plan (RWP) to IDEM on May 17, 2010 in accordance with the requirements specified in Section VII of the VRA. IDEM approved the RWP on August 12, 2010, after which GE began implementing the remedial activities and monitoring specified in the RWP.

A high-level summary of the investigation and remediation activities completed at the Site since approval of the RWP include:

- Baseline Groundwater Monitoring
 - Pre-injection (baseline) groundwater monitoring was completed between 2009 and 2010 (during preparation of the RWP).
- Cap Installation (November 13 to 22, 2010)
 - An asphalt cap was installed as an engineering control adjacent to the west side of the main building.
- Injection Well Installation (January 10 to February 20, 2011)

- 58 dual-screened injection wells (total of 116 well screens) were installed in and around the on-site source areas.
- First Round of Bioenhancement Injections (May 19 to June 20, 2011)
 - A total of 601,675 gallons of dilute emulsified vegetable oil (EVO) solution containing 91,500 pounds (lbs) of EVO was injected into 116 injection well screens as a carbon substrate to support biological growth and the reductive dechlorination of TCE and TCA in groundwater.
- Bioaugmentation Injections (August 15-18, 2011)
 - 72.6 liters of a bacteria culture specially adapted to high TCA concentrations was added to 22 injection locations in the area with the highest TCA concentrations.
 - 154.8 liters of KB-1® bacteria culture was added to 43 injection locations in the remaining areas.
- Performance Groundwater Monitoring
 - Post-injection (performance) groundwater monitoring was completed between 2011 and 2013.
- Supplemental Injection Well Installation (May 13 to 17, 2013)
 - Ten supplemental dual-screened injection wells (IW-566 to IW-575) were installed to allow carbon substrate injection at additional locations where persistent CVOCs remained in groundwater.
 - In addition, a groundwater extraction well was installed to provide makeup and chase water for the injections.
- Second Round of Bioenhancement Injections (July 17 to August 6, 2013)
 - A total of 706,715 gallons of dilute EVO solution containing 101,997 lbs of EVO was injected into 148 injection well screens as a carbon substrate to support biological growth and the reductive dechlorination of TCE and TCA in groundwater.
- Performance Groundwater Monitoring
 - Additional post-injection (performance) groundwater monitoring was completed between 2013 and 2015.
- Supplemental Injection Well Installation (August 17 to 19, 2015)
 - Seven supplemental dual-screened injection wells (IW-576 to IW-582) were installed to allow carbon substrate injection at additional locations where persistent CVOCs remained in groundwater.

- Third Round of Bioenhancement Injections (September 17 to October 6, 2015)
 - A total of 624,100 gallons of dilute EVO solution containing 88,213 lbs of EVO was injected into 128 injection well screens as a carbon substrate to support biological growth and the reductive dechlorination of TCE and TCA in groundwater.
- Performance Groundwater Monitoring
 - Additional post-injection (performance) groundwater monitoring was completed between 2015 and 2017.
- Limited Bioenhancement Injections (September 20 and 21, 2017)
 - Supplemental bioremediation injections proximal to monitoring wells MW-401,
 MW-402 and MW-404 were completed in accordance with a work plan dated July 26, 2017 (which was approved by IDEM in an email dated August 1, 2017).
- Methane Assessment (November 7 to 9, 2017)
 - A methane assessment was performed along the Michigan Street property line in accordance with a work plan dated August 2, 2017 (approved by IDEM in an email dated October 27, 2017).
- Performance Groundwater Monitoring
 - Additional post-injection (performance) groundwater monitoring was completed between 2018 and 2021.

Additional bioenhancement activities were completed on the property to address much of the remaining CVOC concentrations above IDEM's Risk-Based Closure Guide Screening Levels in the UWBU. This report documents those additional activities that were performed between October 2022 and April 2023. Please note that photographs taken throughout the implementation of these supplemental activities are provided in **Appendix A**.

2. SUMMARY OF WORK PLAN AND SCHEDULES

2.1 Work Plan Summary

The primary purpose of the supplemental injections is to treat CVOCs in isolated areas at the Site where evidence of rebound of one or more CVOCs has been observed. Ramboll prepared a Supplemental Amendment Injection Work Plan (Work Plan) for the Site in August 2022. The Work Plan was approved by IDEM on August 30, 2022. Because the Work Plan involved the injection of amendments in several additional locations, Ramboll also submitted an updated Inventory of Injection Wells form to the United States Environmental Protection Agency (USEPA) and IDEM on August 18, 2022, which was 30 days or more in advance of the drilling/injections, as required by the Underground Injection Control (UIC) regulations.

The Work Plan utilized the existing injection well infrastructure in targeted areas, as well as installation of 30 additional injection wells (some of which had double well screens) in areas of the Site where previous injections had not been performed and where elevated CVOC concentrations existed based on recent results. The injection scope also took into consideration the planned re-development of portions of the subject property by the City of Indianapolis, which is expected to result in the required decommissioning of numerous monitoring and injection wells.

The following summarizes the total quantities of the amendment mixture included in the approved Work Plan:

- 10,890 gallons (88,209 lbs) of 60% EVO concentrate
- 423.5 gallons (4,659 lbs) of 60% sodium lactate solution
- 442 lbs of diammonium phosphate (DAP) (0.5% by weight of EVO concentrate)
- Vitamin B12 solution (as specified by the EVO manufacturer)

The Work Plan also included the separate/subsequent injection of a buffer mixture. The following summarizes the total quantities of the buffer mixture included in the approved Work Plan:

- 24,200 lbs of potassium bicarbonate
- 290,400 gallons of Site groundwater

Overall, a total of 121 well screens were proposed for injection, each of which were to receive the following breakdown of amendments in the following sequence:

Amendment mixture: 2,400 gal
Chase water #1: 100 gal
Buffer mixture: 2,400 gal
Chase water #2: 100 gal

2.2 Site Development and Initial Schedule

The Site is currently owned by the City, and the City established a conceptual plan to redevelop the southern portion of Site (currently known as "Parcel D") into the City's new Animal Control Shelter. Some of the existing infrastructure (i.e., monitoring wells, injection wells) would likely need to be decommissioned or modified to support the redevelopment. Therefore, GE preferred to implement a supplemental injection event before the redevelopment activities begin. As stated within the work plan, the tentative schedule was:

• August 2022:

- Prepare and submit an updated Inventory of Injection Wells form to USEPA.
- Procure and schedule delivery of the components of the amendment and buffer mixtures.
- Procure and schedule the drilling/injection subcontractor.
- September 2022 (estimated duration three weeks):
 - o Mark and clear utilities at the new injection well locations
 - Utilize sonic drilling rig to install 30 injection wells (some of which were dual screened)
- October and November 2022 (estimated eight weeks):
 - Onsite preparation of the amendment mixture and buffer mixture and injection of these mixtures (with chase water after each) into the existing injection wells and the newly installed injection points.
- January 2023:
 - Perform the first post-injection groundwater monitoring event, which will coincide with the first quarterly O&M event.
- March 2023:
 - Submittal of the 2022 APR to IDEM, which will summarize the groundwater performance monitoring activities and results as well as the supplemental injection activities.

2.3 Work Plan and Schedule Modifications

Due to scheduling delays, the additional temporary well injection points were installed between September 26 and October 26, 2022. As such, amendment materials were not delivered to the site until the middle of October 2022 to give the drillers enough time to finish their work prior to the commencement of injections. As described in later sections of the report, other delays occurred that were related to a lack of a viable groundwater source, equipment issues, poor weather, and buffer amendment mixing issues. This ultimately caused the injection event to only be partially completed in 2022 (~60%), with completion of the work in April 2023.

3. ADDITIONAL INJECTION WELL INSTALLATION ACTIVITIES

3.1 Injection Well Installation Efforts

In order to support the supplemental injection efforts and to facilitate the injection of the amendment materials in areas without existing injection well infrastructure, 30 new injection wells (IW-601 through IW-630) were installed at strategic locations. The new injection well locations were installed around the perimeter of the existing injection well network and near existing monitoring wells that have exhibited persistent or recently increasing concentrations of CVOCs, as shown on **Figure 3**. RockWater Drilling Company (RockWater) was contracted for the work, which took place from September 26 to October 26, 2022.

The new wells were installed using a sonic drilling rig to drill to the targeted depth, as specified in the approved Work Plan. The well casings (some of which were dual-screened) were then placed into the borehole inside of the drilling casings. Filter sand was then slowly added into the annular space between the well casing and drilling rods while the rig was subsequently pulling the rods from the ground. At each single-screen injection well location, sand was added to a depth of one foot above the top of the well screen. At each dual-screen injection well location, bentonite pellets were placed in between the two screens (generally a 3- to 4-feet thick layer) before the placement of additional sand pack around the annular space of the upper screen. A 2-feet thick layer of bentonite pellets was then placed above the top of the upper injection well screen and hydrated. Cement bentonite grout was then added via tremie pipe (to fill the grout from the bottom up) to approximately 1 foot below ground surface. The new injection wells were capped with an expandable J-plug upon completion. At each location, the top 6 to 10 inches of the injection well boreholes were cored by RockWater, or their subcontractor, based on the placement of the wells within concrete or asphalt. The coring was performed in order to facilitate installation of concrete-encased flushmount lids.

3.2 Deviations from Work Plan

Little to no deviations from the Work Plan occurred regarding the additional injection well installation efforts, aside from the project schedule. The initial work plan indicated that drilling efforts would occur over a 2-3 business week period during September 2022. Rockwater had multiple drill rig maintenance issues that caused significant delays. Additionally, to facilitate completion of the wells with flushmount protective covers, Rockwater utilized a subcontractor to perform the coring of concrete and asphalt at the locations of new wells where they were completed through hard surfaces. Based on their scheduling and availability, this affected the ability to complete the new injection wells prior to the initiation of the supplemental injection efforts, though the injection efforts were not affected by the drilling as the final wells installed were hundreds of feet to the southwest of the areas of initial injection.

3.3 Investigation-Derived Waste

During the drilling and installation of the new injection wells, the soil cuttings and recovered groundwater (including decontamination fluids) were collected and containerized in 55-gallon open-top steel drums which were staged on the property pending off-site disposal. As part of

waste characterization efforts, Ramboll collected both grab and composite samples from the drums for analysis of VOCs and Toxicity Characteristic Leaching Procedure (TCLP) metals in order to create a new waste profile. Solid IDM (e.g., personal protective equipment [PPE] and debris [plastic sheeting, paper towels, etc.]) was placed in garbage bags and disposed of off-site as municipal solid waste.

A total of 38 drums were generated as part of the drilling process. The drums remained onsite through the winter until the new waste profile was generated and approved and the disposal firm (US Ecology) could arrange for pickup. The drums were staged together in an area in the north central portion of the site just east of the MW-311 (IW-604 through IW-609) location. US Ecology removed the drums from the site permanently on April 4, 2023, under a signed manifest.

4. SUMMARY OF SUPPLEMENTAL INJECTION ACTIVITIES

4.1 Supplemental Injections Completed in 2022

Ramboll contracted with Cascade Remediation Services (Cascade) to implement the supplemental amendment injection activities in accordance with the approved Work Plan. As mentioned prior, a total of 121 injection screens were targeted in the approved Work Plan, with 43 existing injection well locations inside the prior treatment area and 30 new locations generally outside or along the periphery of the prior treatment area. During the 2022 amendment injection efforts, Ramboll and Cascade were able to complete the injections in 86 of the 121 proposed injection screens. This equated to one or more well screens in 33 of the 43 prior locations and in 18 of the 30 new locations. There were a few screens where only the EVO material was injected but the buffer solution could not be injected, as shown on the table in **Appendix B**. Overall, a total of 355,520 gallons of amendments were injected during 2022.

4.1.1 Modifications from Work Plan

During the supplemental amendment injection activities in 2022, several issues were encountered which required modifications to the methods described in the approved Work Plan. The first modification involved the use of extracted groundwater for the makeup and chase water. Consistent with the prior injections, the Work Plan called for the use of extracted groundwater from the same UWBU in the area of the property. However, when the supplemental injection activities began in October 2022, there was not enough UWBU groundwater (the same hydrogeologic zone as the injections) to efficiently perform the injections.¹ Given the lack of a viable groundwater source, Ramboll and Cascade initially decided to rent a 21,000-gallon temporary storage tank (e.g. frac tank) and utilized a delivered, clean water source based out of Lebanon, Indiana² to supplement and intended to use a mixture of groundwater and delivered water. After 1-2 days of attempting to use a mixture of sources, the decision was made to bring a second frac tank onsite and switch to the exclusive use of supplied water for the injections.

An additional modification to the approved injection plan was the need to mix the sodium lactate stock solution in with the potassium bicarbonate buffer rather than with the EVO material. As stated within the approved Work Plan, the original intention was to mix the lactate in with the EVO, however, Ramboll was informed by the EVO supplier that this mixing would lead to separation of the EVO, decreasing the effectiveness of the amendment treatment. This deviation in mixing strategies from the approved work plan is not expected to affect the overall remedial action. As discussed below, the lower air temperatures experienced during the final weeks of injection efforts in December resulted in a lowered solubility of the potassium bicarbonate buffer solution in water. As such, a further modification was made in that the stock potassium bicarbonate solution was directly injected into the wells followed by clean chase water. This modification was made to resolve an issue with the accumulation of a solid precipitate. Overall, five cycles of alternating bicarbonate stock and chase water were injected into each well screen (i.e., 30 gallons of stock solution followed by ~450 gallons of chase water per cycle)

¹ In most circumstances, the groundwater extraction caused the well(s) to go dry or the pumping rate(s) declined significantly, severely limiting the ability to efficiently perform the supplemental injection activities. The drought conditions during Summer and early Fall 2022 likely contributed to the difficulty getting sufficient groundwater for use as makeup and chase water.

² This source is approved and licensed for water distribution services.

A significant challenge for the injection process was the approach of winter weather conditions. Overnight temperatures below freezing in November 2022, and day-time and overnight temperatures below freezing in December 2022 posed additional challenged for water management. To complete as much of the additional injection activities as feasible, Ramboll and Cascade equipped the stock tanks, mixing vessels, and other large water containers with immersible heaters and recirculation pumps; however, not all of the equipment could be similarly protected. As discussed above, the lower air temperatures also resulted in a lowered solubility of the potassium bicarbonate buffer solution in water. As a result of the lowered temperatures and the formation of a precipitate material within the hosing and flow meters, the above-mentioned stock solution modification was made, which resolved the issue with the accumulating solids.

Given the slow progress and lack of efficiency with the cold weather, the decision was made to shut down the injection activities until Spring 2023; the last injections were performed on December 20, 2022. After stopping the injection activities, Cascade transferred the remaining amendments to its local shop in Indianapolis for indoor storage over the winter months. The EVO totes and plastic drums of sodium lactate were stored within a heated building to avoid freezing (which would have broken the emulsion). The pallets of potassium bicarbonate were also transferred to Cascade's local shop. The two large frac tanks were emptied and returned to the supplier. The remainder of the equipment was either returned to equipment vendors or was staged in Cascade's local shop.

It is worth noting that Ramboll and Cascade were performing the supplemental injection activities while some re-development activities were occurring at the Site by the City of Indianapolis' contractor(s). Between August and December 2022, fill material that had been placed on the eastern portion of the Site (referred to as "Taupe Mountain" by the City of Indianapolis) was removed via excavators and dump trucks. Given the need for the trucks to pass through the area of injections, these re-development activities caused some additional delays and mechanical issues (broken hoses and wellheads). In addition, equipment such as generators were stolen from the Site during the night on several occasions. This also caused additional delays as that equipment had to be replaced. Daytime safety delays also occurred due to varying types of criminal activity.

4.2 Supplemental Injections Completed in 2023

Once the winter weather had moved out, Ramboll and Cascade remobilized to the site to complete the supplemental amendment injection activities. As mentioned previously, Ramboll and Cascade were able to complete the injection process in 86 of the 121 planned injection screens in 2022. Note that at some of the locations, only the EVO material was able to be injected prior to the winter shutdown. As such, those well screens were targeted first in order to complete the buffer and chase water injections at those locations. The additional injection efforts occurred between April 3 and April 28, 2023. At project completion, a total of 592,908 gallons of product, buffer solution and chase water had been injected into the ground.

4.2.1 Modifications from Work Plan

Similar to the first round of injection efforts in 2022, there were several challenges to overcome in this second phase of injections. First, Ramboll was forced to make some substitutions to the planned, targeting injections for the previously existing wells due to clogged and/or damaged well screens, improper installation, missing wells, or other unknown reasons. Second, the safety and security of the site itself were frequently an issue and presented challenges that caused delays of varying lengths.

Given the cold weather and departure of the injection crew in December, some of the well screens had received only EVO (full or partial dose). This lack of injected chase water during the 2022 injection efforts resulted in the EVO product bonding directly to the soils around the well casings and reduced much of the pore space in the soils surrounding the well screens. As such, during the completion of the injections in Spring 2023, this thickening of the material increased the pressure needed to push the EVO outward from the screen and into the radius-of-influence, and frequently caused the flexible fittings at the surface of the wells to pop off the well stems. This resulted in a lower-than-anticipated flow rate being used for injections at several locations during the Spring injections. At some locations a non-VOC glue was used to affix the wellhead to the top of the well screen which did improve the injection efforts; although care had to be taken not to over-pressurize the individual wells to avoid amendment products daylighting to the surface. On several occasions during the Spring injections, the PVC used to construct the injection equipment became more brittle in storage, leading to several breakages in essential parts and causing multiple-hour delays in production.

Some of the targeted injection wells were simply too damaged and had to be replaced with nearby locations in hopes of targeting remediation near the intended areas. Those wells are summarized below:

- IW-605 (newly installed well)
 - This well was found to be filled with bentonite grout (presumably due to a failed fitting or cracked PVC casing) and could not be used; therefore, the product intended for IW-605 was injected into IW-604 (IW-604 received a double volume of amendment).
- IW-570 (previously existing well)
 - This well was found to be full of dirt and debris and could not be used for injections; IW-521 was chosen to replace IW-570 but during the 2023 injection efforts IW-521 would not stop daylighting (it would not accept any additional material) around the well stem and surrounding concrete. It was subsequently replaced with the nearby IW-522.
- IW-566 (previously existing well)
 - This well could not be located in 2022 and due to the lack of existing infrastructure in the area, it was replaced with existing monitoring well W-2. Given the single screen construction (as opposed to the due-screen setup of IW-566), a full round (which would have included two screen's worth) of EVO and buffer solution amendments was not able to be injected. The stick up well was modified via cutting down close to ground level to facilitate injections. In order to add an additional round of amendments into the ground in the area, an additional round of amendment was injected into nearby IW-565 as well (shallow screen only).

- IW-525 (previously existing well)
 - This injection well could not be located as it was covered by compacted aggregate base materials laid down as part of the ramp leading up onto the slab by contractors associated with the city's removal of the soils of "Taupe Mountain." This injection well was replaced by nearby IW-524.
- IW-539 (previously existing well)
 - This injection well did not allow for the infiltration of the amendments and was very slow to accept materials (0.2 gallons-per-minute or less). Given the importance of the EVO materials, the full volume of EVO was injected, but only a partial volume of bicarbonate was injected.
- IW-575 (previously existing well)
 - This injection well was only partially completed with EVO given that the amount of this material ran short. Unfortunately, a few of the injection wells on the project were slightly overdosed (including IW-518, IW-528, IW-535, IW-567, IW-616 and IW-618) such that only a partial volume of material could be injected at this location.

In addition to the challenges associated with the work itself, several other environmental factors caused delays during the 2023 injection activities. The weather, while generally staying above freezing, was volatile—particularly on April 5th, 2023, when there was a tornado warning issued for the area encompassing the site from 10am to 5pm and the crew lost the majority of the day for safety concerns. Other activities impeded progress, though they were considered relatively minor, including small fires in the adjacent woods, a transformer explosion near the project site and some vehicular traffic which drove over hosing and caused some minor damage and delays.

4.3 Spoiled Product and Disposal

An unexpected but significant challenge in the injection process was sourcing the amendment mixtures. The initial supply of 60% EVO delivered to the site in Fall 2022 was delayed in customs for weeks longer than anticipated, resulting in the material sitting for several weeks in the Port of Houston, Texas. This caused several totes of the initial shipment of EVO to separate and deemulsify, creating a layer of separated oil at the top. As such, Ramboll reached out to the supplier for replacement product. Replacement product was able to be supplied, but that left several totes of spoiled and separated product on the site, which were properly disposed of by a local oil recycler (Liquid Waste Disposal) on December 21, 2022. Due to a shortage of the 60% EVO, some of the replacement material was provided at a 55% strength instead of 60%. The Vitamin B12 and Diammonium Phosphate (DAP) were also provided separately and mixed into the totes of 55% EVO. This is not anticipated to result in changes to the remediation or effectiveness of the remedy. The 55% EVO was diluted with slightly less water such that the strength of the EVO was the same as part of injections.

While in storage at Cascade's Indianapolis shop over the winter, seven of the eight totes of the 55% EVO separated. During the first week of April, the chemical supplier arranged to pick these totes up and replace them with the same number of 55% totes from a different batch. Each of these replacement totes (along with the original supply of 60% EVO that went unused following the 2022 injection efforts) stayed in emulsion until project completion.

5. COMPLETION SUMMARY

Based on elevated CVOC concentrations in groundwater within the UWBU in areas of the western portion of the former main building and beneath the asphalt cap area to the west of said building, Ramboll prepared a Supplemental Amendment Injection Work Plan for the Site in August 2022. The work was to involve 121 existing and new injection well screens being injected with two different amendment products; a 60% fortified EVO product and a bicarbonate and sodium lactate buffer solution designed to encourage anaerobic activity to promote dechlorination and the reduction of CVOCs without lowering the pH of the groundwater. Between the chemical amendments and the water sources mixed with them, a total of 605,000 gallons of amendment materials were to be injected into the target screens between September and December of 2022.

Though the work was ultimately completed, several complications occurred throughout the project and ultimately led to the delay in the commencement of the project (to October 2022) and the shutdown of the project in December 2022 with a restart for completion in April 2023. As discussed prior, the complications at the site ranged from crime/theft of equipment, a poorly producing groundwater zone, damaged wells, and very cold weather; all of which severely inhibited production. Many of these items contributed to the decision to suspend injection activities on December 21, 2022 and continue them in April 2023. The work was ultimately completed following remobilization on April 28, 2023.

Overall, a total of 592,700 gallons of amendments were injected into 121 well screens. Of that, 11,309 gallons were EVO and the remaining 581,391 gallons consisted of sodium lactate (total of 301 gallons) and potassium bicarbonate buffer solution (24,278 pounds). The water sources used for mixing the lactate and bicarbonate were a mixture of extracted groundwater and imported clean water from a commercial water supplier. Each of the intended well screens identified within the approved Work Plan received their targeted volume of amendment mixtures, with the exceptions of IW-539 (which was missing part of the dosage of sodium lactate bicarbonate buffer) and IW-575 (which only received half the allotted amount of EVO).

In July 2023, Ramboll performed a full round of quarterly groundwater sampling to begin gathering data to evaluate the initial efficacy of these supplemental injection efforts. It is also expected that the City of Indianapolis could proceed with the redevelopment efforts at the site at any time, continuing the ongoing construction of the recycling facility and beginning the removal of concrete slabs across what is identified as "Parcel D." It is expected that many of the existing monitoring wells will need to be decommissioned as part of the process and that new, strategically placed monitoring well locations will be needed (which will require redrilling and redevelopment) for continued monitoring in the future.

TABLES

Table 1 - Summary of Supplemental Injection Efforts

Former Indianapolis CE Plant (Sherman Park), Indianapolis, Indiana

IW#	Screen	Status	EVO (gals)	Mix Water (gals)	EVO Completion Date	Sodium Lactate (gals)	Potassium Bicarbonate (lbs)	Mix Water (gals)	Bicarbonate Completion Date	Chase Water* (gals)	Notes
501	Upper	Complete	90	2309.96	10/25/2022	2.48	200	2246.25	11/21/2022	255	
501	Lower	Complete	90	2309.99	10/25/2022	2.48	200	2246.25	11/21/2022	255	
518	Upper	Complete	90.06	2311.61	12/12/2022	2.48	200.04	2246.67	12/16/2022	255	
518	Lower	Complete	141.22	1814.03	4/19/2023	2.18	175.58	1972.02	4/27/2023	255	
519	Upper	Complete	90.01	2310.29	4/6/2023	2.48	200.03	2246.6	4/14/2023	255	
519	Lower	Complete	90.01	2310.29	4/6/2023	2.48	200.07	2247.05	4/14/2023	255	
520	Upper	Complete	64.33	1651.17	12/20/2022	2.48	200.05	2246.85	4/14/2023	255	IW-520 Upper was broken and could not be utilized; lower screen was injected at double volume
520	Lower	Complete	115.7	2969.54	4/6/2023	2.48	200	2246.25	4/28/2023	255	·
525	Single	Complete	100.46	2414.46	4/24/2023	2.48	200	2246.25	4/26/2023	255	IW- 525 located beneath building slab access ramp;
525	Lower	Complete	97.56	2348.4	4/24/2023	2.48	200	2246.25	4/26/2023	255	replaced with IW-524
526	Single	Complete	90	2309.95	12/2/2022	2.48	200	2246.2	12/6/2022	255	
526	Lower	Complete	98.2	2301.8	4/24/2023	2.48	200	2246.2	4/26/2023	255	
527	Single	Complete	90	2309.96	12/2/2022	2.48	200.02	2246.42	12/6/2022	255	
527	Lower	Complete	90	2310	4/13/2023	2.48	200	2246.25	4/18/2023	255	
528	Upper	Complete	118.35	3037.7	11/1/2022	2.48	200.06	2246.91	11/21/2022	255	
528 529	Lower	Complete	90	2309.98	11/1/2022	2.48	200	2246.25	11/21/2022	255	
529	Upper	Complete Complete	90.16	2314.2	11/5/2022	3.66	295.25	2247.75 3316.03	11/16/2022	255 255	Lower screen inaccessible, double product on upper
530	Upper	Complete	90	2309.97	12/2/2022	2.48	200.05	2246.78	12/6/2022	255	screen
530	Lower	Complete	90	2310	12/2/2022	2.48	200.05	2246.79	12/6/2022	255	
531	Upper	Complete	90	2310.04	12/2/2022	2.48	200.1	2247.4	12/6/2022	255	
531	Lower	Complete	90	2310.04	12/2/2022	2.48	200.05	2246.83	12/6/2022	255	
532	Upper	Complete	90.05	2311.35	12/17/2022	2.48	200	2246.25	12/20/2022	255	
532	Lower	Complete	90.06	2311.44	12/17/2022	2.48	200	2246.25	12/20/2022	255	
535	Upper	Complete	90	2310.02	11/1/2022	2.48	200	2246.25	11/21/2022	255	
535	Lower	Complete	104.62	2685.35	11/1/2022	2.48	200	2246.25	11/21/2022	255	
536	Upper	Complete	90.35	2319.04	11/5/2022	2.48	200.01	2246.34	11/16/2022	255	
536	Lower	Complete	90	2309.98	11/6/2022	2.48	200.04	2246.72	11/16/2022	255	
537	Upper	Complete	93.61	2402.78	11/6/2022	2.48	200.08	2247.09	11/16/2022	255	
537	Lower	Complete	90.15	2313.87	11/5/2022	2.48	200.03	2246.63	11/16/2022	255	
538	Single	Complete	90	2310.01	12/2/2022	2.48	200.01	2246.34	12/6/2022	255	
538	Lower	Complete	90	2310	4/13/2023	2.48	200	2246.25	4/18/2023	255	
539	Single	Complete	90.01	2310.19	12/16/2022	2.48	200	2246.25	4/18/2023	255	
539	Lower	Complete	34.83	893.87	4/13/2023	2.48	200	2246.25	4/28/2023	255	Very tight formation causing a low flow rate, did not complete second round of EVO
540	Single	Complete	90	2310	11/1/2022	2.48	200.05	2246.81	11/16/2022	255	
540	Lower	Incomplete	90	2310	11/1/2022	2.48	200.1	2246.8	11/16/2022	255	
544	Upper	Complete	98.2	2301.8	4/22/2023	2.48	200	2246.25	4/25/2023	255	
544	Lower	Complete	98.2	2301.8	4/22/2023	2.48	200	2246.25	4/25/2023	255	
545	Upper	Complete	98.2	2301.8	4/27/2023	2.48	200	2246.25	4/28/2023	255	
545	Lower	Complete	98.2	2301.8	4/27/2023	2.48	200	2246.25	4/28/2023	255	
546	Upper	Complete	90	2310	4/13/2023	2.48	200	2246.25	4/18/2023	255	

Table 1 - Summary of Supplemental Injection Efforts

Former Indianapolis CE Plant (Sherman Park), Indianapolis, Indiana

IW#	Screen	Status	EVO (gals)	Mix Water (gals)	EVO Completion Date	Sodium Lactate (gals)	Potassium Bicarbonate (lbs)	Mix Water (gals)	Bicarbonate Completion Date	Chase Water* (gals)	Notes
546	Lower	Complete	90	2310	4/13/2023	2.48	200	2246.25	4/18/2023	255	
547	Upper	Complete	90	2309.95	11/1/2022	2.48	200	2246.25	11/21/2022	255	
547	Lower	Complete	90	2309.97	11/1/2022	2.48	200	2246.25	11/21/2022	255	
548	Upper	Complete	90.01	2310.29	12/17/2022	2.48	200	2246.25	11/20/2022	255	
548	Lower	Complete	90	2310	12/17/2022	2.48	200	2246.25	12/20/2022	255	
549	Upper	Complete	90	2310	12/17/2022	2.48	200	2246.25	12/20/2022	255	
549	Lower	Complete	90.02	2310.48	12/17/2022	2.48	200	2246.25	12/20/2022	255	
551	Upper	Complete	98.2	2301.8	4/22/2023	2.48	200	2246.25	4/25/2023	255	
551	Lower	Complete	98.2	2301.8 2301.8	4/22/2023	2.48	200	2246.25	4/25/2023	255 255	
553 553	Upper	Complete	98.2 98.2	2301.8	4/22/2023 4/22/2023	2.48	200	2246.25 2246.25	4/25/2023 4/25/2023	255	
554	Lower Upper	Complete Complete	98.2	2301.8	4/27/2023	2.48	200	2246.25	4/28/2023	255	
554	Lower	Complete	98.2	2301.8	4/27/2023	2.48	200	2246.25	4/28/2023	255	
555	Upper	Complete	98.2	2301.8	4/27/2023	2.48	200	2246.25	4/28/2023	255	
555	Lower	Complete	98.2	2301.8	4/27/2023	2.48	200	2246.25	4/28/2023	255	
556	Upper	Complete	98.2	2301.8	4/27/2023	2.48	200	2246.25	4/28/2023	255	
556	Lower	Complete	98.2	2301.8	4/27/2023	2.48	200	2246.25	4/28/2023	255	
557	Upper	Complete	90.01	2310.29	12/17/2022	2.48	200	2246.25	11/20/2022	255	
557	Lower	Complete	90.03	2310.87	12/17/2022	2.48	200	2246.25	12/20/2022	255	
566	Upper	Complete	90	2310	12/1/2022	2.48	200	2246.25	12/3/2022	255	Replaced with monitoring well W-2
566	Lower	Complete	99.19	2371.58	4/24/2023	2.48	200.04	2246.64	4/26/2023	255	Replaced with IW-565
567	Upper	Complete	90.18	2314.72	10/25/2022	2.48	200	2246.27	11/17/2022	255	
567	Lower	Complete	135.08	1936.96	4/19/2023	2.48	200	2246.25	4/28/2023	255	
570	Upper	Complete	90	2310.03	4/6/2023	2.48	200.05	2246.85	4/14/2023	255	
570	Lower	Complete	98.2	2301.76	4/24/2023	2.48	200	2246.23	4/26/2023	255	Well full of dirt, replaced with IW-521. IW-521 damaged, replaced with IW-522
571	Upper	Complete	90	2309.99	12/2/2022	2.48	200.04	2246.67	12/6/2022	255	
571	Lower	Complete	90	2310	4/13/2023	2.48	200	2246.25	4/18/2023	255	
572	Upper	Complete	90.02	2310.48	12/17/2022	2.48	200	2246.25	4/18/2023	255	
572	Lower	Complete	90	2310	4/13/2023	2.48	200	2246.25	4/28/2023	255	
575	Upper	Complete	90	2310	11/1/2022	2.48	200	2246.25	11/21/2022	255	
575	Lower	Complete	90	2310	11/1/2022	2.48	200	2246.25	4/28/2023	255	
576	Single	Complete	91.09	2337.97	4/6/2023	2.48	200.01	2246.34	4/14/2023	255	
577	Single	Complete	90	2310.01	4/6/2023	2.48	200.05	2246.76	4/14/2023	255	
578	Single	Complete	90	2310	12/2/2022	2.48	200	2246.2	12/6/2022	255	
579	Single	Complete	92.11	2364.28	11/6/2022	2.48	200.05	2246.81	11/16/2022	255	
580	Single	Complete	92.24	2367.37	11/6/2022	2.48	200.06	2246.91	11/16/2022	255	
581	Single	Complete	90	2310	11/1/2022	2.48	200	2246.25	11/21/2022	255	
582	Single	Complete	90.81	2330.7	11/6/2022	2.48	200.02	2246.44	11/16/2022	255	
601	Upper	Complete	90	2310.08	11/6/2022	2.48	200	2246.25	11/17/2022	255	
601	Lower	Complete	90	2310	11/6/2022	2.48	200.08	2247.1	11/17/2022	255	
602	Upper	Complete	90	2310.03	11/6/2022		204.92	2301.47	11/17/2022	255	
602	Lower	Complete	90	2309.98 2281.13	11/6/2022 10/25/2022	2.48	200	2246.21 2247.19	11/17/2022 11/21/2022	255 255	
603	Upper Lower	Complete Complete	88.88 90	2281.13	10/25/2022	2.48	200.08	2247.19	11/21/2022	255	
003	Lower	complete	90	2309.99	10/23/2022	2.48	200	2240.23	11/21/2022	255	

Table 1 - Summary of Supplemental Injection Efforts

Former Indianapolis CE Plant (Sherman Park), Indianapolis, Indiana

IW#	Screen	Status	EVO (gals)	Mix Water (gals)	EVO Completion Date	Sodium Lactate (gals)	Potassium Bicarbonate (lbs)	Mix Water (gals)	Bicarbonate Completion Date	Chase Water* (gals)	Notes
604	Single	Complete	90	2310	12/1/2022	2.48	200	2246.25	12/3/2022	255	
605	Single	Complete	92.29	2368.78	4/6/2023	2.48	200.02	2246.45	4/14/2023	255	Well full of mortar (suspect cracked well casing), IW-604 double injected to make up the material
606	Single	Complete	90	2310	12/1/2022	2.48	200	2246.25	12/3/2022	255	
607	Single	Complete	90.02	2310.6	12/13/2022	2.48	200	2246.25	12/16/2022	255	
608	Single	Complete	90	2310	12/1/2022	2.48	200	2246.25	12/3/2022	255	
609	Single	Complete	90	2310.04	12/12/2022	2.48	200.04	2246.69	12/16/2022	255	
610	Upper	Complete	90	2310.08	12/12/2022	2.48	200.03	2246.54	12/16/2022	255	
610	Lower	Complete	90.08	2312.04	12/12/2022	2.48	200.02	2246.48	12/16/2022	255	
611	Upper	Complete	90	2310	12/1/2022	2.48	200	2246.25	12/3/2022	255	Lower screen inaccessible, double product on upper
611	Lower	Complete	90.03	2310.78	12/13/2022	2.48	200.01	2246.37	12/16/2022	255	screen
612	Upper	Complete	90.07	2311.73	12/12/2022	2.48	200.04	2246.69	12/16/2022	255	
612	Lower	Complete	90.11	2312.71	12/12/2022	2.48	200.01	2246.4	12/16/2022	255	
613	Upper	Complete	90	2310	12/1/2022	2.48	200	2246.25	12/3/2022	255	
613	Lower	Complete	90	2310	12/1/2022	2.48	200	2246.25	12/3/2022	255	
614	Upper	Complete	90.03	2310.67	12/12/2022	2.48	200.04	2246.72	12/16/2022	255	
614	Lower	Complete	90.05	2311.29	12/12/2022	2.48	200.04	2246.68	12/16/2022	255	
615	Upper	Complete	90	2310	12/1/2022	2.48	200	2246.25	12/3/2022	255	
615	Lower	Complete	90	2310	12/1/2022	2.48	200	2246.25	12/3/2022	255	
616	Single	Complete	134.21	1946.89	4/19/2023	2.48	200	2246.25	4/27/2023	255	
617	Single	Complete	95.32	1863.9	4/23/2023	2.48	200	2246.29	4/27/2023	255	
618	Single	Complete	155.31	2002.15	4/19/2023	2.48	200	2246.25	4/27/2023	255	
619	Single	Complete	98.2	2301.8	4/22/2023	2.48	200	2246.25	4/25/2023	255	
620	Single	Complete	98.2	2301.8	4/22/2023	2.48	200	2246.25	4/25/2023	255	
621	Single	Complete	98.2	2301.8	4/22/2023	2.48	200	2246.25	4/25/2023	255	
622	Single	Complete	90	2310	4/13/2023	2.48	200	2246.25	4/18/2023	255	
623	Single	Complete	90	2310	4/13/2023	2.48	200	2246.25	4/18/2023	255	
624	Single	Complete	90	2310	4/13/2023	2.48	200	2246.25	4/18/2023	255	
625	Single	Complete	98.2	2301.8	4/27/2023	2.48	200	2246.25	4/28/2023	255	
626	Single	Complete	98.2	2301.8	4/22/2023	2.48	200	2246.25	4/25/2023	255	
627	Single	Complete	98.2	2301.8	4/27/2023	2.48	200	2246.25	4/28/2023	255	
628	Upper	Complete	90	2310.05	11/6/2022	2.48	200	2246.27	11/17/2022	255	
628	Lower	Complete	90	2309.96	11/6/2022	2.49	200.48	2251.61	11/17/2022	255	
629	Upper	Complete	90	2310.01	11/6/2022	2.48	200	2246.26	11/17/2022	255	
629	Lower	Complete	90	2310.01	11/6/2022	2.48	200.01	2246.34	11/17/2022	255	
630	Upper	Complete	90.01	2310.16	4/6/2023	2.48	200.01	2246.4	4/14/2023	255	
630	Lower	Complete	90.24	2316.07	4/6/2023	2.48	200.02	2246.47	4/14/2023	255	

 Subtotals:
 11309.38
 277564.09
 301.03
 24277.97
 272670.98

 Total Volume of Fluids Injected:
 592700.48

30855

^{*} Chase water is estimated based on well averages for EVO and Bicarbonate phases combined, but had not been recorded on a per-well basis during injections.

FIGURES

Site KEY MAP (not to scale)

2,000

Sherman Park Facility 600 N Sherman Dr.

Indianapolis, Indiana

SITE LOCATION SUPPLEMENTAL INJECTION **SUMMARY REPORT**

RAMBOLL AMERICAS ENGINEERING SOLUTIONS, INC. A RAMBOLL COMPANY

Notes

Sampled Semi-Annually

Sampled Annually

* Former Extraction Well

♦ Lower Water-Bearing Unit Monitoring Well Location

- Middle Water-Bearing Unit Monitoring Well Location Soil Management Area
- Upper Water-Bearing Unit Monitoring Well Location Covenant Not To Sue Area (CNTS)
- RWP Source Area

- Environmental Restrictive Covenant Area
- Demolished Building

- Property Boundary

SUPPLEMENTAL INJECTION SUMMARY REPORT

Sherman Park Facility 600 N Sherman Dr. Indianapolis, Indiana

RAMBOLL AMERICAS ENGINEERING SOLUTIONS, INC.

A RAMBOLL COMPANY

2022/2023 Injection Wells for Supplemental Injection Upper Zone Only

▲ 2022/2023 New Injection Point Locations

2022/2023 New Injection Point Locations Upper Zone Only

Lower Water-Bearing Unit Monitoring Well Location

→ Middle Water-Bearing Unit Monitoring Well Location

Upper Water-Bearing Unit Monitoring Well Location

Demolished Building Soil Management Area

Covenant Not To Sue Area (CNTS)

Property Boundary

Sherman Park Facility

600 N Sherman Dr. Indianapolis, Indiana

RAMBOLL AMERICAS ENGINEERING SOLUTIONS, INC.
A RAMBOLL COMPANY

APPENDIX A PHOTOGRAPHIC LOG

PHOTO LOG

Appendix A

Client name
General Electric Company

10/23/2022

Site location Former Indianapolis CE Plant, 604 North Sherman Drive, Indianapolis, IN 46201 Project no. 1940103494

Photo no.

Description

General view of the site from near the ramp toward the RecycleForce building under construction. Note the equipment in the background generally associated with the removal of the stockpiled soils in the eastern portion of the site. Photo faces northeast.

Client name General Electric Company Site location Former Indianapolis CE Plant, 604 North Sherman Drive, Indianapolis, IN 46201 Project no. 1940103494

Photo no. 12/5/2022

2

Description

General view of the site facing east. Most of the fill shown in the background of the photo (constituting "Taupe Mountain") has now been removed.

General Electric Company

10/21/2022

Site location

Former Indianapolis CE Plant, 604 North Sherman Drive, Indianapolis, IN 46201

Project no. 1940103494

Photo no.

3

Description

General view of the site facing south toward East Michigan Street toward residential properties. Several injection wellheads are shown connected via hosing.

Client name General Electric Company

Site location

Former Indianapolis CE Plant, 604 North

Project no. 1940103494

Photo no. 10/17/2022

Description

General photograph showing the drilling and installation of the new injection well IW-617; photo (facing west) shows the sonic drill rig and support truck.

Client name General Electric Company

Site location Former Indianapolis CE Plant, 604 North Project no. 1940103494

Photo no. 5

10/18/2022

Description

General view of the installation of new injection well IW-604.

Client name General Electric Company

Site location Former Indianapolis CE Plant, 604 North Sherman Drive, Indianapolis, IN 46201 Project no. 1940103494

Photo no. 10/23/2022 6

Description

Northwest well cluster (showing IW 604, 605, and 606) in the area of monitoring well MW-311. Photo shows the completion of drilling as the wells are being prepared for pumping of bentonite grout. Photo faces northeast.

General Electric Company

Site location
Former Indianapolis CE Plant, 604 North

Project no. 1940103494

Photo no.

10/21/2022

7

Description

Photo showing delivery of the emulsified vegetable oil (EVO) material.

Client name

General Electric Company

Site location

Former Indianapolis CE Plant, 604 North Sherman Drive, Indianapolis, IN 46201 Project no. 1940103494

Photo no.

10/21/2022

Description

Photo showing several separated totes of EVO material that were returned to the vendor for replacement material.

General Electric Company

Site location

Former Indianapolis CE Plant, 604 North Sherman Drive, Indianapolis, IN 46201 Project no. 1940103494

Photo no. 9 10/21/2022

Description

Photo showing the Crew 1 (south team) injection setup. Photo faces northeast.

Client name

General Electric Company

10/21/2022

Site location
Former Indianapolis CE Plant, 604 North

Project no. 1940103494

Photo no. 10

Description

Photo showing the Crew 2 (north team) injection setup. Photo faces north.

General Electric Company

Site location
Former Indianapolis CE Plant, 604 North

Project no. 1940103494

Photo no.

10/23/2022

11

Description

Example photograph showing minor leakage of supplemental injection amendments due to a leaky valve and over pressurization on an injection well (IW-536 here). Photo faces southwest. Note the material was allowed to evaporate and soak into underlying soils.

Client name General Electric Company

Site location
Former Indianapolis CE Plant, 604 North

Project no. 1940103494

Photo no. 10/21/2022 12

Description

Photo showing a groundwater extraction pump setup on IW-573, leading to an extraction manifold, connected to a bag filter, and then on to water stock tank. Note this was the intended setup of the amendment injection process but due to lower than anticipated extraction rates for groundwater, bulk water was brought onsite and staged in a frac tank later in the project.

General Electric Company

Site location

Former Indianapolis CE Plant, 604 North Sherman Drive, Indianapolis, IN 46201

Project no. 1940103494

Photo no. 13 11/4/2022

Description

Example photograph of a clogged bag filter from the groundwater extraction pumps. The poor quality of the groundwater (debris-filled and an insufficient water extraction) led to replacing water extraction with imported water deliveries.

Client name

General Electric Company

Site location

Former Indianapolis CE Plant, 604 North Sherman Drive, Indianapolis, IN 46201 Project no. 1940103494

Photo no. 11/3/2022 14

Description

Example damage from dirty groundwater and insufficient bag filtering of extracted groundwater on flowmeter parts.

General Electric Company

Site location
Former Indianapolis CE Plant, 604 North

Project no. 1940103494

Photo no.

10/24/2022

15

Description

Photograph showing the delivery of one of two (2) 21,000-gallon water frac tanks for water import deliveries. Photo faces west.

Client name

General Electric Company

Site location

Former Indianapolis CE Plant, 604 North Sherman Drive, Indianapolis, IN 46201 Project no. 1940103494

Photo no. 16 11/4/2022

Description

Photo showing imported water deliveries that were diverted into the frac tanks for injection usage. Photo faces north.

General Electric Company

Site location

Former Indianapolis CE Plant, 604 North Sherman Drive, Indianapolis, IN 46201

Project no. 1940103494

Photo no. 17 11/8/2022

Description

Photograph of bags of powdered potassium bicarbonate and 50-gallon drums of sodium lactate with a hand-operated pump for product extraction. These materials were mixed to form a buffer solution for injection following the EVO injection efforts.

Client name

General Electric Company

Site location

Former Indianapolis CE Plant, 604 North Sherman Drive, Indianapolis, IN 46201 Project no. 1940103494

Photo no. 12/6/2022 18

Description

Photograph showing the new injection well installation spoils drums, sampled and staged in a safe area out of main travel paths across the slab. Drums were removed from the site on April 4, 2023.

General Electric Company

Site location
Former Indianapolis CE Plant, 604 North

Project no. 1940103494

Photo no.

4/20/2023

19

Description

Crew 1 (south side), final setup. Left chemical tote contains potassium bicarbonate sodium lactate mixture, right tote contains EVO. Note the main blue pump at the center of the photograph and the 10-well manifold setup at right.

Client name General Electric Company

Site location Former Indianapolis CE Plant, 604 North

Project no. 1940103494

Photo no. 4/15/2023 20

Description

Crew 2 (north side), final setup. EVO is being transferred from the stock tote (left, on the ground) to the mixing tote (right, on the trailer). Again, note the manifold setup. Minor spillage of EVO was contained and allowed to soak into underlying soils.

APPENDIX C LABORATORY ANALYTICAL REPORTS

APPENDIX C-1
JANUARY/FEBRUARY 2023 GROUNDWATER SAMPLING EVENT

February 09, 2023

Chase Forman Ramboll 8805 Governor's Hill Drive Suite 205 Cincinnati, OH 45249

RE: Project: GE Indy

Pace Project No.: 50336060

Dear Chase Forman:

Enclosed are the analytical results for sample(s) received by the laboratory on January 24, 2023. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

- Pace Analytical Gulf Coast
- Pace Analytical Services Indianapolis

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Heather Patterson heather.patterson@pacelabs.com

Heath Pathson

(317)228-3146 Project Manager

Enclosures

cc: Dana Williams, Ramboll

CERTIFICATIONS

Project: GE Indy
Pace Project No.: 50336060

Pace Analytical Services Indianapolis

7726 Moller Road, Indianapolis, IN 46268

Illinois Accreditation #: 200074

Indiana Drinking Water Laboratory #: C-49-06

Kansas/TNI Certification #: E-10177 Kentucky UST Agency Interest #: 80226

Kentucky WW Laboratory ID #: 98019 Michigan Drinking Water Laboratory #9050

Pace Analytical Gulf Coast

7979 Innovation Park Drive, Baton Rouge, LA 70820

Arkansas Certification #: 88-0655 DoD ELAP Certification #: 6429-01 Florida Certification #: E87854 Illinois Certification #: 004585 Kansas Certification #: E-10354 Louisiana/LELAP Certification #: 01955 North Carolina Certification #: 618 Ohio VAP Certified Laboratory #: CL0065

Oklahoma Laboratory #: 9204 Texas Certification #: T104704355 Wisconsin Laboratory #: 999788130

USDA Foreign Soil Permit #: 525-23-13-23119 USDA Compliance Agreement #: IN-SL-22-001

North Dakota Certification #: R-195 Oklahoma Certification #: 2019-101 South Carolina Certification #: 73006001 Texas Certification #: T104704178-19-11 USDA Soil Permit # P330-19-00209 Virginia Certification #: 460215 Washington Certification #: C929

SAMPLE SUMMARY

Project: GE Indy
Pace Project No.: 50336060

Lab ID	Sample ID	Matrix	Date Collected	Date Received
50336060001	MW-425-012323	Water	01/23/23 13:45	01/24/23 13:45
50336060002	AD-100-012323	Water	01/23/23 12:00	01/24/23 13:45
50336060003	MW-313-012323	Water	01/23/23 15:35	01/24/23 13:45
50336060004	MW-112-012323	Water	01/23/23 15:40	01/24/23 13:45
50336060005	MW-132-012323	Water	01/23/23 16:15	01/24/23 13:45
50336060006	MW-133-012323	Water	01/23/23 16:20	01/24/23 13:45
50336060007	MW-312-012323	Water	01/23/23 17:00	01/24/23 13:45
50336060008	MW-253-012423	Water	01/24/23 09:05	01/24/23 13:45
50336060009	MW-163-012423	Water	01/24/23 09:30	01/24/23 13:45
50336060010	MW-303-012423	Water	01/24/23 09:50	01/24/23 13:45
50336060011	MW-333-012423	Water	01/24/23 10:00	01/24/23 13:45
50336060012	W-11D-012423	Water	01/24/23 10:50	01/24/23 13:45
50336060014	Trip Blank-012423	Water	01/23/23 08:00	01/24/23 13:45

SAMPLE ANALYTE COUNT

Project: GE Indy
Pace Project No.: 50336060

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
50336060001	MW-425-012323	EPA 300.0	ADM	1	PASI-I
		AM20GAX	LMB	7	GCLA
		EPA 6010	MTM	1	PASI-I
		EPA 5030/8260	TMW	75	PASI-I
		EPA 353.2	OAS	1	PASI-I
		SM 5310C	ATS	1	PASI-I
50336060002	AD-100-012323	EPA 5030/8260	TMW	75	PASI-I
50336060003	MW-313-012323	EPA 5030/8260	TMW	75	PASI-I
50336060004	MW-112-012323	EPA 5030/8260	TMW	75	PASI-I
50336060005	MW-132-012323	EPA 5030/8260	TMW	75	PASI-I
50336060006	MW-133-012323	EPA 5030/8260	TMW	75	PASI-I
50336060007	MW-312-012323	EPA 5030/8260	TMW	75	PASI-I
50336060008	MW-253-012423	EPA 5030/8260	TMW	75	PASI-I
50336060009	MW-163-012423	EPA 5030/8260	TMW	75	PASI-I
50336060010	MW-303-012423	EPA 5030/8260	TMW	75	PASI-I
50336060011	MW-333-012423	EPA 5030/8260	TMW	75	PASI-I
50336060012	W-11D-012423	EPA 5030/8260	TMW	75	PASI-I
50336060014	Trip Blank-012423	EPA 5030/8260	TMW	75	PASI-I

GCLA = Pace Analytical Gulf Coast

PASI-I = Pace Analytical Services - Indianapolis

SUMMARY OF DETECTION

Project: GE Indy
Pace Project No.: 50336060

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
0336060001	MW-425-012323					
EPA 300.0	Sulfate	106000	ug/L	2500	01/28/23 20:39	
AM20GAX	Methane	800	ug/L	5.0	01/27/23 10:39	
AM20GAX	Ethane	11	ug/L	1.0	01/27/23 10:39	
AM20GAX	Ethene	40	ug/L	1.0	01/27/23 10:39	
EPA 6010	Iron, Dissolved	5610	ug/L	100	02/02/23 15:47	
EPA 5030/8260	Chloroethane	167	ug/L	5.0	01/30/23 12:54	
EPA 5030/8260	1,1-Dichloroethane	21.8	ug/L	5.0	01/30/23 12:54	
EPA 5030/8260	1,2-Dichloroethane	5.7	ug/L	5.0	01/30/23 12:54	
EPA 5030/8260	cis-1,2-Dichloroethene	737	ug/L	25.0	01/30/23 13:24	
EPA 5030/8260	Trichloroethene	5.9	ug/L		01/30/23 12:54	
EPA 5030/8260	Vinyl chloride	497	ug/L	10.0	01/30/23 13:24	
SM 5310C	Total Organic Carbon	2110	ug/L	1000	01/31/23 17:39	
0336060002	AD-100-012323		Ū			
EPA 5030/8260	Chloroethane	164	ug/L	5.0	01/30/23 13:55	
EPA 5030/8260	1,1-Dichloroethane	21.5	ug/L	5.0	01/30/23 13:55	
EPA 5030/8260	1,2-Dichloroethane	5.9	ug/L	5.0		
EPA 5030/8260	cis-1,2-Dichloroethene	734	ug/L	50.0	01/31/23 19:06	
EPA 5030/8260	Trichloroethene	5.8	ug/L ug/L	5.0	01/30/23 13:55	
EPA 5030/8260	Vinyl chloride	502	ug/L	20.0	01/31/23 19:06	
0336060003	MW-313-012323	002	ug/L	20.0	01/01/20 10:00	
		202	/1	F 0	01/30/23 14:25	
EPA 5030/8260	cis-1,2-Dichloroethene	282	ug/L	5.0		
EPA 5030/8260	trans-1,2-Dichloroethene	6.5	ug/L		01/30/23 14:25	
EPA 5030/8260	Vinyl chloride	20.3	ug/L	2.0	01/30/23 14:25	
0336060004	MW-112-012323					
EPA 5030/8260	1,1-Dichloroethane	8.6	ug/L	5.0	01/30/23 14:55	
EPA 5030/8260	cis-1,2-Dichloroethene	235	ug/L	5.0	01/30/23 14:55	
EPA 5030/8260	Vinyl chloride	312	ug/L	20.0	01/31/23 19:36	
0336060005	MW-132-012323					
PA 5030/8260	Chloroethane	22.5	ug/L	5.0	01/30/23 15:26	
EPA 5030/8260	1,1-Dichloroethane	74.6	ug/L	5.0	01/30/23 15:26	
EPA 5030/8260	cis-1,2-Dichloroethene	526	ug/L	50.0	01/31/23 19:21	
PA 5030/8260	trans-1,2-Dichloroethene	38.4	ug/L	5.0	01/30/23 15:26	
PA 5030/8260	Trichloroethene	627	ug/L	50.0	01/31/23 19:21	
EPA 5030/8260	Vinyl chloride	175	ug/L	2.0	01/30/23 15:26	
0336060006	MW-133-012323					
PA 5030/8260	1,1-Dichloroethane	8.4	ug/L	5.0	01/30/23 15:56	
EPA 5030/8260	1,1-Dichloroethene	5.5	ug/L	5.0	01/30/23 15:56	
PA 5030/8260	cis-1,2-Dichloroethene	583	ug/L	50.0	01/31/23 19:52	
PA 5030/8260	trans-1,2-Dichloroethene	81.2	ug/L	5.0	01/30/23 15:56	
EPA 5030/8260	Trichloroethene	42.9	ug/L	5.0	01/30/23 15:56	
PA 5030/8260	Vinyl chloride	345	ug/L		01/31/23 19:52	
0336060007	MW-312-012323					
PA 5030/8260	cis-1,2-Dichloroethene	86.6	ug/L	5.0	01/30/23 16:27	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

SUMMARY OF DETECTION

Project: GE Indy
Pace Project No.: 50336060

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
50336060007	MW-312-012323					
EPA 5030/8260	Vinyl chloride	35.0	ug/L	2.0	01/30/23 16:27	
50336060008	MW-253-012423					
EPA 5030/8260	Benzene	25.2	ug/L	5.0	01/30/23 16:57	
EPA 5030/8260	Chloroethane	797	ug/L	50.0	01/31/23 20:07	
EPA 5030/8260	1,1-Dichloroethane	671	ug/L	50.0	01/31/23 20:07	
EPA 5030/8260	1,2-Dichloroethane	123	ug/L	5.0	01/30/23 16:57	
EPA 5030/8260	1,1-Dichloroethene	33.7	ug/L	5.0	01/30/23 16:57	
EPA 5030/8260	cis-1,2-Dichloroethene	19300	ug/L	500	01/31/23 20:37	
EPA 5030/8260	trans-1,2-Dichloroethene	188	ug/L	5.0	01/30/23 16:57	
EPA 5030/8260	Vinyl chloride	2300	ug/L	20.0	01/31/23 20:07	
50336060009	MW-163-012423					
EPA 5030/8260	cis-1,2-Dichloroethene	7070	ug/L	250	01/30/23 20:15	
EPA 5030/8260	Vinyl chloride	1460	ug/L	100	01/30/23 20:15	
50336060010	MW-303-012423					
EPA 5030/8260	cis-1,2-Dichloroethene	1060	ug/L	25.0	01/30/23 20:45	
EPA 5030/8260	Vinyl chloride	402	ug/L	10.0	01/30/23 20:45	
50336060011	MW-333-012423					
EPA 5030/8260	Benzene	10.1	ug/L	5.0	01/30/23 21:46	
EPA 5030/8260	Chloroethane	152	ug/L	5.0	01/30/23 21:46	
EPA 5030/8260	1,2-Dichloroethane	28.5	ug/L	5.0	01/30/23 21:46	
EPA 5030/8260	1,1-Dichloroethene	23.0	ug/L	5.0	01/30/23 21:46	
EPA 5030/8260	cis-1,2-Dichloroethene	11000	ug/L	500	01/31/23 20:22	
EPA 5030/8260	trans-1,2-Dichloroethene	108	ug/L	5.0	01/30/23 21:46	
EPA 5030/8260	Vinyl chloride	1800	ug/L	20.0	01/30/23 22:16	
50336060012	W-11D-012423					
EPA 5030/8260	1,1-Dichloroethane	127	ug/L	5.0	01/30/23 19:59	
EPA 5030/8260	cis-1,2-Dichloroethene	14.6	ug/L	5.0	01/30/23 19:59	
EPA 5030/8260	Vinyl chloride	3.4	ug/L	2.0	01/30/23 19:59	

Project: GE Indy
Pace Project No.: 50336060

Date: 02/09/2023 08:13 AM

Sample: MW-425-012323	Lab ID: 503	36060001	Collected	: 01/23/23	3 13:45	Received: 01/	24/23 13:45 N	Natrix: Water	
			Report						
Parameters	Results L	Jnits ————————————————————————————————————	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
300.0 IC Anions 28 Days	Analytical Meth	nod: EPA 3	0.00						
·	Pace Analytica	I Services	- Indianapoli	s					
Sulfate	106000 u	ıg/L	2500	850	10		01/28/23 20:3	9 14808-79-8	
Indicator Gases Water LHC	Analytical Meth	nod: AM200	GAX						
	Pace Analytica	I Gulf Coas	st						
Methane		ıg/L	5.0	2.0	1		01/27/23 10:3	9 74-82-8	
Ethane	11 u	ıg/L	1.0	0.17	1		01/27/23 10:3	9 74-84-0	
Ethene		ıg/L	1.0	0.24	1		01/27/23 10:3	9 74-85-1	
n-Propane		ıg/L	1.0	0.29	1		01/27/23 10:3	9 74-98-6	
Propylene		ıg/L	1.0	0.31	1		01/27/23 10:3	9 115-07-1	
sobutane		ıg/L	2.0	0.065	1		01/27/23 10:3		
n-Butane		ıg/L	2.0	0.54	1		01/27/23 10:3		
6010 MET ICP, Dissolved	Analytical Meth	nod: FPA 6	010 Prepara	ation Meth	nd: FPA	3010			
5010 ME1 101, 513301704	Pace Analytica				ou. <u>-</u> 171	00.10			
ron, Dissolved	-	ıg/L	100	48.8	1	01/31/23 09:47	02/02/23 15:4	7 7439-89-6	
3260 MSV Indiana	Analytical Meth	nod: FPA 5	030/8260						
200 mor malana	Pace Analytica			S					
Acetone	ND u	ıg/L	100	3.6	1		01/30/23 12:5	4 67-64-1	
Acrolein		ıg/L	50.0	3.5	1		01/30/23 12:5		
Acrylonitrile		ıg/L	100	1.3	1		01/30/23 12:5		
Benzene		-	5.0	0.30	1		01/30/23 12:5		
Bromobenzene		ıg/L			1				
		ıg/L	5.0	0.30			01/30/23 12:5		
Bromochloromethane		ıg/L	5.0	0.10	1		01/30/23 12:5		
Bromodichloromethane		ıg/L	5.0	0.14	1		01/30/23 12:5		
Bromoform	ND u	ıg/L	5.0	0.16	1		01/30/23 12:5	4 75-25-2	
Bromomethane	ND ι	ıg/L	5.0	0.22	1		01/30/23 12:5	4 74-83-9	
2-Butanone (MEK)	ND ι	ıg/L	25.0	0.92	1		01/30/23 12:5	4 78-93-3	
n-Butylbenzene	ND u	ıg/L	5.0	0.37	1		01/30/23 12:5	4 104-51-8	
sec-Butylbenzene	ND u	ıg/L	5.0	0.37	1		01/30/23 12:5	4 135-98-8	
tert-Butylbenzene	ND u	ıg/L	5.0	0.41	1		01/30/23 12:5	4 98-06-6	
Carbon disulfide		ıg/L	10.0	0.29	1		01/30/23 12:5		
Carbon tetrachloride		ıg/L	5.0	0.25	1		01/30/23 12:5		
Chlorobenzene		ıg/L	5.0	0.28	1		01/30/23 12:5		
Chloroethane		ıg/L	5.0	0.15	1		01/30/23 12:5		
		-							
Chloroform		ıg/L	5.0	0.60	1		01/30/23 12:5		
Chloromethane		ıg/L	5.0	0.16	1		01/30/23 12:5		
2-Chlorotoluene		ıg/L	5.0	0.36	1		01/30/23 12:5		
4-Chlorotoluene		ıg/L	5.0	0.34	1		01/30/23 12:5		
Dibromochloromethane		ıg/L	5.0	0.20	1		01/30/23 12:5		
1,2-Dibromoethane (EDB)	ND ι	ıg/L	5.0	0.19	1		01/30/23 12:5	4 106-93-4	
Dibromomethane	ND u	ıg/L	5.0	0.16	1		01/30/23 12:5	4 74-95-3	
1,2-Dichlorobenzene		ıg/L	5.0	0.26	1		01/30/23 12:5	4 95-50-1	
1,3-Dichlorobenzene		ıg/L	5.0	0.37	1		01/30/23 12:5	4 541-73-1	
1,4-Dichlorobenzene		ıg/L	5.0	0.30	1		01/30/23 12:5		

Project: GE Indy
Pace Project No.: 50336060

Date: 02/09/2023 08:13 AM

Sample: MW-425-012323	Lab ID:	50336060001	Collected	d: 01/23/23	3 13:45	Received: 0'	1/24/23 13:45	Matrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qua
3260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	•	ytical Services		lis					
rans-1,4-Dichloro-2-butene	ND	ug/L	100	0.33	1		01/30/23 12:	54 110-57-6	
Dichlorodifluoromethane	ND	ug/L	5.0	0.17	1		01/30/23 12:	54 75-71-8	
I,1-Dichloroethane	21.8	ug/L	5.0	0.28	1		01/30/23 12:		
1,2-Dichloroethane	5.7	ug/L	5.0	0.17	1			54 107-06-2	
I,1-Dichloroethene	ND	ug/L	5.0	0.29	1		01/30/23 12:		
cis-1,2-Dichloroethene	737	ug/L	25.0	1.5	5			24 156-59-2	
rans-1,2-Dichloroethene	ND	ug/L	5.0	0.36	1		01/30/23 12:		
,2-Dichloropropane	ND	ug/L	5.0	0.23	1		01/30/23 12:		
I,3-Dichloropropane	ND	ug/L	5.0	0.15	1		01/30/23 12:		
2,2-Dichloropropane	ND	ug/L	5.0	0.17	1		01/30/23 12:		
I,1-Dichloropropene	ND	ug/L ug/L	5.0	0.29	1		01/30/23 12:		
cis-1,3-Dichloropropene	ND	ug/L ug/L	5.0	0.23	1			54 10061-01-5	
rans-1,3-Dichloropropene	ND	ug/L ug/L	5.0	0.19	1			54 10061-01-6	
Ethylbenzene	ND	ug/L ug/L	5.0	0.13	1		01/30/23 12:		
Ethyl methacrylate	ND	ug/L ug/L	100	0.15	1		01/30/23 12:		
Hexachloro-1,3-butadiene	ND ND	ug/L ug/L	5.0	0.13	1		01/30/23 12:		
i-Hexane	ND ND	-	5.0	0.38	1		01/30/23 12:		
r-nexane 2-Hexanone	ND ND	ug/L ug/L	25.0	0.17	1		01/30/23 12:		
odomethane	ND ND	-		0.81	1		01/30/23 12:		
		ug/L	10.0		1				
sopropylbenzene (Cumene)	ND	ug/L	5.0	0.38			01/30/23 12:		
o-Isopropyltoluene	ND	ug/L	5.0	0.41	1		01/30/23 12:		
Methylene Chloride	ND	ug/L	5.0	0.70	1		01/30/23 12:		
I-Methylnaphthalene	ND	ug/L	10.0	0.23	1		01/30/23 12:		
2-Methylnaphthalene	ND	ug/L	10.0	0.23	1		01/30/23 12:		
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	0.88	1		01/30/23 12:		
Methyl-tert-butyl ether	ND	ug/L	4.0	0.15	1			54 1634-04-4	
Naphthalene	ND	ug/L	1.2	0.20	1		01/30/23 12:		
n-Propylbenzene	ND	ug/L	5.0	0.39	1		01/30/23 12:		
Styrene	ND	ug/L	5.0	0.30	1		01/30/23 12:		
,1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.28	1		01/30/23 12:		
,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.20	1		01/30/23 12:		
Tetrachloroethene	ND	ug/L	5.0	0.38	1		01/30/23 12:	-	
Toluene	ND	ug/L	5.0	0.44	1		01/30/23 12:		
,2,3-Trichlorobenzene	ND	ug/L	5.0	0.32	1		01/30/23 12:		
,2,4-Trichlorobenzene	ND	ug/L	5.0	0.33	1		01/30/23 12:		
,1,1-Trichloroethane	ND	ug/L	5.0	0.30	1		01/30/23 12:		
,1,2-Trichloroethane	ND	ug/L	5.0	0.28	1		01/30/23 12:		
Trichloroethene	5.9	ug/L	5.0	0.37	1		01/30/23 12:		
Trichlorofluoromethane	ND	ug/L	5.0	0.16	1		01/30/23 12:		
1,2,3-Trichloropropane	ND	ug/L	5.0	0.20	1		01/30/23 12:		
,2,4-Trimethylbenzene	ND	ug/L	5.0	0.35	1		01/30/23 12:	54 95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.37	1			54 108-67-8	
/inyl acetate	ND	ug/L	50.0	0.46	1			54 108-05-4	
/inyl chloride	497	ug/L	10.0	0.65	5		01/30/23 13:		
(Ylene (Total)	ND	ug/L	10.0	0.38	1		01/30/23 12:	54 1330-20-7	

Project: GE Indy
Pace Project No.: 50336060

Date: 02/09/2023 08:13 AM

Sample: MW-425-012323	Lab ID:	50336060001	Collected	d: 01/23/2	3 13:45	Received: 01	1/24/23 13:45 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Anal	ytical Services	- Indianapo	lis					
Surrogates									
Dibromofluoromethane (S)	111	%.	82-128		1		01/30/23 12:54	1868-53-7	
4-Bromofluorobenzene (S)	107	%.	79-124		1		01/30/23 12:54	460-00-4	
Toluene-d8 (S)	108	%.	73-122		1		01/30/23 12:54	2037-26-5	
353.2 Nitrogen, NO2/NO3 unpres	Analytical	Method: EPA 3	353.2						
	Pace Anal	ytical Services	- Indianapo	lis					
Nitrogen, Nitrate	ND	mg/L	0.10	0.011	1		01/24/23 18:34	14797-55-8	
5310C TOC	Analytical	Method: SM 53	310C						
	Pace Anal	ytical Services	- Indianapo	lis					
Total Organic Carbon	2110	ug/L	1000	236	1		01/31/23 17:39	7440-44-0	

Project: GE Indy
Pace Project No.: 50336060

Date: 02/09/2023 08:13 AM

Sample: AD-100-012323	Lab ID:	50336060002	Collected	d: 01/23/23	3 12:00	Received: 01	/24/23 13:45 I	Matrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical I	Method: EPA 50	030/8260						
	•	tical Services -		lis					
Acetone	ND	ug/L	100	3.6	1		01/30/23 13:5	55 67-64-1	
Acrolein	ND	ug/L	50.0	3.5	1		01/30/23 13:5	5 107-02-8	
Acrylonitrile	ND	ug/L	100	1.3	1		01/30/23 13:5	5 107-13-1	
Benzene	ND	ug/L	5.0	0.30	1		01/30/23 13:5	5 71-43-2	
Bromobenzene	ND	ug/L	5.0	0.30	1		01/30/23 13:5	5 108-86-1	
Bromochloromethane	ND	ug/L	5.0	0.10	1		01/30/23 13:5		
Bromodichloromethane	ND	ug/L	5.0	0.14	1		01/30/23 13:5		
Bromoform	ND	ug/L	5.0	0.16	1		01/30/23 13:5		
Bromomethane	ND	ug/L	5.0	0.22	1		01/30/23 13:5		
2-Butanone (MEK)	ND	ug/L	25.0	0.92	1		01/30/23 13:5		
n-Butylbenzene	ND	ug/L	5.0	0.37	1		01/30/23 13:5		
sec-Butylbenzene	ND	ug/L	5.0	0.37	1		01/30/23 13:5		
tert-Butylbenzene	ND	ug/L	5.0	0.41	1		01/30/23 13:5		
Carbon disulfide	ND	ug/L	10.0	0.29	1		01/30/23 13:5		
Carbon tetrachloride	ND	ug/L	5.0	0.25	1		01/30/23 13:5		
Chlorobenzene	ND	ug/L	5.0	0.28	1		01/30/23 13:5		
Chloroethane	164	ug/L	5.0	0.15	1		01/30/23 13:5		
Chloroform	ND	ug/L	5.0	0.60	1		01/30/23 13:5		
Chloromethane	ND	ug/L	5.0	0.16	1		01/30/23 13:5		
2-Chlorotoluene	ND	ug/L	5.0	0.36	1		01/30/23 13:5		
4-Chlorotoluene	ND	ug/L	5.0	0.34	1		01/30/23 13:5		
Dibromochloromethane	ND	ug/L	5.0	0.20	1		01/30/23 13:5		
1,2-Dibromoethane (EDB)	ND	ug/L	5.0	0.19	1		01/30/23 13:5		
Dibromomethane	ND	ug/L	5.0	0.16	1		01/30/23 13:5		
1,2-Dichlorobenzene	ND	ug/L	5.0	0.26	1		01/30/23 13:5		
1,3-Dichlorobenzene	ND	ug/L	5.0	0.20	1		01/30/23 13:5		
1,4-Dichlorobenzene	ND	ug/L	5.0	0.30	1		01/30/23 13:5		
rans-1,4-Dichloro-2-butene	ND	ug/L	100	0.33	1		01/30/23 13:5		
Dichlorodifluoromethane	ND	ug/L	5.0	0.17	1		01/30/23 13:5		
1,1-Dichloroethane	21.5	ug/L	5.0	0.17	1		01/30/23 13:5		
1,2-Dichloroethane	5.9	ug/L	5.0	0.20	1		01/30/23 13:5		
1,1-Dichloroethene	ND	ug/L	5.0	0.17	1		01/30/23 13:5		
cis-1,2-Dichloroethene	734	ug/L	50.0	3.0	10		01/30/23 19:0		
rans-1,2-Dichloroethene	ND	- "	5.0	0.36	1		01/30/23 13:5		
1,2-Dichloropropane	ND	ug/L ug/L	5.0	0.23	1		01/30/23 13:5		
1,3-Dichloropropane	ND	ug/L	5.0	0.25	1		01/30/23 13:5		
2,2-Dichloropropane	ND	ug/L	5.0	0.13	1		01/30/23 13:5		
1,1-Dichloropropene	ND ND	ug/L ug/L	5.0	0.27	1		01/30/23 13:5		
cis-1,3-Dichloropropene	ND ND	ug/L ug/L	5.0	0.29	1			55 10061-01-5	
rans-1,3-Dichloropropene	ND ND	-	5.0	0.21	1			55 10061-01-5 55 10061-02-6	
, , ,		ug/L							
Ethylbenzene	ND ND	ug/L	5.0	0.38	1		01/30/23 13:5 01/30/23 13:5		
Ethyl methacrylate Hexachloro-1,3-butadiene	ND ND	ug/L	100 5.0	0.15	1				
•	ND	ug/L	5.0	0.38	1		01/30/23 13:5		
n-Hexane	ND	ug/L	5.0	0.17	1		01/30/23 13:5		
2-Hexanone	ND	ug/L	25.0	0.81	1		01/30/23 13:5	591-78-6	

Project: GE Indy
Pace Project No.: 50336060

Date: 02/09/2023 08:13 AM

Sample: AD-100-012323	Lab ID:	50336060002	Collected	d: 01/23/23	3 12:00	Received: 01	/24/23 13:45 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF ——	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Ana	lytical Services	- Indianapo	lis					
lodomethane	ND	ug/L	10.0	0.25	1		01/30/23 13:55	74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	5.0	0.38	1		01/30/23 13:55	98-82-8	
p-Isopropyltoluene	ND	ug/L	5.0	0.41	1		01/30/23 13:55	99-87-6	
Methylene Chloride	ND	ug/L	5.0	0.70	1		01/30/23 13:55	75-09-2	
1-Methylnaphthalene	ND	ug/L	10.0	0.23	1		01/30/23 13:55	90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	0.23	1		01/30/23 13:55	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	0.88	1		01/30/23 13:55	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	4.0	0.15	1		01/30/23 13:55	1634-04-4	
Naphthalene	ND	ug/L	1.2	0.20	1		01/30/23 13:55	91-20-3	
n-Propylbenzene	ND	ug/L	5.0	0.39	1		01/30/23 13:55	103-65-1	
Styrene	ND	ug/L	5.0	0.30	1		01/30/23 13:55	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.28	1		01/30/23 13:55	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.20	1		01/30/23 13:55	79-34-5	
Tetrachloroethene	ND	ug/L	5.0	0.38	1		01/30/23 13:55	127-18-4	
Toluene	ND	ug/L	5.0	0.44	1		01/30/23 13:55	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	0.32	1		01/30/23 13:55	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	5.0	0.33	1		01/30/23 13:55	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	5.0	0.30	1		01/30/23 13:55	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	5.0	0.28	1		01/30/23 13:55	79-00-5	
Trichloroethene	5.8	ug/L	5.0	0.37	1		01/30/23 13:55	79-01-6	
Trichlorofluoromethane	ND	ug/L	5.0	0.16	1		01/30/23 13:55	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	5.0	0.20	1		01/30/23 13:55	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/L	5.0	0.35	1		01/30/23 13:55	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.37	1		01/30/23 13:55	108-67-8	
Vinyl acetate	ND	ug/L	50.0	0.46	1		01/30/23 13:55	108-05-4	
Vinyl chloride	502	ug/L	20.0	1.3	10		01/31/23 19:06	75-01-4	
Xylene (Total)	ND	ug/L	10.0	0.38	1		01/30/23 13:55	1330-20-7	
Surrogates		ū							
Dibromofluoromethane (S)	112	%.	82-128		1		01/30/23 13:55	1868-53-7	
4-Bromofluorobenzene (S)	106	%.	79-124		1		01/30/23 13:55	460-00-4	
Toluene-d8 (S)	108	%.	73-122		1		01/30/23 13:55	2037-26-5	

Project: GE Indy
Pace Project No.: 50336060

Date: 02/09/2023 08:13 AM

Sample: MW-313-012323	Lab ID:	50336060003	Collected	d: 01/23/23	15:35	Received: 01	I/24/23 13:45 I	Matrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qua
3260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	•	ytical Services		lis					
Acetone	ND	ug/L	100	3.6	1		01/30/23 14:2	5 67-64-1	
Acrolein	ND	ug/L	50.0	3.5	1		01/30/23 14:2	5 107-02-8	
Acrylonitrile	ND	ug/L	100	1.3	1		01/30/23 14:2	5 107-13-1	
Benzene	ND	ug/L	5.0	0.30	1		01/30/23 14:2	5 71-43-2	
Bromobenzene	ND	ug/L	5.0	0.30	1		01/30/23 14:2	5 108-86-1	
Bromochloromethane	ND	ug/L	5.0	0.10	1		01/30/23 14:2	5 74-97-5	
Bromodichloromethane	ND	ug/L	5.0	0.14	1		01/30/23 14:2	5 75-27-4	
Bromoform	ND	ug/L	5.0	0.16	1		01/30/23 14:2	5 75-25-2	
Bromomethane	ND	ug/L	5.0	0.22	1		01/30/23 14:2		
2-Butanone (MEK)	ND	ug/L	25.0	0.92	1		01/30/23 14:2		
n-Butylbenzene	ND	ug/L	5.0	0.37	1		01/30/23 14:2		
sec-Butylbenzene	ND	ug/L	5.0	0.37	1		01/30/23 14:2		
ert-Butylbenzene	ND	ug/L	5.0	0.41	1		01/30/23 14:2		
Carbon disulfide	ND	ug/L	10.0	0.29	1		01/30/23 14:2		
Carbon tetrachloride	ND	ug/L	5.0	0.25	1		01/30/23 14:2		
Chlorobenzene	ND	ug/L	5.0	0.28	1		01/30/23 14:2		
Chloroethane	ND	ug/L	5.0	0.15	1		01/30/23 14:2		
Chloroform	ND	ug/L	5.0	0.60	1		01/30/23 14:2		
Chloromethane	ND	ug/L	5.0	0.16	1		01/30/23 14:2		
2-Chlorotoluene	ND	ug/L	5.0	0.36	1		01/30/23 14:2		
4-Chlorotoluene	ND	ug/L	5.0	0.34	1		01/30/23 14:2		
Dibromochloromethane	ND	ug/L	5.0	0.20	1		01/30/23 14:2		
1,2-Dibromoethane (EDB)	ND	ug/L	5.0	0.19	1		01/30/23 14:2		
Dibromomethane	ND	ug/L	5.0	0.16	1		01/30/23 14:2		
1,2-Dichlorobenzene	ND ND	ug/L ug/L	5.0	0.16	1		01/30/23 14:2		
1,3-Dichlorobenzene	ND ND	ug/L ug/L	5.0	0.20	1		01/30/23 14:2		
1,4-Dichlorobenzene	ND ND	ug/L ug/L	5.0	0.30	1		01/30/23 14:2		
trans-1,4-Dichloro-2-butene	ND ND	ug/L ug/L	100	0.30	1		01/30/23 14:2		
Dichlorodifluoromethane	ND ND	ug/L ug/L	5.0	0.33	1		01/30/23 14:2		
1,1-Dichloroethane	ND ND	ug/L ug/L	5.0	0.17	1		01/30/23 14:2		
•	ND ND		5.0	0.28	1		01/30/23 14:2		
1,2-Dichloroethane		ug/L		0.17			01/30/23 14:2		
I,1-Dichloroethene	ND	ug/L	5.0		1				
cis-1,2-Dichloroethene	282	ug/L	5.0	0.30	1		01/30/23 14:2		
rans-1,2-Dichloroethene	6.5	ug/L	5.0	0.36	1		01/30/23 14:2		
1,2-Dichloropropane	ND	ug/L	5.0	0.23	1		01/30/23 14:2		
I,3-Dichloropropane	ND	ug/L	5.0	0.15	1		01/30/23 14:2		
2,2-Dichloropropane	ND	ug/L	5.0	0.27	1		01/30/23 14:2		
,1-Dichloropropene	ND	ug/L	5.0	0.29	1		01/30/23 14:2		
cis-1,3-Dichloropropene	ND	ug/L	5.0	0.21	1			5 10061-01-5	
rans-1,3-Dichloropropene	ND	ug/L	5.0	0.19	1			5 10061-02-6	
Ethylbenzene	ND	ug/L	5.0	0.38	1		01/30/23 14:2		
Ethyl methacrylate	ND	ug/L	100	0.15	1		01/30/23 14:2		
Hexachloro-1,3-butadiene	ND	ug/L	5.0	0.38	1		01/30/23 14:2		
n-Hexane	ND	ug/L	5.0	0.17	1		01/30/23 14:2		
2-Hexanone	ND	ug/L	25.0	0.81	1		01/30/23 14:2	5 591-78-6	

Project: GE Indy
Pace Project No.: 50336060

Date: 02/09/2023 08:13 AM

Sample: MW-313-012323	Lab ID:	50336060003	Collected	01/23/23	3 15:35	Received: 01	/24/23 13:45 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF ——	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Ana	lytical Services	- Indianapoli	S					
lodomethane	ND	ug/L	10.0	0.25	1		01/30/23 14:25	74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	5.0	0.38	1		01/30/23 14:25	98-82-8	
p-Isopropyltoluene	ND	ug/L	5.0	0.41	1		01/30/23 14:25	99-87-6	
Methylene Chloride	ND	ug/L	5.0	0.70	1		01/30/23 14:25	75-09-2	
1-Methylnaphthalene	ND	ug/L	10.0	0.23	1		01/30/23 14:25	90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	0.23	1		01/30/23 14:25	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	0.88	1		01/30/23 14:25	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	4.0	0.15	1		01/30/23 14:25	1634-04-4	
Naphthalene	ND	ug/L	1.2	0.20	1		01/30/23 14:25	91-20-3	
n-Propylbenzene	ND	ug/L	5.0	0.39	1		01/30/23 14:25	103-65-1	
Styrene	ND	ug/L	5.0	0.30	1		01/30/23 14:25	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.28	1		01/30/23 14:25	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.20	1		01/30/23 14:25	79-34-5	
Tetrachloroethene	ND	ug/L	5.0	0.38	1		01/30/23 14:25	127-18-4	
Toluene	ND	ug/L	5.0	0.44	1		01/30/23 14:25	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	0.32	1		01/30/23 14:25	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	5.0	0.33	1		01/30/23 14:25	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	5.0	0.30	1		01/30/23 14:25	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	5.0	0.28	1		01/30/23 14:25	79-00-5	
Trichloroethene	ND	ug/L	5.0	0.37	1		01/30/23 14:25	79-01-6	
Trichlorofluoromethane	ND	ug/L	5.0	0.16	1		01/30/23 14:25	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	5.0	0.20	1		01/30/23 14:25	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/L	5.0	0.35	1		01/30/23 14:25	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.37	1		01/30/23 14:25	108-67-8	
Vinyl acetate	ND	ug/L	50.0	0.46	1		01/30/23 14:25		
Vinyl chloride	20.3	ug/L	2.0	0.13	1		01/30/23 14:25		
Xylene (Total)	ND	ug/L	10.0	0.38	1		01/30/23 14:25		
Surrogates		3 - –			•		. ,	,	
Dibromofluoromethane (S)	113	%.	82-128		1		01/30/23 14:25	1868-53-7	
4-Bromofluorobenzene (S)	105	%.	79-124		1		01/30/23 14:25	460-00-4	
Toluene-d8 (S)	106	%.	73-122		1		01/30/23 14:25	2037-26-5	

Project: GE Indy
Pace Project No.: 50336060

Date: 02/09/2023 08:13 AM

Sample: MW-112-012323	Lab ID:	50336060004	Collected	d: 01/23/23	15:40	Received: 0'	1/24/23 13:45	Matrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qua
3260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	•	ytical Services		lis					
Acetone	ND	ug/L	100	3.6	1		01/30/23 14:5	55 67-64-1	
Acrolein	ND	ug/L	50.0	3.5	1		01/30/23 14:5	5 107-02-8	
Acrylonitrile	ND	ug/L	100	1.3	1		01/30/23 14:5	5 107-13-1	
Benzene	ND	ug/L	5.0	0.30	1		01/30/23 14:5	5 71-43-2	
Bromobenzene	ND	ug/L	5.0	0.30	1		01/30/23 14:5		
Bromochloromethane	ND	ug/L	5.0	0.10	1		01/30/23 14:5	5 74-97-5	
Bromodichloromethane	ND	ug/L	5.0	0.14	1		01/30/23 14:5		
Bromoform	ND	ug/L	5.0	0.16	1		01/30/23 14:5		
Bromomethane	ND	ug/L	5.0	0.22	1		01/30/23 14:5		
2-Butanone (MEK)	ND	ug/L	25.0	0.92	1		01/30/23 14:5		
n-Butylbenzene	ND	ug/L	5.0	0.37	1		01/30/23 14:5		
sec-Butylbenzene	ND	ug/L	5.0	0.37	1		01/30/23 14:5		
ert-Butylbenzene	ND	ug/L	5.0	0.41	1		01/30/23 14:5		
Carbon disulfide	ND	ug/L	10.0	0.29	1		01/30/23 14:5		
Carbon tetrachloride	ND	ug/L	5.0	0.25	1		01/30/23 14:5		
Chlorobenzene	ND	ug/L	5.0	0.28	1		01/30/23 14:5		
Chloroethane	ND	ug/L	5.0	0.15	1		01/30/23 14:5		
Chloroform	ND ND	ug/L ug/L	5.0	0.60	1		01/30/23 14:5		
Chloromethane	ND	ug/L	5.0	0.16	1		01/30/23 14:5		
2-Chlorotoluene	ND ND	ug/L ug/L	5.0	0.16	1		01/30/23 14:5		
I-Chlorotoluene	ND ND	ug/L ug/L	5.0	0.34	1		01/30/23 14:5		
Dibromochloromethane	ND ND	-	5.0	0.34	1		01/30/23 14:5		
1,2-Dibromoethane (EDB)	ND ND	ug/L ug/L	5.0	0.20	1		01/30/23 14:5		
Dibromomethane	ND ND	-	5.0	0.19	1		01/30/23 14:5		
		ug/L			1				
1,2-Dichlorobenzene	ND	ug/L	5.0	0.26			01/30/23 14:5		
1,3-Dichlorobenzene	ND	ug/L	5.0	0.37	1		01/30/23 14:5		
1,4-Dichlorobenzene	ND	ug/L	5.0	0.30	1		01/30/23 14:5		
rans-1,4-Dichloro-2-butene	ND	ug/L	100	0.33	1		01/30/23 14:5		
Dichlorodifluoromethane	ND	ug/L	5.0	0.17	1		01/30/23 14:5		
1,1-Dichloroethane	8.6	ug/L	5.0	0.28	1		01/30/23 14:5		
1,2-Dichloroethane	ND	ug/L	5.0	0.17	1		01/30/23 14:5		
I,1-Dichloroethene	ND	ug/L	5.0	0.29	1		01/30/23 14:5		
cis-1,2-Dichloroethene	235	ug/L	5.0	0.30	1		01/30/23 14:5		
rans-1,2-Dichloroethene	ND	ug/L	5.0	0.36	1		01/30/23 14:5		
,2-Dichloropropane	ND	ug/L	5.0	0.23	1		01/30/23 14:5		
,3-Dichloropropane	ND	ug/L	5.0	0.15	1		01/30/23 14:5		
2,2-Dichloropropane	ND	ug/L	5.0	0.27	1		01/30/23 14:5		
,1-Dichloropropene	ND	ug/L	5.0	0.29	1		01/30/23 14:5		
cis-1,3-Dichloropropene	ND	ug/L	5.0	0.21	1			55 10061-01-5	
rans-1,3-Dichloropropene	ND	ug/L	5.0	0.19	1			55 10061-02-6	
Ethylbenzene	ND	ug/L	5.0	0.38	1		01/30/23 14:5	55 100-41-4	
Ethyl methacrylate	ND	ug/L	100	0.15	1		01/30/23 14:5		
Hexachloro-1,3-butadiene	ND	ug/L	5.0	0.38	1		01/30/23 14:5	55 87-68-3	
n-Hexane	ND	ug/L	5.0	0.17	1		01/30/23 14:5	55 110-54-3	
2-Hexanone	ND	ug/L	25.0	0.81	1		01/30/23 14:5	5 591-78-6	

Project: GE Indy
Pace Project No.: 50336060

Date: 02/09/2023 08:13 AM

Sample: MW-112-012323	Lab ID:	50336060004	Collected	d: 01/23/23	3 15:40	Received: 01	/24/23 13:45 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF ———	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Ana	lytical Services	- Indianapo	is					
lodomethane	ND	ug/L	10.0	0.25	1		01/30/23 14:55	74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	5.0	0.38	1		01/30/23 14:55	98-82-8	
p-Isopropyltoluene	ND	ug/L	5.0	0.41	1		01/30/23 14:55	99-87-6	
Methylene Chloride	ND	ug/L	5.0	0.70	1		01/30/23 14:55	75-09-2	
1-Methylnaphthalene	ND	ug/L	10.0	0.23	1		01/30/23 14:55	90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	0.23	1		01/30/23 14:55	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	0.88	1		01/30/23 14:55	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	4.0	0.15	1		01/30/23 14:55	1634-04-4	
Naphthalene	ND	ug/L	1.2	0.20	1		01/30/23 14:55	91-20-3	
n-Propylbenzene	ND	ug/L	5.0	0.39	1		01/30/23 14:55	103-65-1	
Styrene	ND	ug/L	5.0	0.30	1		01/30/23 14:55	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.28	1		01/30/23 14:55	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.20	1		01/30/23 14:55	79-34-5	
Tetrachloroethene	ND	ug/L	5.0	0.38	1		01/30/23 14:55	127-18-4	
Toluene	ND	ug/L	5.0	0.44	1		01/30/23 14:55	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	0.32	1		01/30/23 14:55	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	5.0	0.33	1		01/30/23 14:55	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	5.0	0.30	1		01/30/23 14:55	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	5.0	0.28	1		01/30/23 14:55	79-00-5	
Trichloroethene	ND	ug/L	5.0	0.37	1		01/30/23 14:55	79-01-6	
Trichlorofluoromethane	ND	ug/L	5.0	0.16	1		01/30/23 14:55	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	5.0	0.20	1		01/30/23 14:55	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/L	5.0	0.35	1		01/30/23 14:55	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.37	1		01/30/23 14:55	108-67-8	
Vinyl acetate	ND	ug/L	50.0	0.46	1		01/30/23 14:55	108-05-4	
Vinyl chloride	312	ug/L	20.0	1.3	10		01/31/23 19:36		
Xylene (Total)	ND	ug/L	10.0	0.38	1		01/30/23 14:55	1330-20-7	
Surrogates		S							
Dibromofluoromethane (S)	113	%.	82-128		1		01/30/23 14:55	1868-53-7	
4-Bromofluorobenzene (S)	110	%.	79-124		1		01/30/23 14:55	460-00-4	
Toluene-d8 (S)	109	%.	73-122		1		01/30/23 14:55	2037-26-5	

Project: GE Indy
Pace Project No.: 50336060

Date: 02/09/2023 08:13 AM

Sample: MW-132-012323	Lab ID:	50336060005	Collected	d: 01/23/23	3 16:15	Received: 01	1/24/23 13:45	Matrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	•	ytical Services		is					
Acetone	ND	ug/L	100	3.6	1		01/30/23 15:2	26 67-64-1	
Acrolein	ND	ug/L	50.0	3.5	1		01/30/23 15:2		
Acrylonitrile	ND	ug/L	100	1.3	1		01/30/23 15:2		
Benzene	ND	ug/L	5.0	0.30	1		01/30/23 15:2		
3romobenzene	ND	ug/L	5.0	0.30	1		01/30/23 15:2		
Bromochloromethane	ND	ug/L	5.0	0.10	1		01/30/23 15:2		
Bromodichloromethane	ND	ug/L	5.0	0.14	1		01/30/23 15:2		
Bromoform	ND	ug/L	5.0	0.14	1		01/30/23 15:2		
Bromomethane	ND	ug/L	5.0	0.22	1		01/30/23 15:2		
2-Butanone (MEK)	ND ND	ug/L ug/L	25.0	0.22	1		01/30/23 15:2		
n-Butylbenzene	ND	ug/L	5.0	0.37	1		01/30/23 15:2		
sec-Butylbenzene	ND	ug/L	5.0	0.37	1		01/30/23 15:2		
ert-Butylbenzene	ND ND	ug/L ug/L	5.0	0.41	1		01/30/23 15:2		
Carbon disulfide	ND	ug/L	10.0	0.29	1		01/30/23 15:2		
Carbon tetrachloride	ND ND	ug/L ug/L	5.0	0.25	1		01/30/23 15:2		
Chlorobenzene	ND ND	-	5.0	0.23	1		01/30/23 15:2		
Chloroethane		ug/L		0.26					
Chloroform	22.5 ND	ug/L	5.0 5.0	0.15	1 1		01/30/23 15:2 01/30/23 15:2		
		ug/L			1				
Chloromethane	ND	ug/L	5.0	0.16	1		01/30/23 15:2		
2-Chlorotoluene	ND	ug/L	5.0	0.36 0.34			01/30/23 15:2		
4-Chlorotoluene	ND	ug/L	5.0		1		01/30/23 15:2		
Dibromochloromethane	ND	ug/L	5.0	0.20	1		01/30/23 15:2		
1,2-Dibromoethane (EDB)	ND	ug/L	5.0	0.19	1		01/30/23 15:2		
Dibromomethane	ND	ug/L	5.0	0.16	1		01/30/23 15:2		
1,2-Dichlorobenzene	ND	ug/L	5.0	0.26	1		01/30/23 15:2		
1,3-Dichlorobenzene	ND	ug/L	5.0	0.37	1		01/30/23 15:2		
1,4-Dichlorobenzene	ND	ug/L	5.0	0.30	1		01/30/23 15:2		
rans-1,4-Dichloro-2-butene	ND	ug/L	100	0.33	1		01/30/23 15:2		
Dichlorodifluoromethane	ND	ug/L	5.0	0.17	1		01/30/23 15:2		
1,1-Dichloroethane	74.6	ug/L	5.0	0.28	1		01/30/23 15:2		
1,2-Dichloroethane	ND	ug/L	5.0	0.17	1		01/30/23 15:2		
I,1-Dichloroethene	ND	ug/L	5.0	0.29	1		01/30/23 15:2		
cis-1,2-Dichloroethene	526	ug/L	50.0	2.5	10		01/31/23 19:2		
rans-1,2-Dichloroethene	38.4	ug/L	5.0	0.36	1		01/30/23 15:2		
1,2-Dichloropropane	ND	ug/L	5.0	0.23	1		01/30/23 15:2		
1,3-Dichloropropane	ND	ug/L	5.0	0.15	1		01/30/23 15:2		
2,2-Dichloropropane	ND	ug/L	5.0	0.27	1		01/30/23 15:2		
1,1-Dichloropropene	ND	ug/L	5.0	0.29	1		01/30/23 15:2		
cis-1,3-Dichloropropene	ND	ug/L	5.0	0.21	1			26 10061-01-5	
rans-1,3-Dichloropropene	ND	ug/L	5.0	0.19	1		01/30/23 15:2	26 10061-02-6	
Ethylbenzene	ND	ug/L	5.0	0.38	1		01/30/23 15:2	26 100-41-4	
Ethyl methacrylate	ND	ug/L	100	0.15	1		01/30/23 15:2		
Hexachloro-1,3-butadiene	ND	ug/L	5.0	0.38	1		01/30/23 15:2		
n-Hexane	ND	ug/L	5.0	0.17	1		01/30/23 15:2	26 110-54-3	
2-Hexanone	ND	ug/L	25.0	0.81	1		01/30/23 15:2	26 591-78-6	

Project: GE Indy
Pace Project No.: 50336060

Date: 02/09/2023 08:13 AM

Sample: MW-132-012323	Lab ID:	50336060005	Collected	d: 01/23/23	3 16:15	Received: 01	/24/23 13:45 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Ana	lytical Services	- Indianapo	lis					
lodomethane	ND	ug/L	10.0	0.25	1		01/30/23 15:26	74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	5.0	0.38	1		01/30/23 15:26	98-82-8	
p-lsopropyltoluene	ND	ug/L	5.0	0.41	1		01/30/23 15:26	99-87-6	
Methylene Chloride	ND	ug/L	5.0	0.70	1		01/30/23 15:26	75-09-2	
1-Methylnaphthalene	ND	ug/L	10.0	0.23	1		01/30/23 15:26	90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	0.23	1		01/30/23 15:26	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	0.88	1		01/30/23 15:26	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	4.0	0.15	1		01/30/23 15:26		
Naphthalene	ND	ug/L	1.2	0.20	1		01/30/23 15:26	91-20-3	
n-Propylbenzene	ND	ug/L	5.0	0.39	1		01/30/23 15:26	103-65-1	
Styrene	ND	ug/L	5.0	0.30	1		01/30/23 15:26	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.28	1		01/30/23 15:26	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.20	1		01/30/23 15:26		
Tetrachloroethene	ND	ug/L	5.0	0.38	1		01/30/23 15:26	127-18-4	
Toluene	ND	ug/L	5.0	0.44	1		01/30/23 15:26	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	0.32	1		01/30/23 15:26	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	5.0	0.33	1		01/30/23 15:26	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	5.0	0.30	1		01/30/23 15:26	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	5.0	0.28	1		01/30/23 15:26	79-00-5	
Trichloroethene	627	ug/L	50.0	3.0	10		01/31/23 19:21		
Trichlorofluoromethane	ND	ug/L	5.0	0.16	1		01/30/23 15:26		
1,2,3-Trichloropropane	ND	ug/L	5.0	0.20	1		01/30/23 15:26		
1,2,4-Trimethylbenzene	ND	ug/L	5.0	0.35	1		01/30/23 15:26		
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.37	1		01/30/23 15:26		
Vinyl acetate	ND	ug/L	50.0	0.46	1		01/30/23 15:26		
Vinyl chloride	175	ug/L	2.0	0.13	1		01/30/23 15:26		
Xylene (Total)	ND	ug/L	10.0	0.38	1		01/30/23 15:26		
Surrogates		- 3						 -	
Dibromofluoromethane (S)	114	%.	82-128		1		01/30/23 15:26	1868-53-7	
4-Bromofluorobenzene (S)	109	%.	79-124		1		01/30/23 15:26	460-00-4	
Toluene-d8 (S)	108	%.	73-122		1		01/30/23 15:26	2037-26-5	

Project: GE Indy
Pace Project No.: 50336060

Date: 02/09/2023 08:13 AM

Sample: MW-133-012323	Lab ID:	50336060006	Collected	d: 01/23/23	16:20	Received: 01	/24/23 13:45	Matrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
200 mov malana	•	ytical Services		lis					
Acetone	ND	ug/L	100	3.6	1		01/30/23 15:5	66 67-64-1	
Acrolein	ND	ug/L	50.0	3.5	1		01/30/23 15:5		
Acrylonitrile	ND	ug/L	100	1.3	1		01/30/23 15:5		
Benzene	ND	ug/L	5.0	0.30	1		01/30/23 15:5		
Bromobenzene	ND	ug/L	5.0	0.30	1		01/30/23 15:5		
Bromochloromethane	ND	ug/L	5.0	0.10	1		01/30/23 15:5		
Bromodichloromethane	ND ND	ug/L ug/L	5.0	0.10	1		01/30/23 15:5		
Bromoform	ND ND	ug/L ug/L	5.0	0.14	1		01/30/23 15:5		
Bromomethane	ND ND	-	5.0	0.10	1		01/30/23 15:5		
		ug/L							
2-Butanone (MEK)	ND	ug/L	25.0	0.92	1		01/30/23 15:5		
n-Butylbenzene	ND	ug/L	5.0	0.37	1		01/30/23 15:5		
sec-Butylbenzene	ND	ug/L	5.0	0.37	1		01/30/23 15:5		
ert-Butylbenzene	ND	ug/L	5.0	0.41	1		01/30/23 15:5		
Carbon disulfide	ND	ug/L	10.0	0.29	1		01/30/23 15:5		
Carbon tetrachloride	ND	ug/L	5.0	0.25	1		01/30/23 15:5		
Chlorobenzene	ND	ug/L	5.0	0.28	1		01/30/23 15:5	66 108-90-7	
Chloroethane	ND	ug/L	5.0	0.15	1		01/30/23 15:5	66 75-00-3	
Chloroform	ND	ug/L	5.0	0.60	1		01/30/23 15:5	66 67-66-3	
Chloromethane	ND	ug/L	5.0	0.16	1		01/30/23 15:5	66 74-87-3	
2-Chlorotoluene	ND	ug/L	5.0	0.36	1		01/30/23 15:5	6 95-49-8	
1-Chlorotoluene	ND	ug/L	5.0	0.34	1		01/30/23 15:5	6 106-43-4	
Dibromochloromethane	ND	ug/L	5.0	0.20	1		01/30/23 15:5	6 124-48-1	
,2-Dibromoethane (EDB)	ND	ug/L	5.0	0.19	1		01/30/23 15:5	6 106-93-4	
Dibromomethane	ND	ug/L	5.0	0.16	1		01/30/23 15:5	6 74-95-3	
1,2-Dichlorobenzene	ND	ug/L	5.0	0.26	1		01/30/23 15:5	6 95-50-1	
1,3-Dichlorobenzene	ND	ug/L	5.0	0.37	1		01/30/23 15:5	6 541-73-1	
1,4-Dichlorobenzene	ND	ug/L	5.0	0.30	1		01/30/23 15:5	6 106-46-7	
rans-1,4-Dichloro-2-butene	ND	ug/L	100	0.33	1		01/30/23 15:5		
Dichlorodifluoromethane	ND	ug/L	5.0	0.17	1		01/30/23 15:5		
I,1-Dichloroethane	8.4	ug/L	5.0	0.28	1		01/30/23 15:5		
1,2-Dichloroethane	ND	ug/L	5.0	0.17	1		01/30/23 15:5		
1,1-Dichloroethene	5.5	ug/L	5.0	0.29	1		01/30/23 15:5		
cis-1,2-Dichloroethene	583	ug/L	50.0	2.5	10		01/30/23 19:5		
rans-1,2-Dichloroethene			5.0		1		01/30/23 15:5		
1,2-Dichloropropane	81.2 ND	ug/L ug/L	5.0	0.36 0.23	1		01/30/23 15:5		
	ND ND	-	5.0	0.23	1		01/30/23 15:5		
,3-Dichloropropane		ug/L							
2,2-Dichloropropane	ND	ug/L	5.0	0.27	1		01/30/23 15:5		
1,1-Dichloropropene	ND	ug/L	5.0	0.29	1		01/30/23 15:5		
cis-1,3-Dichloropropene	ND	ug/L	5.0	0.21	1			66 10061-01-5	
rans-1,3-Dichloropropene	ND	ug/L	5.0	0.19	1			66 10061-02-6	
Ethylbenzene	ND	ug/L	5.0	0.38	1		01/30/23 15:5		
Ethyl methacrylate	ND	ug/L	100	0.15	1		01/30/23 15:5		
Hexachloro-1,3-butadiene	ND	ug/L	5.0	0.38	1		01/30/23 15:5		
n-Hexane	ND	ug/L	5.0	0.17	1		01/30/23 15:5		
2-Hexanone	ND	ug/L	25.0	0.81	1		01/30/23 15:5	6 591-78-6	

Project: GE Indy
Pace Project No.: 50336060

Date: 02/09/2023 08:13 AM

Sample: MW-133-012323	Lab ID:	50336060006	Collected	l: 01/23/23	3 16:20	Received: 01	/24/23 13:45 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Ana	lytical Services	- Indianapo	is					
lodomethane	ND	ug/L	10.0	0.25	1		01/30/23 15:56	74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	5.0	0.38	1		01/30/23 15:56	98-82-8	
p-Isopropyltoluene	ND	ug/L	5.0	0.41	1		01/30/23 15:56	99-87-6	
Methylene Chloride	ND	ug/L	5.0	0.70	1		01/30/23 15:56	75-09-2	
1-Methylnaphthalene	ND	ug/L	10.0	0.23	1		01/30/23 15:56	90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	0.23	1		01/30/23 15:56	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	0.88	1		01/30/23 15:56	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	4.0	0.15	1		01/30/23 15:56	1634-04-4	
Naphthalene	ND	ug/L	1.2	0.20	1		01/30/23 15:56	91-20-3	
n-Propylbenzene	ND	ug/L	5.0	0.39	1		01/30/23 15:56	103-65-1	
Styrene	ND	ug/L	5.0	0.30	1		01/30/23 15:56	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.28	1		01/30/23 15:56	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.20	1		01/30/23 15:56	79-34-5	
Tetrachloroethene	ND	ug/L	5.0	0.38	1		01/30/23 15:56	127-18-4	
Toluene	ND	ug/L	5.0	0.44	1		01/30/23 15:56	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	0.32	1		01/30/23 15:56	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	5.0	0.33	1		01/30/23 15:56	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	5.0	0.30	1		01/30/23 15:56	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	5.0	0.28	1		01/30/23 15:56	79-00-5	
Trichloroethene	42.9	ug/L	5.0	0.37	1		01/30/23 15:56	79-01-6	
Trichlorofluoromethane	ND	ug/L	5.0	0.16	1		01/30/23 15:56	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	5.0	0.20	1		01/30/23 15:56	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/L	5.0	0.35	1		01/30/23 15:56	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.37	1		01/30/23 15:56	108-67-8	
Vinyl acetate	ND	ug/L	50.0	0.46	1		01/30/23 15:56	108-05-4	
Vinyl chloride	345	ug/L	20.0	1.4	10		01/31/23 19:52		
Xylene (Total)	ND	ug/L	10.0	0.38	1		01/30/23 15:56	1330-20-7	
Surrogates		Ü							
Dibromofluoromethane (S)	113	%.	82-128		1		01/30/23 15:56	1868-53-7	
4-Bromofluorobenzene (S)	108	%.	79-124		1		01/30/23 15:56	460-00-4	
Toluene-d8 (S)	107	%.	73-122		1		01/30/23 15:56	2037-26-5	

Project: GE Indy
Pace Project No.: 50336060

Date: 02/09/2023 08:13 AM

Sample: MW-312-012323	Lab ID:	50336060007	Collected	d: 01/23/23	3 17:00	Received: 0'	1/24/23 13:45	Matrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qua
3260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	•	ytical Services		lis					
Acetone	ND	ug/L	100	3.6	1		01/30/23 16:2	27 67-64-1	
Acrolein	ND	ug/L	50.0	3.5	1		01/30/23 16:2	27 107-02-8	
Acrylonitrile	ND	ug/L	100	1.3	1		01/30/23 16:2	27 107-13-1	
Benzene	ND	ug/L	5.0	0.30	1		01/30/23 16:2	27 71-43-2	
Bromobenzene	ND	ug/L	5.0	0.30	1		01/30/23 16:2		
Bromochloromethane	ND	ug/L	5.0	0.10	1		01/30/23 16:2	27 74-97-5	
Bromodichloromethane	ND	ug/L	5.0	0.14	1		01/30/23 16:2		
Bromoform	ND	ug/L	5.0	0.16	1		01/30/23 16:2		
Bromomethane	ND	ug/L	5.0	0.22	1		01/30/23 16:2		
2-Butanone (MEK)	ND	ug/L	25.0	0.92	1		01/30/23 16:2		
n-Butylbenzene	ND	ug/L	5.0	0.37	1		01/30/23 16:2		
sec-Butylbenzene	ND	ug/L	5.0	0.37	1		01/30/23 16:2		
ert-Butylbenzene	ND	ug/L	5.0	0.41	1		01/30/23 16:2		
Carbon disulfide	ND	ug/L	10.0	0.29	1		01/30/23 16:2		
Carbon tetrachloride	ND	ug/L	5.0	0.25	1		01/30/23 16:2		
Chlorobenzene	ND ND	ug/L ug/L	5.0	0.23	1		01/30/23 16:2		
Chloroethane	ND ND	-	5.0	0.28	1		01/30/23 16:2		
Chloroform	ND ND	ug/L	5.0	0.13	1		01/30/23 16:2		
		ug/L			1				
Chloromethane	ND	ug/L	5.0	0.16	1		01/30/23 16:2		
2-Chlorotoluene	ND	ug/L	5.0	0.36			01/30/23 16:2		
4-Chlorotoluene	ND	ug/L	5.0	0.34	1		01/30/23 16:2		
Dibromochloromethane	ND	ug/L	5.0	0.20	1		01/30/23 16:2		
1,2-Dibromoethane (EDB)	ND	ug/L	5.0	0.19	1		01/30/23 16:2		
Dibromomethane	ND	ug/L	5.0	0.16	1		01/30/23 16:2		
1,2-Dichlorobenzene	ND	ug/L	5.0	0.26	1		01/30/23 16:2		
1,3-Dichlorobenzene	ND	ug/L	5.0	0.37	1		01/30/23 16:2		
1,4-Dichlorobenzene	ND	ug/L	5.0	0.30	1		01/30/23 16:2		
rans-1,4-Dichloro-2-butene	ND	ug/L	100	0.33	1		01/30/23 16:2		
Dichlorodifluoromethane	ND	ug/L	5.0	0.17	1		01/30/23 16:2		
1,1-Dichloroethane	ND	ug/L	5.0	0.28	1		01/30/23 16:2		
1,2-Dichloroethane	ND	ug/L	5.0	0.17	1		01/30/23 16:2		
I,1-Dichloroethene	ND	ug/L	5.0	0.29	1		01/30/23 16:2		
cis-1,2-Dichloroethene	86.6	ug/L	5.0	0.30	1		01/30/23 16:2		
rans-1,2-Dichloroethene	ND	ug/L	5.0	0.36	1		01/30/23 16:2	27 156-60-5	
1,2-Dichloropropane	ND	ug/L	5.0	0.23	1		01/30/23 16:2	27 78-87-5	
1,3-Dichloropropane	ND	ug/L	5.0	0.15	1		01/30/23 16:2	27 142-28-9	
2,2-Dichloropropane	ND	ug/L	5.0	0.27	1		01/30/23 16:2	27 594-20-7	
1,1-Dichloropropene	ND	ug/L	5.0	0.29	1		01/30/23 16:2		
cis-1,3-Dichloropropene	ND	ug/L	5.0	0.21	1		01/30/23 16:2	27 10061-01-5	
rans-1,3-Dichloropropene	ND	ug/L	5.0	0.19	1		01/30/23 16:2	27 10061-02-6	
Ethylbenzene	ND	ug/L	5.0	0.38	1		01/30/23 16:2	27 100-41-4	
Ethyl methacrylate	ND	ug/L	100	0.15	1		01/30/23 16:2	27 97-63-2	
Hexachloro-1,3-butadiene	ND	ug/L	5.0	0.38	1		01/30/23 16:2	27 87-68-3	
n-Hexane	ND	ug/L	5.0	0.17	1		01/30/23 16:2	27 110-54-3	
2-Hexanone	ND	ug/L	25.0	0.81	1		01/30/23 16:2	27 591-78-6	

Project: GE Indy
Pace Project No.: 50336060

Date: 02/09/2023 08:13 AM

Sample: MW-312-012323	Lab ID:	50336060007	Collected:	01/23/23	3 17:00	Received: 01	/24/23 13:45 N	Matrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	5030/8260						
	Pace Ana	lytical Services	- Indianapolis	3					
lodomethane	ND	ug/L	10.0	0.25	1		01/30/23 16:2	7 74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	5.0	0.38	1		01/30/23 16:2	7 98-82-8	
p-lsopropyltoluene	ND	ug/L	5.0	0.41	1		01/30/23 16:2	7 99-87-6	
Methylene Chloride	ND	ug/L	5.0	0.70	1		01/30/23 16:2	7 75-09-2	
1-Methylnaphthalene	ND	ug/L	10.0	0.23	1		01/30/23 16:2	7 90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	0.23	1		01/30/23 16:2		
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	0.88	1		01/30/23 16:2	7 108-10-1	
Methyl-tert-butyl ether	ND	ug/L	4.0	0.15	1		01/30/23 16:2	7 1634-04-4	
Naphthalene	ND	ug/L	1.2	0.20	1		01/30/23 16:2	7 91-20-3	
n-Propylbenzene	ND	ug/L	5.0	0.39	1		01/30/23 16:2	7 103-65-1	
Styrene	ND	ug/L	5.0	0.30	1		01/30/23 16:2	7 100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.28	1		01/30/23 16:2	7 630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.20	1		01/30/23 16:2	7 79-34-5	
Tetrachloroethene	ND	ug/L	5.0	0.38	1		01/30/23 16:2	7 127-18-4	
Toluene	ND	ug/L	5.0	0.44	1		01/30/23 16:2	7 108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	0.32	1		01/30/23 16:2	7 87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	5.0	0.33	1		01/30/23 16:2	7 120-82-1	
1,1,1-Trichloroethane	ND	ug/L	5.0	0.30	1		01/30/23 16:2	7 71-55-6	
1,1,2-Trichloroethane	ND	ug/L	5.0	0.28	1		01/30/23 16:2	7 79-00-5	
Trichloroethene	55.5	ug/L	5.0	0.37	1		01/30/23 16:2	7 79-01-6	
Trichlorofluoromethane	ND	ug/L	5.0	0.16	1		01/30/23 16:2	7 75-69-4	
1,2,3-Trichloropropane	ND	ug/L	5.0	0.20	1		01/30/23 16:2	7 96-18-4	
1,2,4-Trimethylbenzene	ND	ug/L	5.0	0.35	1		01/30/23 16:2	7 95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.37	1		01/30/23 16:2	7 108-67-8	
Vinyl acetate	ND	ug/L	50.0	0.46	1		01/30/23 16:2	7 108-05-4	
Vinyl chloride	35.0	ug/L	2.0	0.13	1		01/30/23 16:2	7 75-01-4	
Xylene (Total)	ND	ug/L	10.0	0.38	1		01/30/23 16:2	7 1330-20-7	
Surrogates		-							
Dibromofluoromethane (S)	115	%.	82-128		1		01/30/23 16:2	7 1868-53-7	
4-Bromofluorobenzene (S)	110	%.	79-124		1		01/30/23 16:2	7 460-00-4	
Toluene-d8 (S)	109	%.	73-122		1		01/30/23 16:2	7 2037-26-5	

Project: GE Indy
Pace Project No.: 50336060

Date: 02/09/2023 08:13 AM

Sample: MW-253-012423	Lab ID:	50336060008	Collecte	d: 01/24/2	3 09:05	Received: 0	1/24/23 13:45 N	latrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 50	030/8260						
	•	lytical Services -		olis					
Acetone	ND	ug/L	100	3.6	1		01/30/23 16:57	7 67-64-1	
Acrolein	ND	ug/L	50.0	3.5	1		01/30/23 16:57		
Acrylonitrile	ND	ug/L	100	1.3	1		01/30/23 16:57		
Benzene	25.2	ug/L	5.0	0.30	1		01/30/23 16:57		
Bromobenzene	ND	ug/L	5.0	0.30	1		01/30/23 16:57		
Bromochloromethane	ND	ug/L	5.0	0.10	1		01/30/23 16:57		
Bromodichloromethane	ND	ug/L	5.0	0.14	1		01/30/23 16:57		
Bromoform	ND	ug/L	5.0	0.14	1		01/30/23 16:57		
Bromomethane	ND	ug/L	5.0	0.22	1		01/30/23 16:57		
2-Butanone (MEK)	ND	ug/L	25.0	0.22	1		01/30/23 16:57		
n-Butylbenzene	ND ND	ug/L ug/L	5.0	0.92	1		01/30/23 16:57		
sec-Butylbenzene	ND	ug/L	5.0	0.37	1		01/30/23 16:57		
tert-Butylbenzene	ND ND	ug/L	5.0	0.37	1		01/30/23 16:57		
Carbon disulfide	ND	ug/L	10.0	0.41	1		01/30/23 16:57		
Carbon tetrachloride	ND	ug/L	5.0	0.25	1		01/30/23 16:57		
Chlorobenzene	ND ND	ug/L ug/L	5.0	0.23	1		01/30/23 16:57		
Chloroethane	797	-		1.5	10		01/30/23 10:57		
Chloroform	ND	ug/L	50.0 5.0	0.60	10		01/30/23 16:57		
Chloromethane	ND ND	ug/L	5.0	0.80	1		01/30/23 16:57		
		ug/L							
2-Chlorotoluene	ND	ug/L	5.0	0.36	1 1		01/30/23 16:57		
4-Chlorotoluene	ND	ug/L	5.0	0.34			01/30/23 16:57		
Dibromochloromethane	ND	ug/L	5.0	0.20	1		01/30/23 16:57		
1,2-Dibromoethane (EDB)	ND	ug/L	5.0	0.19	1		01/30/23 16:57		
Dibromomethane	ND	ug/L	5.0	0.16	1		01/30/23 16:57		
1,2-Dichlorobenzene	ND	ug/L	5.0	0.26	1		01/30/23 16:57		
1,3-Dichlorobenzene	ND	ug/L	5.0	0.37	1		01/30/23 16:57		
1,4-Dichlorobenzene	ND	ug/L	5.0	0.30	1		01/30/23 16:57		
trans-1,4-Dichloro-2-butene	ND	ug/L	100	0.33	1		01/30/23 16:57		
Dichlorodifluoromethane	ND	ug/L	5.0	0.17	1		01/30/23 16:57		
1,1-Dichloroethane	671	ug/L	50.0	2.8	10		01/31/23 20:07		
1,2-Dichloroethane	123	ug/L	5.0	0.17	1		01/30/23 16:57		
1,1-Dichloroethene	33.7	ug/L	5.0	0.29	1		01/30/23 16:57		
cis-1,2-Dichloroethene	19300	ug/L	500	29.8	100		01/31/23 20:37		
trans-1,2-Dichloroethene	188	ug/L	5.0	0.36	1		01/30/23 16:57		
1,2-Dichloropropane	ND	ug/L	5.0	0.23	1		01/30/23 16:57		
1,3-Dichloropropane	ND	ug/L	5.0	0.15	1		01/30/23 16:57		
2,2-Dichloropropane	ND	ug/L	5.0	0.27	1		01/30/23 16:57		
1,1-Dichloropropene	ND	ug/L	5.0	0.29	1		01/30/23 16:57		
cis-1,3-Dichloropropene	ND	ug/L	5.0	0.21	1		01/30/23 16:57		
trans-1,3-Dichloropropene	ND	ug/L	5.0	0.19	1		01/30/23 16:57		
Ethylbenzene	ND	ug/L	5.0	0.38	1		01/30/23 16:57		
Ethyl methacrylate	ND	ug/L	100	0.15	1		01/30/23 16:57		
Hexachloro-1,3-butadiene	ND	ug/L	5.0	0.38	1		01/30/23 16:57	7 87-68-3	
n-Hexane	ND	ug/L	5.0	0.17	1		01/30/23 16:57	7 110-54-3	
2-Hexanone	ND	ug/L	25.0	0.81	1		01/30/23 16:57	7 591-78-6	

Project: GE Indy
Pace Project No.: 50336060

Date: 02/09/2023 08:13 AM

Sample: MW-253-012423	Lab ID:	50336060008	Collected	d: 01/24/23	3 09:05	Received: 01	/24/23 13:45 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Ana	lytical Services	- Indianapo	lis					
lodomethane	ND	ug/L	10.0	0.25	1		01/30/23 16:57	74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	5.0	0.38	1		01/30/23 16:57	98-82-8	
p-Isopropyltoluene	ND	ug/L	5.0	0.41	1		01/30/23 16:57	99-87-6	
Methylene Chloride	ND	ug/L	5.0	0.70	1		01/30/23 16:57	75-09-2	
1-Methylnaphthalene	ND	ug/L	10.0	0.23	1		01/30/23 16:57	90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	0.23	1		01/30/23 16:57	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	0.88	1		01/30/23 16:57	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	4.0	0.15	1		01/30/23 16:57	1634-04-4	
Naphthalene	ND	ug/L	1.2	0.20	1		01/30/23 16:57	91-20-3	
n-Propylbenzene	ND	ug/L	5.0	0.39	1		01/30/23 16:57	103-65-1	
Styrene	ND	ug/L	5.0	0.30	1		01/30/23 16:57	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.28	1		01/30/23 16:57	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.20	1		01/30/23 16:57	79-34-5	
Tetrachloroethene	ND	ug/L	5.0	0.38	1		01/30/23 16:57	127-18-4	
Toluene	ND	ug/L	5.0	0.44	1		01/30/23 16:57	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	0.32	1		01/30/23 16:57	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	5.0	0.33	1		01/30/23 16:57	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	5.0	0.30	1		01/30/23 16:57	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	5.0	0.28	1		01/30/23 16:57	79-00-5	
Trichloroethene	ND	ug/L	5.0	0.37	1		01/30/23 16:57	79-01-6	
Trichlorofluoromethane	ND	ug/L	5.0	0.16	1		01/30/23 16:57		
1,2,3-Trichloropropane	ND	ug/L	5.0	0.20	1		01/30/23 16:57		
1,2,4-Trimethylbenzene	ND	ug/L	5.0	0.35	1		01/30/23 16:57	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.37	1		01/30/23 16:57		
Vinyl acetate	ND	ug/L	50.0	0.46	1		01/30/23 16:57		
Vinyl chloride	2300	ug/L	20.0	1.3	10		01/31/23 20:07		
Xylene (Total)	ND	ug/L	10.0	0.38	1		01/30/23 16:57		
Surrogates	2	g- -	,	5.55	•		,		
Dibromofluoromethane (S)	109	%.	82-128		1		01/30/23 16:57	1868-53-7	
4-Bromofluorobenzene (S)	107	%.	79-124		1		01/30/23 16:57	460-00-4	
Toluene-d8 (S)	108	%.	73-122		1		01/30/23 16:57		

Project: GE Indy
Pace Project No.: 5033606

Date: 02/09/2023 08:13 AM

Sample: MW-163-012423	Lab ID:	50336060009	Collected	l: 01/24/23	3 09:30	Received: 01	I/24/23 13:45 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
3260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Ana	lytical Services	- Indianapol	is					
Acetone	ND	ug/L	5000	188	50		01/30/23 20:15	67-64-1	
Acrolein	ND	ug/L	2500	118	50		01/30/23 20:15	107-02-8	
Acrylonitrile	ND	ug/L	5000	53.0	50		01/30/23 20:15		
Benzene	ND	ug/L	250	13.2	50		01/30/23 20:15	71-43-2	
Bromobenzene	ND	ug/L	250	12.2	50		01/30/23 20:15		
Bromochloromethane	ND	ug/L	250	11.4	50		01/30/23 20:15		
Bromodichloromethane	ND	ug/L	250	9.3	50		01/30/23 20:15		
Bromoform	ND	ug/L	250	9.2	50		01/30/23 20:15		
Bromomethane	ND	ug/L	250	7.8	50		01/30/23 20:15		
2-Butanone (MEK)	ND ND	ug/L	1250	39.6	50		01/30/23 20:15		
n-Butylbenzene	ND ND	ug/L	250	18.6	50		01/30/23 20:15		
sec-Butylbenzene	ND ND	ug/L	250	17.0	50		01/30/23 20:15		
ert-Butylbenzene	ND ND	ug/L ug/L	250	17.0	50		01/30/23 20:15		
Carbon disulfide	ND ND	-	500	13.9	50		01/30/23 20:15		
Carbon disdilide Carbon tetrachloride		ug/L			50		01/30/23 20:15		
	ND	ug/L	250	13.0					
Chlorobenzene	ND	ug/L	250	14.6	50		01/30/23 20:15		
Chloroethane	ND	ug/L	250	7.4	50		01/30/23 20:15		
Chloroform	ND	ug/L	250	29.0	50		01/30/23 20:15		
Chloromethane	ND	ug/L	250	8.4	50		01/30/23 20:15		
2-Chlorotoluene	ND	ug/L	250	16.0	50		01/30/23 20:15		
4-Chlorotoluene	ND	ug/L	250	14.8	50		01/30/23 20:15		
Dibromochloromethane	ND	ug/L	250	6.4	50		01/30/23 20:15		
1,2-Dibromoethane (EDB)	ND	ug/L	250	9.8	50		01/30/23 20:15		
Dibromomethane	ND	ug/L	250	6.8	50		01/30/23 20:15	74-95-3	
1,2-Dichlorobenzene	ND	ug/L	250	12.8	50		01/30/23 20:15	95-50-1	
1,3-Dichlorobenzene	ND	ug/L	250	16.6	50		01/30/23 20:15	541-73-1	
1,4-Dichlorobenzene	ND	ug/L	250	13.5	50		01/30/23 20:15	106-46-7	
rans-1,4-Dichloro-2-butene	ND	ug/L	5000	17.4	50		01/30/23 20:15	110-57-6	
Dichlorodifluoromethane	ND	ug/L	250	5.7	50		01/30/23 20:15	75-71-8	
1,1-Dichloroethane	ND	ug/L	250	11.4	50		01/30/23 20:15	75-34-3	
1,2-Dichloroethane	ND	ug/L	250	9.2	50		01/30/23 20:15	107-06-2	
1,1-Dichloroethene	ND	ug/L	250	10.8	50		01/30/23 20:15	75-35-4	
cis-1,2-Dichloroethene	7070	ug/L	250	12.6	50		01/30/23 20:15	156-59-2	
rans-1,2-Dichloroethene	ND	ug/L	250	18.0	50		01/30/23 20:15	156-60-5	
1,2-Dichloropropane	ND	ug/L	250	11.8	50		01/30/23 20:15	78-87-5	
, 3-Dichloropropane	ND	ug/L	250	8.3	50		01/30/23 20:15	142-28-9	
2,2-Dichloropropane	ND	ug/L	250	14.9	50		01/30/23 20:15		
I,1-Dichloropropene	ND	ug/L	250	14.3	50		01/30/23 20:15		
cis-1,3-Dichloropropene	ND	ug/L	250	11.3	50		01/30/23 20:15		
trans-1,3-Dichloropropene	ND	ug/L	250	8.4	50		01/30/23 20:15		
Ethylbenzene	ND	ug/L	250	16.7	50		01/30/23 20:15		
Ethyl methacrylate	ND	ug/L	5000	9.8	50		01/30/23 20:15		
Hexachloro-1,3-butadiene	ND ND	ug/L	250	15.9	50		01/30/23 20:15		
n-Hexane	ND ND	ug/L ug/L	250	9.2	50		01/30/23 20:15		
2-Hexanone	ND ND	ug/L ug/L	1250	39.7	50		01/30/23 20:15		

Project: GE Indy
Pace Project No.: 50336060

Date: 02/09/2023 08:13 AM

Sample: MW-163-012423	Lab ID:	50336060009	Collected	d: 01/24/23	3 09:30	Received: 01	/24/23 13:45 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Ana	lytical Services	- Indianapo	lis					
lodomethane	ND	ug/L	500	11.0	50		01/30/23 20:15	74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	250	18.3	50		01/30/23 20:15	98-82-8	
p-Isopropyltoluene	ND	ug/L	250	19.8	50		01/30/23 20:15	99-87-6	
Methylene Chloride	ND	ug/L	250	36.4	50		01/30/23 20:15	75-09-2	
1-Methylnaphthalene	ND	ug/L	500	8.6	50		01/30/23 20:15	90-12-0	
2-Methylnaphthalene	ND	ug/L	500	9.5	50		01/30/23 20:15	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	1250	45.9	50		01/30/23 20:15	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	200	8.4	50		01/30/23 20:15	1634-04-4	
Naphthalene	ND	ug/L	60.0	11.4	50		01/30/23 20:15	91-20-3	
n-Propylbenzene	ND	ug/L	250	16.7	50		01/30/23 20:15	103-65-1	
Styrene	ND	ug/L	250	13.2	50		01/30/23 20:15	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	250	11.8	50		01/30/23 20:15	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	250	11.2	50		01/30/23 20:15		
Tetrachloroethene	ND	ug/L	250	14.7	50		01/30/23 20:15	127-18-4	
Toluene	ND	ug/L	250	21.4	50		01/30/23 20:15	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	250	14.1	50		01/30/23 20:15	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	250	17.2	50		01/30/23 20:15		
1,1,1-Trichloroethane	ND	ug/L	250	13.8	50		01/30/23 20:15	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	250	7.0	50		01/30/23 20:15		
Trichloroethene	ND	ug/L	250	14.9	50		01/30/23 20:15		
Trichlorofluoromethane	ND	ug/L	250	7.1	50		01/30/23 20:15		
1,2,3-Trichloropropane	ND	ug/L	250	14.4	50		01/30/23 20:15		
1,2,4-Trimethylbenzene	ND	ug/L	250	17.8	50		01/30/23 20:15	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	250	18.0	50		01/30/23 20:15	108-67-8	
Vinyl acetate	ND	ug/L	2500	22.6	50		01/30/23 20:15		
Vinyl chloride	1460	ug/L	100	7.2	50		01/30/23 20:15		
Xylene (Total)	ND	ug/L	500	18.6	50		01/30/23 20:15		
Surrogates		- 3			- -				
Dibromofluoromethane (S)	112	%.	82-128		50		01/30/23 20:15	1868-53-7	D4
4-Bromofluorobenzene (S)	108	%.	79-124		50		01/30/23 20:15	460-00-4	
Toluene-d8 (S)	106	%.	73-122		50		01/30/23 20:15	2037-26-5	

Project: GE Indy
Pace Project No.: 50336060

Date: 02/09/2023 08:13 AM

Sample: MW-303-012423	Lab ID:	50336060010	Collecte	d: 01/24/23	3 09:50	Received: 0'	1/24/23 13:45 N	Natrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 50	30/8260						
		lytical Services -		lis					
Acetone	ND	ug/L	500	18.8	5		01/30/23 20:4	5 67-64-1	
Acrolein	ND	ug/L	250	11.8	5		01/30/23 20:4		
Acrylonitrile	ND	ug/L	500	5.3	5		01/30/23 20:4		
Benzene	ND	ug/L	25.0	1.3	5		01/30/23 20:4		
Bromobenzene	ND	ug/L	25.0	1.2	5		01/30/23 20:4	-	
Bromochloromethane	ND	ug/L	25.0	1.1	5		01/30/23 20:4		
Bromodichloromethane	ND	ug/L	25.0	0.93	5		01/30/23 20:4		
Bromoform	ND	ug/L	25.0	0.92	5		01/30/23 20:4		
Bromomethane	ND	ug/L	25.0	0.78	5		01/30/23 20:4		
2-Butanone (MEK)	ND	ug/L	125	4.0	5		01/30/23 20:4		
	ND ND	ug/L ug/L	25.0	1.9	5		01/30/23 20:4		
n-Butylbenzene					5 5				
sec-Butylbenzene	ND	ug/L	25.0	1.7			01/30/23 20:4 01/30/23 20:4		
tert-Butylbenzene	ND	ug/L	25.0	1.9	5				
Carbon disulfide	ND	ug/L	50.0	1.4	5		01/30/23 20:4		
Carbon tetrachloride	ND	ug/L	25.0	1.3	5		01/30/23 20:4		
Chlorobenzene	ND	ug/L	25.0	1.5	5		01/30/23 20:4		
Chloroethane	ND	ug/L	25.0	0.74	5		01/30/23 20:4		
Chloroform	ND	ug/L	25.0	2.9	5		01/30/23 20:4		
Chloromethane	ND	ug/L	25.0	0.84	5		01/30/23 20:4		
2-Chlorotoluene	ND	ug/L	25.0	1.6	5		01/30/23 20:4		
4-Chlorotoluene	ND	ug/L	25.0	1.5	5		01/30/23 20:4	5 106-43-4	
Dibromochloromethane	ND	ug/L	25.0	0.64	5		01/30/23 20:4		
1,2-Dibromoethane (EDB)	ND	ug/L	25.0	0.98	5		01/30/23 20:4	5 106-93-4	
Dibromomethane	ND	ug/L	25.0	0.68	5		01/30/23 20:4	5 74-95-3	
1,2-Dichlorobenzene	ND	ug/L	25.0	1.3	5		01/30/23 20:4	5 95-50-1	
1,3-Dichlorobenzene	ND	ug/L	25.0	1.7	5		01/30/23 20:4	5 541-73-1	
1,4-Dichlorobenzene	ND	ug/L	25.0	1.4	5		01/30/23 20:4	5 106-46-7	
rans-1,4-Dichloro-2-butene	ND	ug/L	500	1.7	5		01/30/23 20:4	5 110-57-6	
Dichlorodifluoromethane	ND	ug/L	25.0	0.57	5		01/30/23 20:4	5 75-71-8	
1,1-Dichloroethane	ND	ug/L	25.0	1.1	5		01/30/23 20:4	5 75-34-3	
1,2-Dichloroethane	ND	ug/L	25.0	0.92	5		01/30/23 20:4	5 107-06-2	
1,1-Dichloroethene	ND	ug/L	25.0	1.1	5		01/30/23 20:4	5 75-35-4	
cis-1,2-Dichloroethene	1060	ug/L	25.0	1.3	5		01/30/23 20:4	5 156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	25.0	1.8	5		01/30/23 20:4	5 156-60-5	
1,2-Dichloropropane	ND	ug/L	25.0	1.2	5		01/30/23 20:4		
1,3-Dichloropropane	ND	ug/L	25.0	0.83	5		01/30/23 20:4	5 142-28-9	
2,2-Dichloropropane	ND	ug/L	25.0	1.5	5		01/30/23 20:4		
1,1-Dichloropropene	ND	ug/L	25.0	1.4	5		01/30/23 20:4		
cis-1,3-Dichloropropene	ND	ug/L	25.0	1.1	5			5 10061-01-5	
rans-1,3-Dichloropropene	ND	ug/L	25.0	0.84	5			5 10061-02-6	
Ethylbenzene	ND	ug/L	25.0	1.7	5		01/30/23 20:4		
Ethyl methacrylate	ND	ug/L	500	0.98	5		01/30/23 20:4		
Hexachloro-1,3-butadiene	ND ND	ug/L ug/L	25.0	1.6	5		01/30/23 20:4		
n-Hexane	ND ND	ug/L ug/L	25.0	0.92	5		01/30/23 20:4		
n-nexane 2-Hexanone	ND ND	ug/L ug/L	25.0 125	4.0	5 5		01/30/23 20:4		

Project: GE Indy
Pace Project No.: 50336060

Date: 02/09/2023 08:13 AM

Sample: MW-303-012423	Lab ID:	50336060010	Collecte	d: 01/24/23	3 09:50	Received: 01	/24/23 13:45 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Ana	lytical Services	- Indianapo	lis					
lodomethane	ND	ug/L	50.0	1.1	5		01/30/23 20:45	74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	25.0	1.8	5		01/30/23 20:45	98-82-8	
p-Isopropyltoluene	ND	ug/L	25.0	2.0	5		01/30/23 20:45	99-87-6	
Methylene Chloride	ND	ug/L	25.0	3.6	5		01/30/23 20:45	75-09-2	
1-Methylnaphthalene	ND	ug/L	50.0	0.86	5		01/30/23 20:45	90-12-0	
2-Methylnaphthalene	ND	ug/L	50.0	0.95	5		01/30/23 20:45	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	125	4.6	5		01/30/23 20:45	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	20.0	0.84	5		01/30/23 20:45	1634-04-4	
Naphthalene	ND	ug/L	6.0	1.1	5		01/30/23 20:45	91-20-3	
n-Propylbenzene	ND	ug/L	25.0	1.7	5		01/30/23 20:45	103-65-1	
Styrene	ND	ug/L	25.0	1.3	5		01/30/23 20:45	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	25.0	1.2	5		01/30/23 20:45	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	25.0	1.1	5		01/30/23 20:45	79-34-5	
Tetrachloroethene	ND	ug/L	25.0	1.5	5		01/30/23 20:45	127-18-4	
Toluene	ND	ug/L	25.0	2.1	5		01/30/23 20:45	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	25.0	1.4	5		01/30/23 20:45	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	25.0	1.7	5		01/30/23 20:45	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	25.0	1.4	5		01/30/23 20:45	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	25.0	0.70	5		01/30/23 20:45	79-00-5	
Trichloroethene	ND	ug/L	25.0	1.5	5		01/30/23 20:45	79-01-6	
Trichlorofluoromethane	ND	ug/L	25.0	0.71	5		01/30/23 20:45		
1,2,3-Trichloropropane	ND	ug/L	25.0	1.4	5		01/30/23 20:45	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/L	25.0	1.8	5		01/30/23 20:45	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	25.0	1.8	5		01/30/23 20:45	108-67-8	
Vinyl acetate	ND	ug/L	250	2.3	5		01/30/23 20:45	108-05-4	
Vinyl chloride	402	ug/L	10.0	0.72	5		01/30/23 20:45		
Xylene (Total)	ND	ug/L	50.0	1.9	5		01/30/23 20:45		
Surrogates		- 3			-			 -	
Dibromofluoromethane (S)	109	%.	82-128		5		01/30/23 20:45	1868-53-7	D4
4-Bromofluorobenzene (S)	108	%.	79-124		5		01/30/23 20:45	460-00-4	
Toluene-d8 (S)	109	%.	73-122		5		01/30/23 20:45	2037-26-5	

Project: GE Indy
Pace Project No.: 5033606

Date: 02/09/2023 08:13 AM

Sample: MW-333-012423	Lab ID:	50336060011	Collected	d: 01/24/23	10:00	Received: 01	I/24/23 13:45 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	-	lytical Services		lis					
Acetone	ND	ug/L	100	3.8	1		01/30/23 21:46	67-64-1	
Acrolein	ND	ug/L	50.0	2.4	1		01/30/23 21:46	107-02-8	
Acrylonitrile	ND	ug/L	100	1.1	1		01/30/23 21:46	107-13-1	
Benzene	10.1	ug/L	5.0	0.26	1		01/30/23 21:46	71-43-2	
Bromobenzene	ND	ug/L	5.0	0.24	1		01/30/23 21:46		
Bromochloromethane	ND	ug/L	5.0	0.23	1		01/30/23 21:46		
Bromodichloromethane	ND	ug/L	5.0	0.19	1		01/30/23 21:46		
Bromoform	ND	ug/L	5.0	0.18	1		01/30/23 21:46		
Bromomethane	ND	ug/L	5.0	0.16	1		01/30/23 21:46		
2-Butanone (MEK)	ND	ug/L	25.0	0.79	1		01/30/23 21:46		
n-Butylbenzene	ND	ug/L	5.0	0.73	1		01/30/23 21:46		
sec-Butylbenzene	ND ND	ug/L	5.0	0.34	1		01/30/23 21:46		
ert-Butylbenzene	ND ND	ug/L ug/L	5.0	0.34	1		01/30/23 21:46		
Carbon disulfide	ND ND	-	10.0	0.38	1		01/30/23 21:46		
		ug/L							
Carbon tetrachloride	ND	ug/L	5.0	0.26	1		01/30/23 21:46		
Chlorobenzene	ND	ug/L	5.0	0.29	1		01/30/23 21:46		
Chloroethane	152	ug/L	5.0	0.15	1		01/30/23 21:46		
Chloroform	ND	ug/L	5.0	0.58	1		01/30/23 21:46		
Chloromethane	ND	ug/L	5.0	0.17	1		01/30/23 21:46		
2-Chlorotoluene	ND	ug/L	5.0	0.32	1		01/30/23 21:46		
4-Chlorotoluene	ND	ug/L	5.0	0.30	1		01/30/23 21:46		
Dibromochloromethane	ND	ug/L	5.0	0.13	1		01/30/23 21:46		
1,2-Dibromoethane (EDB)	ND	ug/L	5.0	0.20	1		01/30/23 21:46		
Dibromomethane	ND	ug/L	5.0	0.14	1		01/30/23 21:46	74-95-3	
1,2-Dichlorobenzene	ND	ug/L	5.0	0.26	1		01/30/23 21:46	95-50-1	
1,3-Dichlorobenzene	ND	ug/L	5.0	0.33	1		01/30/23 21:46	541-73-1	
1,4-Dichlorobenzene	ND	ug/L	5.0	0.27	1		01/30/23 21:46	106-46-7	
rans-1,4-Dichloro-2-butene	ND	ug/L	100	0.35	1		01/30/23 21:46	110-57-6	
Dichlorodifluoromethane	ND	ug/L	5.0	0.11	1		01/30/23 21:46	75-71-8	
1,1-Dichloroethane	ND	ug/L	5.0	0.23	1		01/30/23 21:46	75-34-3	
1,2-Dichloroethane	28.5	ug/L	5.0	0.18	1		01/30/23 21:46	107-06-2	
1,1-Dichloroethene	23.0	ug/L	5.0	0.22	1		01/30/23 21:46	75-35-4	
cis-1,2-Dichloroethene	11000	ug/L	500	25.1	100		01/31/23 20:22	156-59-2	
rans-1,2-Dichloroethene	108	ug/L	5.0	0.36	1		01/30/23 21:46	156-60-5	
1,2-Dichloropropane	ND	ug/L	5.0	0.24	1		01/30/23 21:46	78-87-5	
,3-Dichloropropane	ND	ug/L	5.0	0.17	1		01/30/23 21:46	142-28-9	
2,2-Dichloropropane	ND	ug/L	5.0	0.30	1		01/30/23 21:46	594-20-7	
I,1-Dichloropropene	ND	ug/L	5.0	0.29	1		01/30/23 21:46		
cis-1,3-Dichloropropene	ND	ug/L	5.0	0.23	1		01/30/23 21:46		
trans-1,3-Dichloropropene	ND	ug/L	5.0	0.17	1		01/30/23 21:46		
Ethylbenzene	ND	ug/L	5.0	0.33	1		01/30/23 21:46		
Ethyl methacrylate	ND ND	ug/L	100	0.20	1		01/30/23 21:46		
Hexachloro-1,3-butadiene	ND ND	ug/L	5.0	0.20	1		01/30/23 21:46		
n-Hexane	ND ND	ug/L ug/L	5.0	0.32	1		01/30/23 21:46		
2-Hexanone	ND ND	ug/L ug/L	25.0	0.18	1		01/30/23 21:46		

Project: GE Indy
Pace Project No.: 50336060

Date: 02/09/2023 08:13 AM

Sample: MW-333-012423	Lab ID:	50336060011	Collected	d: 01/24/23	3 10:00	Received: 01	/24/23 13:45 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF ———	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Ana	lytical Services	- Indianapo	lis					
lodomethane	ND	ug/L	10.0	0.22	1		01/30/23 21:46	74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	5.0	0.37	1		01/30/23 21:46	98-82-8	
p-Isopropyltoluene	ND	ug/L	5.0	0.40	1		01/30/23 21:46	99-87-6	
Methylene Chloride	ND	ug/L	5.0	0.73	1		01/30/23 21:46	75-09-2	
1-Methylnaphthalene	ND	ug/L	10.0	0.17	1		01/30/23 21:46	90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	0.19	1		01/30/23 21:46	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	0.92	1		01/30/23 21:46	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	4.0	0.17	1		01/30/23 21:46	1634-04-4	
Naphthalene	ND	ug/L	1.2	0.23	1		01/30/23 21:46	91-20-3	
n-Propylbenzene	ND	ug/L	5.0	0.33	1		01/30/23 21:46	103-65-1	
Styrene	ND	ug/L	5.0	0.26	1		01/30/23 21:46	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.24	1		01/30/23 21:46	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.22	1		01/30/23 21:46	79-34-5	
Tetrachloroethene	ND	ug/L	5.0	0.29	1		01/30/23 21:46	127-18-4	
Toluene	ND	ug/L	5.0	0.43	1		01/30/23 21:46	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	0.28	1		01/30/23 21:46	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	5.0	0.34	1		01/30/23 21:46	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	5.0	0.28	1		01/30/23 21:46	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	5.0	0.14	1		01/30/23 21:46	79-00-5	
Trichloroethene	ND	ug/L	5.0	0.30	1		01/30/23 21:46	79-01-6	
Trichlorofluoromethane	ND	ug/L	5.0	0.14	1		01/30/23 21:46	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	5.0	0.29	1		01/30/23 21:46	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/L	5.0	0.36	1		01/30/23 21:46	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.36	1		01/30/23 21:46	108-67-8	
Vinyl acetate	ND	ug/L	50.0	0.45	1		01/30/23 21:46	108-05-4	
Vinyl chloride	1800	ug/L	20.0	1.4	10		01/30/23 22:16	75-01-4	
Xylene (Total)	ND	ug/L	10.0	0.37	1		01/30/23 21:46	1330-20-7	
Surrogates		ŭ							
Dibromofluoromethane (S)	107	%.	82-128		1		01/30/23 21:46	1868-53-7	
4-Bromofluorobenzene (S)	107	%.	79-124		1		01/30/23 21:46	460-00-4	
Toluene-d8 (S)	107	%.	73-122		1		01/30/23 21:46	2037-26-5	

Project: GE Indy
Pace Project No.: 50336060

Date: 02/09/2023 08:13 AM

Sample: W-11D-012423	Lab ID:	50336060012	Collected	d: 01/24/23	3 10:50	Received: 0'	1/24/23 13:45	Matrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 50	030/8260						
	•	ytical Services -		lis					
Acetone	ND	ug/L	100	3.6	1		01/30/23 19:5	59 67-64-1	
Acrolein	ND	ug/L	50.0	3.5	1		01/30/23 19:5	59 107-02-8	
Acrylonitrile	ND	ug/L	100	1.3	1		01/30/23 19:5	59 107-13-1	
Benzene	ND	ug/L	5.0	0.30	1		01/30/23 19:5	59 71-43-2	
Bromobenzene	ND	ug/L	5.0	0.30	1		01/30/23 19:5	59 108-86-1	
Bromochloromethane	ND	ug/L	5.0	0.10	1		01/30/23 19:5	59 74-97-5	
Bromodichloromethane	ND	ug/L	5.0	0.14	1		01/30/23 19:5	59 75-27-4	
Bromoform	ND	ug/L	5.0	0.16	1		01/30/23 19:5	59 75-25-2	
Bromomethane	ND	ug/L	5.0	0.22	1		01/30/23 19:5	59 74-83-9	
2-Butanone (MEK)	ND	ug/L	25.0	0.92	1		01/30/23 19:5	59 78-93-3	
n-Butylbenzene	ND	ug/L	5.0	0.37	1		01/30/23 19:5		
sec-Butylbenzene	ND	ug/L	5.0	0.37	1		01/30/23 19:5	59 135-98-8	
ert-Butylbenzene	ND	ug/L	5.0	0.41	1		01/30/23 19:5	59 98-06-6	
Carbon disulfide	ND	ug/L	10.0	0.29	1		01/30/23 19:5	59 75-15-0	
Carbon tetrachloride	ND	ug/L	5.0	0.25	1		01/30/23 19:5	59 56-23-5	
Chlorobenzene	ND	ug/L	5.0	0.28	1		01/30/23 19:5	59 108-90-7	
Chloroethane	ND	ug/L	5.0	0.15	1		01/30/23 19:5	59 75-00-3	
Chloroform	ND	ug/L	5.0	0.60	1		01/30/23 19:5	59 67-66-3	
Chloromethane	ND	ug/L	5.0	0.16	1		01/30/23 19:5	59 74-87-3	
2-Chlorotoluene	ND	ug/L	5.0	0.36	1		01/30/23 19:5	59 95-49-8	
1-Chlorotoluene	ND	ug/L	5.0	0.34	1		01/30/23 19:5	59 106-43-4	
Dibromochloromethane	ND	ug/L	5.0	0.20	1		01/30/23 19:5	59 124-48-1	
1,2-Dibromoethane (EDB)	ND	ug/L	5.0	0.19	1		01/30/23 19:5	59 106-93-4	
Dibromomethane	ND	ug/L	5.0	0.16	1		01/30/23 19:5		
1,2-Dichlorobenzene	ND	ug/L	5.0	0.26	1		01/30/23 19:5	59 95-50-1	
1,3-Dichlorobenzene	ND	ug/L	5.0	0.37	1		01/30/23 19:5	59 541-73-1	
1,4-Dichlorobenzene	ND	ug/L	5.0	0.30	1		01/30/23 19:5	59 106-46-7	
rans-1,4-Dichloro-2-butene	ND	ug/L	100	0.33	1		01/30/23 19:5	59 110-57-6	
Dichlorodifluoromethane	ND	ug/L	5.0	0.17	1		01/30/23 19:5	59 75-71-8	
1,1-Dichloroethane	127	ug/L	5.0	0.28	1		01/30/23 19:5	59 75-34-3	
1,2-Dichloroethane	ND	ug/L	5.0	0.17	1		01/30/23 19:5	59 107-06-2	
1,1-Dichloroethene	ND	ug/L	5.0	0.29	1		01/30/23 19:5	59 75-35-4	
cis-1,2-Dichloroethene	14.6	ug/L	5.0	0.30	1		01/30/23 19:5	59 156-59-2	
rans-1,2-Dichloroethene	ND	ug/L	5.0	0.36	1		01/30/23 19:5	59 156-60-5	
1,2-Dichloropropane	ND	ug/L	5.0	0.23	1		01/30/23 19:5	59 78-87-5	
,3-Dichloropropane	ND	ug/L	5.0	0.15	1		01/30/23 19:5	59 142-28-9	
2,2-Dichloropropane	ND	ug/L	5.0	0.27	1		01/30/23 19:5	59 594-20-7	
,1-Dichloropropene	ND	ug/L	5.0	0.29	1		01/30/23 19:5	59 563-58-6	
cis-1,3-Dichloropropene	ND	ug/L	5.0	0.21	1			59 10061-01-5	
rans-1,3-Dichloropropene	ND	ug/L	5.0	0.19	1			59 10061-02-6	
Ethylbenzene	ND	ug/L	5.0	0.38	1		01/30/23 19:5		
Ethyl methacrylate	ND	ug/L	100	0.15	1		01/30/23 19:5		
Hexachloro-1,3-butadiene	ND	ug/L	5.0	0.38	1		01/30/23 19:5		
n-Hexane	ND	ug/L	5.0	0.17	1		01/30/23 19:5		
2-Hexanone	ND	ug/L	25.0	0.81	1		01/30/23 19:5		

Project: GE Indy
Pace Project No.: 50336060

Date: 02/09/2023 08:13 AM

Sample: W-11D-012423	Lab ID:	50336060012	Collected	01/24/23	3 10:50	Received: 01	/24/23 13:45 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
raiailleteis	— ——— -			IVIDL	——	— Frepareu	– Analyzeu		- Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Ana	lytical Services	- Indianapoli	s					
lodomethane	ND	ug/L	10.0	0.25	1		01/30/23 19:59	74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	5.0	0.38	1		01/30/23 19:59	98-82-8	
p-Isopropyltoluene	ND	ug/L	5.0	0.41	1		01/30/23 19:59	99-87-6	
Methylene Chloride	ND	ug/L	5.0	0.70	1		01/30/23 19:59	75-09-2	
1-Methylnaphthalene	ND	ug/L	10.0	0.23	1		01/30/23 19:59	90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	0.23	1		01/30/23 19:59	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	0.88	1		01/30/23 19:59	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	4.0	0.15	1		01/30/23 19:59	1634-04-4	
Naphthalene	ND	ug/L	1.2	0.20	1		01/30/23 19:59	91-20-3	
n-Propylbenzene	ND	ug/L	5.0	0.39	1		01/30/23 19:59	103-65-1	
Styrene	ND	ug/L	5.0	0.30	1		01/30/23 19:59	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.28	1		01/30/23 19:59	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.20	1		01/30/23 19:59	79-34-5	
Tetrachloroethene	ND	ug/L	5.0	0.38	1		01/30/23 19:59	127-18-4	
Toluene	ND	ug/L	5.0	0.44	1		01/30/23 19:59	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	0.32	1		01/30/23 19:59	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	5.0	0.33	1		01/30/23 19:59	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	5.0	0.30	1		01/30/23 19:59	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	5.0	0.28	1		01/30/23 19:59	79-00-5	
Trichloroethene	ND	ug/L	5.0	0.37	1		01/30/23 19:59	79-01-6	
Trichlorofluoromethane	ND	ug/L	5.0	0.16	1		01/30/23 19:59	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	5.0	0.20	1		01/30/23 19:59	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/L	5.0	0.35	1		01/30/23 19:59	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.37	1		01/30/23 19:59	108-67-8	
Vinyl acetate	ND	ug/L	50.0	0.46	1		01/30/23 19:59	108-05-4	
Vinyl chloride	3.4	ug/L	2.0	0.13	1		01/30/23 19:59	75-01-4	
Xylene (Total)	ND	ug/L	10.0	0.38	1		01/30/23 19:59		
Surrogates		Ü							
Dibromofluoromethane (S)	113	%.	82-128		1		01/30/23 19:59	1868-53-7	
4-Bromofluorobenzene (S)	106	%.	79-124		1		01/30/23 19:59	460-00-4	
Toluene-d8 (S)	106	%.	73-122		1		01/30/23 19:59	2037-26-5	

Project: GE Indy
Pace Project No.: 50336060

Date: 02/09/2023 08:13 AM

Sample: Trip Blank-012423	Lab ID:	50336060014	Collecte	d: 01/23/23	3 08:00	Received: 0'	1/24/23 13:45	Matrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qua
3260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	•	lytical Services		lis					
Acetone	ND	ug/L	100	3.6	1		01/30/23 20:3	80 67-64-1	
Acrolein	ND	ug/L	50.0	3.5	1		01/30/23 20:3	30 107-02-8	
Acrylonitrile	ND	ug/L	100	1.3	1		01/30/23 20:3	30 107-13-1	
Benzene	ND	ug/L	5.0	0.30	1		01/30/23 20:3	30 71-43-2	
Bromobenzene	ND	ug/L	5.0	0.30	1		01/30/23 20:3	30 108-86-1	
Bromochloromethane	ND	ug/L	5.0	0.10	1		01/30/23 20:3	30 74-97-5	
Bromodichloromethane	ND	ug/L	5.0	0.14	1		01/30/23 20:3	30 75-27-4	
Bromoform	ND	ug/L	5.0	0.16	1		01/30/23 20:3	30 75-25-2	
Bromomethane	ND	ug/L	5.0	0.22	1		01/30/23 20:3		
2-Butanone (MEK)	ND	ug/L	25.0	0.92	1		01/30/23 20:3		
n-Butylbenzene	ND	ug/L	5.0	0.37	1		01/30/23 20:3		
sec-Butylbenzene	ND	ug/L	5.0	0.37	1		01/30/23 20:3		
ert-Butylbenzene	ND	ug/L	5.0	0.41	1		01/30/23 20:3		
Carbon disulfide	ND	ug/L	10.0	0.29	1		01/30/23 20:3		
Carbon tetrachloride	ND	ug/L	5.0	0.25	1		01/30/23 20:3		
Chlorobenzene	ND	ug/L	5.0	0.28	1		01/30/23 20:3		
Chloroethane	ND	ug/L	5.0	0.15	1		01/30/23 20:3		
Chloroform	ND	ug/L	5.0	0.60	1		01/30/23 20:3		
Chloromethane	ND	ug/L	5.0	0.16	1		01/30/23 20:3		
2-Chlorotoluene	ND	ug/L	5.0	0.36	1		01/30/23 20:3		
4-Chlorotoluene	ND	ug/L	5.0	0.34	1		01/30/23 20:3		
Dibromochloromethane	ND ND	ug/L	5.0	0.20	1		01/30/23 20:3		
1,2-Dibromoethane (EDB)	ND ND	ug/L	5.0	0.20	1		01/30/23 20:3		
Dibromomethane	ND	ug/L	5.0	0.16	1		01/30/23 20:3		
1,2-Dichlorobenzene	ND	ug/L ug/L	5.0	0.16	1		01/30/23 20:3		
1,3-Dichlorobenzene	ND ND	ug/L ug/L	5.0	0.20	1		01/30/23 20:3		
1,4-Dichlorobenzene	ND ND	ug/L ug/L	5.0	0.30	1		01/30/23 20:3		
rans-1,4-Dichloro-2-butene	ND ND	ug/L ug/L	100	0.30	1		01/30/23 20:3		
Dichlorodifluoromethane	ND	ug/L ug/L	5.0	0.33	1		01/30/23 20:3		
1,1-Dichloroethane	ND	ug/L ug/L	5.0	0.17	1		01/30/23 20:3		
1,2-Dichloroethane	ND ND	ug/L ug/L	5.0	0.28	1		01/30/23 20:3		
1,1-Dichloroethene	ND ND	ug/L ug/L	5.0	0.17	1		01/30/23 20:3		
cis-1,2-Dichloroethene	ND ND	ug/L ug/L	5.0	0.29	1		01/30/23 20:3		
rans-1,2-Dichloroethene							01/30/23 20:3		
·	ND ND	ug/L	5.0 5.0	0.36 0.23	1		01/30/23 20:3		
,2-Dichloropropane		ug/L			1				
,3-Dichloropropane	ND	ug/L	5.0	0.15	1		01/30/23 20:3		
2,2-Dichloropropane	ND ND	ug/L	5.0	0.27	1		01/30/23 20:3		
,1-Dichloropropene	ND ND	ug/L	5.0	0.29	1		01/30/23 20:3		
cis-1,3-Dichloropropene	ND	ug/L	5.0	0.21	1			30 10061-01-5	
rans-1,3-Dichloropropene	ND	ug/L	5.0	0.19	1			30 10061-02-6	
Ethylbenzene	ND	ug/L	5.0	0.38	1		01/30/23 20:3		
Ethyl methacrylate	ND	ug/L	100	0.15	1		01/30/23 20:3		
Hexachloro-1,3-butadiene	ND	ug/L	5.0	0.38	1		01/30/23 20:3		
n-Hexane	ND	ug/L	5.0	0.17	1		01/30/23 20:3		
2-Hexanone	ND	ug/L	25.0	0.81	1		01/30/23 20:3	80 591-78-6	

Project: GE Indy
Pace Project No.: 50336060

Date: 02/09/2023 08:13 AM

Sample: Trip Blank-012423	Lab ID:	50336060014	Collecte	d: 01/23/23	3 08:00	Received: 01	/24/23 13:45 Ma	atrix: Water	
			Report						
Parameters	Results -	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Ana	lytical Services	- Indianapo	olis					
lodomethane	ND	ug/L	10.0	0.25	1		01/30/23 20:30	74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	5.0	0.38	1		01/30/23 20:30	98-82-8	
p-Isopropyltoluene	ND	ug/L	5.0	0.41	1		01/30/23 20:30	99-87-6	
Methylene Chloride	ND	ug/L	5.0	0.70	1		01/30/23 20:30	75-09-2	
1-Methylnaphthalene	ND	ug/L	10.0	0.23	1		01/30/23 20:30	90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	0.23	1		01/30/23 20:30	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	0.88	1		01/30/23 20:30	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	4.0	0.15	1		01/30/23 20:30	1634-04-4	
Naphthalene	ND	ug/L	1.2	0.20	1		01/30/23 20:30	91-20-3	
n-Propylbenzene	ND	ug/L	5.0	0.39	1		01/30/23 20:30	103-65-1	
Styrene	ND	ug/L	5.0	0.30	1		01/30/23 20:30	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.28	1		01/30/23 20:30	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.20	1		01/30/23 20:30	79-34-5	
Tetrachloroethene	ND	ug/L	5.0	0.38	1		01/30/23 20:30	127-18-4	
Toluene	ND	ug/L	5.0	0.44	1		01/30/23 20:30	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	0.32	1		01/30/23 20:30	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	5.0	0.33	1		01/30/23 20:30	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	5.0	0.30	1		01/30/23 20:30	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	5.0	0.28	1		01/30/23 20:30	79-00-5	
Trichloroethene	ND	ug/L	5.0	0.37	1		01/30/23 20:30	79-01-6	
Trichlorofluoromethane	ND	ug/L	5.0	0.16	1		01/30/23 20:30	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	5.0	0.20	1		01/30/23 20:30	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/L	5.0	0.35	1		01/30/23 20:30	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.37	1		01/30/23 20:30	108-67-8	
Vinyl acetate	ND	ug/L	50.0	0.46	1		01/30/23 20:30	108-05-4	
Vinyl chloride	ND	ug/L	2.0	0.13	1		01/30/23 20:30		
Xylene (Total)	ND	ug/L	10.0	0.38	1		01/30/23 20:30		
Surrogates		S	-						
Dibromofluoromethane (S)	114	%.	82-128		1		01/30/23 20:30	1868-53-7	
4-Bromofluorobenzene (S)	110	%.	79-124		1		01/30/23 20:30	460-00-4	
Toluene-d8 (S)	108	%.	73-122		1		01/30/23 20:30	2037-26-5	

Date: 02/09/2023 08:13 AM

QUALITY CONTROL DATA

Project: GE Indy Pace Project No.: 50336060 QC Batch: 716155 Analysis Method: EPA 300.0 QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions Laboratory: Pace Analytical Services - Indianapolis Associated Lab Samples: 50336060001 METHOD BLANK: Matrix: Water Associated Lab Samples: 50336060001 Blank Reporting MDL Qualifiers Parameter Units Result Limit Analyzed Sulfate ND 250 85.0 01/28/23 13:00 ug/L LABORATORY CONTROL SAMPLE: 3288908 Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Sulfate 2500 2490 99 90-110 ug/L MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3288913 3288914 MSD MS 50336010001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Conc. Result **RPD** RPD Result Conc. Result % Rec % Rec Limits Qual <0.25 Sulfate ug/L 2500 2500 2470 2440 98 97 80-120 15 mg/L MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3288915 3288916 MS MSD 50336083001 Spike MS MSD MS MSD Spike % Rec Max Parameter Result % Rec RPD Units Result Conc. Conc. Result % Rec Limits **RPD** Qual Sulfate 25000 135000 75 75 80-120 15 M0 ug/L 117 mg/L 25000 135000 0

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

AM20GAX

Project: GE Indy
Pace Project No.: 50336060

Date: 02/09/2023 08:13 AM

QC Batch: 758713

QC Batch Method: AM20GAX Analysis Description: Indicator Gases Water LHC

Laboratory: Pace Analytical Gulf Coast

Associated Lab Samples: 50336060001

METHOD BLANK: 2445566 Matrix: Water

Associated Lab Samples: 50336060001

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Methane	ug/L	ND	5.0	2.0	01/27/23 10:27	
Ethane	ug/L	ND	1.0	0.17	01/27/23 10:27	
Ethene	ug/L	ND	1.0	0.24	01/27/23 10:27	
n-Propane	ug/L	ND	1.0	0.29	01/27/23 10:27	
Propylene	ug/L	ND	1.0	0.31	01/27/23 10:27	
Isobutane	ug/L	ND	2.0	0.065	01/27/23 10:27	
n-Butane	ug/L	ND	2.0	0.54	01/27/23 10:27	

Analysis Method:

LABORATORY CONTROL SAMPLE	E & LCSD: 2445567		24	45568						
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
Methane	ug/L	750	700	640	93	86	70-130	8	20	
Ethane	ug/L	38	39	40	104	107	70-130	3	20	
Ethene	ug/L	35	37	39	106	110	70-130	4	20	
n-Propane	ug/L	56	56	56	100	100	70-130	0	20	
Propylene	ug/L	53	50	50	95	94	70-130	1	20	
Isobutane	ug/L	73	71	64	97	88	70-130	10	20	
n-Butane	ug/L	73	65	53	89	72	70-130	21	20	R1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

GE Indy

Parameter

Date: 02/09/2023 08:13 AM

Project:

QUALITY CONTROL DATA

Pace Project No.: 50336060 QC Batch: 716632 Analysis Method: EPA 6010 QC Batch Method: EPA 3010 Analysis Description: 6010 MET Dissolved Laboratory: Pace Analytical Services - Indianapolis Associated Lab Samples: 50336060001 METHOD BLANK: Matrix: Water Associated Lab Samples: 50336060001 Blank Reporting MDL Qualifiers Parameter Units Result Limit Analyzed Iron, Dissolved ND 100 48.8 02/02/23 15:21 ug/L LABORATORY CONTROL SAMPLE: 3290735

Iron, Dissolved ug/L 10000 9910 99 80-120 MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3290736 3290737 MSD MS 50336356003 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Conc. Conc. Result Result % Rec % Rec **RPD** RPD Qual Result Limits Iron, Dissolved 10000 20 CL ug/L 118 10000 9160 9290 90 92 75-125

LCS

Result

LCS

% Rec

% Rec

Limits

Qualifiers

Spike

Conc.

Units

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: GE Indy
Pace Project No.: 50336060

Date: 02/09/2023 08:13 AM

QC Batch: 716659 Analysis Method: EPA 5030/8260
QC Batch Method: EPA 5030/8260 Analysis Description: 8260 MSV

Laboratory: Pace Analytical Services - Indianapolis

Associated Lab Samples: 50336060001, 50336060002, 50336060003, 50336060004, 50336060005, 50336060006, 50336060007,

50336060008, 50336060012, 50336060014

METHOD BLANK: 3290786 Matrix: Water

Associated Lab Samples: 50336060001, 50336060002, 50336060003, 50336060004, 50336060005, 50336060006, 50336060007,

50336060008, 50336060012, 50336060014

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	ND ND	5.0	0.28	01/30/23 11:53	
1,1,1-Trichloroethane	ug/L	ND	5.0	0.30	01/30/23 11:53	
1,1,2,2-Tetrachloroethane	ug/L	ND	5.0	0.20	01/30/23 11:53	
1,1,2-Trichloroethane	ug/L	ND	5.0	0.28	01/30/23 11:53	
1,1-Dichloroethane	ug/L	ND	5.0	0.28	01/30/23 11:53	
1,1-Dichloroethene	ug/L	ND	5.0	0.29	01/30/23 11:53	
1,1-Dichloropropene	ug/L	ND	5.0	0.29	01/30/23 11:53	
1,2,3-Trichlorobenzene	ug/L	ND	5.0	0.32	01/30/23 11:53	
1,2,3-Trichloropropane	ug/L	ND	5.0	0.20	01/30/23 11:53	
1,2,4-Trichlorobenzene	ug/L	ND	5.0	0.33	01/30/23 11:53	
1,2,4-Trimethylbenzene	ug/L	ND	5.0	0.35	01/30/23 11:53	
1,2-Dibromoethane (EDB)	ug/L	ND	5.0	0.19	01/30/23 11:53	
1,2-Dichlorobenzene	ug/L	ND	5.0	0.26	01/30/23 11:53	
1,2-Dichloroethane	ug/L	ND	5.0	0.17	01/30/23 11:53	
1,2-Dichloropropane	ug/L	ND	5.0	0.23	01/30/23 11:53	
1,3,5-Trimethylbenzene	ug/L	ND	5.0	0.37	01/30/23 11:53	
1,3-Dichlorobenzene	ug/L	ND	5.0	0.37	01/30/23 11:53	
1,3-Dichloropropane	ug/L	ND	5.0	0.15	01/30/23 11:53	
1,4-Dichlorobenzene	ug/L	ND	5.0	0.30	01/30/23 11:53	
1-Methylnaphthalene	ug/L	ND	10.0	0.23	01/30/23 11:53	
2,2-Dichloropropane	ug/L	ND	5.0	0.27	01/30/23 11:53	
2-Butanone (MEK)	ug/L	ND	25.0	0.92	01/30/23 11:53	
2-Chlorotoluene	ug/L	ND	5.0	0.36	01/30/23 11:53	
2-Hexanone	ug/L	ND	25.0	0.81	01/30/23 11:53	
2-Methylnaphthalene	ug/L	ND	10.0	0.23	01/30/23 11:53	
4-Chlorotoluene	ug/L	ND	5.0	0.34	01/30/23 11:53	
4-Methyl-2-pentanone (MIBK)	ug/L	ND	25.0	0.88	01/30/23 11:53	
Acetone	ug/L	ND	100	3.6	01/30/23 11:53	
Acrolein	ug/L	ND	50.0	3.5	01/30/23 11:53	
Acrylonitrile	ug/L	ND	100	1.3	01/30/23 11:53	
Benzene	ug/L	ND	5.0	0.30	01/30/23 11:53	
Bromobenzene	ug/L	ND	5.0	0.30	01/30/23 11:53	
Bromochloromethane	ug/L	ND	5.0	0.10	01/30/23 11:53	
Bromodichloromethane	ug/L	ND	5.0	0.14	01/30/23 11:53	
Bromoform	ug/L	ND	5.0	0.16	01/30/23 11:53	
Bromomethane	ug/L	ND	5.0	0.22	01/30/23 11:53	
Carbon disulfide	ug/L	ND	10.0	0.29	01/30/23 11:53	
Carbon tetrachloride	ug/L	ND	5.0	0.25	01/30/23 11:53	
Chlorobenzene	ug/L	ND	5.0	0.28	01/30/23 11:53	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50336060

Date: 02/09/2023 08:13 AM

METHOD BLANK: 3290786 Matrix: Water

Associated Lab Samples: 50336060001, 50336060002, 50336060003, 50336060004, 50336060005, 50336060006, 50336060007,

50336060008, 50336060012, 50336060014

3033000000, 30330000	Blank	Reporting			
Parameter Units	Result	Limit	MDL	Analyzed	Qualifiers
Chloroethane ug/L		5.0	0.15	01/30/23 11:53	
Chloroform ug/L	ND	5.0	0.60	01/30/23 11:53	
Chloromethane ug/L	ND	5.0	0.16	01/30/23 11:53	
cis-1,2-Dichloroethene ug/L	ND	5.0	0.30	01/30/23 11:53	
cis-1,3-Dichloropropene ug/L	ND	5.0	0.21	01/30/23 11:53	
Dibromochloromethane ug/L	ND	5.0	0.20	01/30/23 11:53	
Dibromomethane ug/L	ND	5.0	0.16	01/30/23 11:53	
Dichlorodifluoromethane ug/L	ND	5.0	0.17	01/30/23 11:53	
Ethyl methacrylate ug/L	ND	100	0.15	01/30/23 11:53	
Ethylbenzene ug/L	ND	5.0	0.38	01/30/23 11:53	
Hexachloro-1,3-butadiene ug/L	ND	5.0	0.38	01/30/23 11:53	
lodomethane ug/L	ND	10.0	0.25	01/30/23 11:53	
Isopropylbenzene (Cumene) ug/L	ND	5.0	0.38	01/30/23 11:53	
Methyl-tert-butyl ether ug/L	ND	4.0	0.15	01/30/23 11:53	
Methylene Chloride ug/L	ND	5.0	0.70	01/30/23 11:53	
n-Butylbenzene ug/L	ND	5.0	0.37	01/30/23 11:53	
n-Hexane ug/L	ND	5.0	0.17	01/30/23 11:53	
n-Propylbenzene ug/L	ND	5.0	0.39	01/30/23 11:53	
Naphthalene ug/L	ND	1.2	0.20	01/30/23 11:53	
p-Isopropyltoluene ug/L	ND	5.0	0.41	01/30/23 11:53	
sec-Butylbenzene ug/L	ND	5.0	0.37	01/30/23 11:53	
Styrene ug/L	ND	5.0	0.30	01/30/23 11:53	
tert-Butylbenzene ug/L	ND	5.0	0.41	01/30/23 11:53	
Tetrachloroethene ug/L	ND	5.0	0.38	01/30/23 11:53	
Toluene ug/L	ND	5.0	0.44	01/30/23 11:53	
trans-1,2-Dichloroethene ug/L	ND	5.0	0.36	01/30/23 11:53	
trans-1,3-Dichloropropene ug/L	ND	5.0	0.19	01/30/23 11:53	
trans-1,4-Dichloro-2-butene ug/L	ND	100	0.33	01/30/23 11:53	
Trichloroethene ug/L	ND	5.0	0.37	01/30/23 11:53	
Trichlorofluoromethane ug/L	ND	5.0	0.16	01/30/23 11:53	
Vinyl acetate ug/L	ND	50.0	0.46	01/30/23 11:53	
Vinyl chloride ug/L	ND	2.0	0.13	01/30/23 11:53	
Xylene (Total) ug/L	ND	10.0	0.38	01/30/23 11:53	
4-Bromofluorobenzene (S) %.	107	79-124		01/30/23 11:53	
Dibromofluoromethane (S) %.	112	82-128		01/30/23 11:53	
Toluene-d8 (S) %.	108	73-122		01/30/23 11:53	

LABORATORY CONTROL SAMPLE:	3290787					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1-Trichloroethane	ug/L		46.3	93	69-125	
1,1,2,2-Tetrachloroethane	ug/L	50	47.0	94	72-123	
1.1-Dichloroethene	ua/l	50	50.1	100	63-138	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50336060

Date: 02/09/2023 08:13 AM

ABORATORY CONTROL SAMPLE:	3290787					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
,2,4-Trimethylbenzene	ug/L	50	45.4	91	71-121	
,2-Dibromoethane (EDB)	ug/L	50	49.4	99	75-123	
2-Dichloroethane	ug/L	50	46.1	92	68-126	
2-Dichloropropane	ug/L	50	44.1	88	73-127	
3,5-Trimethylbenzene	ug/L	50	46.1	92	72-120	
nzene	ug/L	50	46.3	93	76-121	
lorobenzene	ug/L	50	46.3	93	74-119	
loroform	ug/L	50	46.0	92	68-123	
1,2-Dichloroethene	ug/L	50	45.7	91	73-122	
ylbenzene	ug/L	50	46.6	93	74-122	
propylbenzene (Cumene)	ug/L	50	46.7	93	75-124	
hyl-tert-butyl ether	ug/L	50	47.8	96	71-125	
exane	ug/L	50	44.2	88	60-132	
ohthalene	ug/L	50	47.0	94	69-128	
achloroethene	ug/L	50	45.3	91	74-129	
uene	ug/L	50	43.9	88	70-118	
ns-1,2-Dichloroethene	ug/L	50	46.6	93	69-124	
chloroethene	ug/L	50	44.5	89	73-125	
yl chloride	ug/L	50	45.1	90	46-134	
ene (Total)	ug/L	150	138	92	71-123	
romofluorobenzene (S)	%.			106	79-124	
romofluoromethane (S)	%.			106	82-128	
uene-d8 (S)	%.			109	73-122	

MATRIX SPIKE & MATRIX SP	PIKE DUPLIC	ATE: 3290	788		3290789							
			MS	MSD								
	50	0336315006	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1,1,1-Trichloroethane	ug/L	ND	50	50	49.2	51.1	98	102	60-143	4	20	
1,1,2,2-Tetrachloroethane	ug/L	ND	50	50	53.5	54.3	107	109	64-135	2	20	
1,1-Dichloroethene	ug/L	ND	50	50	53.5	54.8	107	110	55-158	2	20	
1,2,4-Trimethylbenzene	ug/L	ND	50	50	48.7	49.1	97	98	41-140	1	20	
1,2-Dibromoethane (EDB)	ug/L	ND	50	50	53.4	54.0	107	108	68-136	1	20	
1,2-Dichloroethane	ug/L	ND	50	50	51.6	52.9	103	106	61-144	3	20	
1,2-Dichloropropane	ug/L	ND	50	50	48.4	50.1	97	100	67-141	3	20	
1,3,5-Trimethylbenzene	ug/L	ND	50	50	49.1	49.9	98	100	40-141	2	20	
Benzene	ug/L	ND	50	50	49.8	51.3	100	103	68-139	3	20	
Chlorobenzene	ug/L	ND	50	50	49.8	51.0	100	102	57-137	2	20	
Chloroform	ug/L	ND	50	50	49.7	51.6	99	103	61-138	4	20	
cis-1,2-Dichloroethene	ug/L	ND	50	50	51.3	54.2	98	104	58-142	5	20	
Ethylbenzene	ug/L	ND	50	50	49.7	51.1	99	102	54-141	3	20	
Isopropylbenzene (Cumene)	ug/L	ND	50	50	50.3	51.8	101	104	48-145	3	20	
Methyl-tert-butyl ether	ug/L	ND	50	50	52.3	54.1	105	108	62-143	3	20	
n-Hexane	ug/L	ND	50	50	49.1	50.6	98	101	44-145	3	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50336060

Date: 02/09/2023 08:13 AM

MATRIX SPIKE & MATRIX SP	IKE DUPL	ICATE: 3290	788		3290789							
			MS	MSD								
		50336315006	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Naphthalene	ug/L	ND	50	50	51.7	51.7	103	103	56-136	0	20	
Tetrachloroethene	ug/L	ND	50	50	47.3	47.7	95	95	50-149	1	20	
Toluene	ug/L	ND	50	50	48.0	48.6	96	97	59-134	1	20	
trans-1,2-Dichloroethene	ug/L	ND	50	50	49.9	51.9	100	104	57-141	4	20	
Trichloroethene	ug/L	ND	50	50	47.6	49.2	95	98	55-147	3	20	
Vinyl chloride	ug/L	ND	50	50	47.4	48.6	95	97	36-154	3	20	
Xylene (Total)	ug/L	ND	150	150	148	151	99	101	50-143	2	20	
4-Bromofluorobenzene (S)	%.						107	107	79-124			
Dibromofluoromethane (S)	%.						108	108	82-128			
Toluene-d8 (S)	%.						111	110	73-122			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50336060

Date: 02/09/2023 08:13 AM

QC Batch: 716665 Analysis Method: EPA 5030/8260
QC Batch Method: EPA 5030/8260 Analysis Description: 8260 MSV

Laboratory: Pace Analytical Services - Indianapolis

Associated Lab Samples: 50336060009, 50336060010, 50336060011

METHOD BLANK: 3290802 Matrix: Water

Associated Lab Samples: 50336060009, 50336060010, 50336060011

, , ,		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	ND -	5.0	0.24	01/30/23 12:08	
1,1,1-Trichloroethane	ug/L	ND	5.0	0.28	01/30/23 12:08	
1,1,2,2-Tetrachloroethane	ug/L	ND	5.0	0.22	01/30/23 12:08	
1,1,2-Trichloroethane	ug/L	ND	5.0	0.14	01/30/23 12:08	
1,1-Dichloroethane	ug/L	ND	5.0	0.23	01/30/23 12:08	
1,1-Dichloroethene	ug/L	ND	5.0	0.22	01/30/23 12:08	
1,1-Dichloropropene	ug/L	ND	5.0	0.29	01/30/23 12:08	
1,2,3-Trichlorobenzene	ug/L	ND	5.0	0.28	01/30/23 12:08	
1,2,3-Trichloropropane	ug/L	ND	5.0	0.29	01/30/23 12:08	
1,2,4-Trichlorobenzene	ug/L	ND	5.0	0.34	01/30/23 12:08	
1,2,4-Trimethylbenzene	ug/L	ND	5.0	0.36	01/30/23 12:08	
1,2-Dibromoethane (EDB)	ug/L	ND	5.0	0.20	01/30/23 12:08	
1,2-Dichlorobenzene	ug/L	ND	5.0	0.26	01/30/23 12:08	
1,2-Dichloroethane	ug/L	ND	5.0	0.18	01/30/23 12:08	
1,2-Dichloropropane	ug/L	ND	5.0	0.24	01/30/23 12:08	
1,3,5-Trimethylbenzene	ug/L	ND	5.0	0.36	01/30/23 12:08	
1,3-Dichlorobenzene	ug/L	ND	5.0	0.33	01/30/23 12:08	
1,3-Dichloropropane	ug/L	ND	5.0	0.17	01/30/23 12:08	
1,4-Dichlorobenzene	ug/L	ND	5.0	0.27	01/30/23 12:08	
1-Methylnaphthalene	ug/L	ND	10.0	0.17	01/30/23 12:08	
2,2-Dichloropropane	ug/L	ND	5.0	0.30	01/30/23 12:08	
2-Butanone (MEK)	ug/L	ND	25.0	0.79	01/30/23 12:08	
2-Chlorotoluene	ug/L	ND	5.0	0.32	01/30/23 12:08	
2-Hexanone	ug/L	ND	25.0	0.79	01/30/23 12:08	
2-Methylnaphthalene	ug/L	ND	10.0	0.19	01/30/23 12:08	
4-Chlorotoluene	ug/L	ND	5.0	0.30	01/30/23 12:08	
4-Methyl-2-pentanone (MIBK)	ug/L	ND	25.0	0.92	01/30/23 12:08	
Acetone	ug/L	ND	100	3.8	01/30/23 12:08	
Acrolein	ug/L	ND	50.0	2.4	01/30/23 12:08	
Acrylonitrile	ug/L	ND	100	1.1	01/30/23 12:08	
Benzene	ug/L	ND	5.0	0.26	01/30/23 12:08	
Bromobenzene	ug/L	ND	5.0	0.24	01/30/23 12:08	
Bromochloromethane	ug/L	ND	5.0	0.23	01/30/23 12:08	
Bromodichloromethane	ug/L	ND	5.0	0.19	01/30/23 12:08	
Bromoform	ug/L	ND	5.0	0.18	01/30/23 12:08	
Bromomethane	ug/L	ND	5.0	0.16	01/30/23 12:08	
Carbon disulfide	ug/L	ND	10.0	0.28	01/30/23 12:08	
Carbon tetrachloride	ug/L	ND	5.0	0.26	01/30/23 12:08	
Chlorobenzene	ug/L	ND	5.0	0.29	01/30/23 12:08	
Chloroethane	ug/L	ND	5.0	0.15	01/30/23 12:08	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50336060

Date: 02/09/2023 08:13 AM

METHOD BLANK: 3290802 Matrix: Water

Associated Lab Samples: 50336060009, 50336060010, 50336060011

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Chloroform	ug/L	ND	5.0	0.58	01/30/23 12:08	
Chloromethane	ug/L	ND	5.0	0.17	01/30/23 12:08	
cis-1,2-Dichloroethene	ug/L	ND	5.0	0.25	01/30/23 12:08	
cis-1,3-Dichloropropene	ug/L	ND	5.0	0.23	01/30/23 12:08	
Dibromochloromethane	ug/L	ND	5.0	0.13	01/30/23 12:08	
Dibromomethane	ug/L	ND	5.0	0.14	01/30/23 12:08	
Dichlorodifluoromethane	ug/L	ND	5.0	0.11	01/30/23 12:08	
Ethyl methacrylate	ug/L	ND	100	0.20	01/30/23 12:08	
Ethylbenzene	ug/L	ND	5.0	0.33	01/30/23 12:08	
Hexachloro-1,3-butadiene	ug/L	ND	5.0	0.32	01/30/23 12:08	
lodomethane	ug/L	ND	10.0	0.22	01/30/23 12:08	
Isopropylbenzene (Cumene)	ug/L	ND	5.0	0.37	01/30/23 12:08	
Methyl-tert-butyl ether	ug/L	ND	4.0	0.17	01/30/23 12:08	
Methylene Chloride	ug/L	ND	5.0	0.73	01/30/23 12:08	
n-Butylbenzene	ug/L	ND	5.0	0.37	01/30/23 12:08	
n-Hexane	ug/L	ND	5.0	0.18	01/30/23 12:08	
n-Propylbenzene	ug/L	ND	5.0	0.33	01/30/23 12:08	
Naphthalene	ug/L	ND	1.2	0.23	01/30/23 12:08	
o-Isopropyltoluene	ug/L	ND	5.0	0.40	01/30/23 12:08	
sec-Butylbenzene	ug/L	ND	5.0	0.34	01/30/23 12:08	
Styrene	ug/L	ND	5.0	0.26	01/30/23 12:08	
ert-Butylbenzene	ug/L	ND	5.0	0.38	01/30/23 12:08	
Tetrachloroethene	ug/L	ND	5.0	0.29	01/30/23 12:08	
Toluene	ug/L	ND	5.0	0.43	01/30/23 12:08	
trans-1,2-Dichloroethene	ug/L	ND	5.0	0.36	01/30/23 12:08	
trans-1,3-Dichloropropene	ug/L	ND	5.0	0.17	01/30/23 12:08	
trans-1,4-Dichloro-2-butene	ug/L	ND	100	0.35	01/30/23 12:08	
Trichloroethene	ug/L	ND	5.0	0.30	01/30/23 12:08	
Trichlorofluoromethane	ug/L	ND	5.0	0.14	01/30/23 12:08	
Vinyl acetate	ug/L	ND	50.0	0.45	01/30/23 12:08	
Vinyl chloride	ug/L	ND	2.0	0.14	01/30/23 12:08	
Xylene (Total)	ug/L	ND	10.0	0.37	01/30/23 12:08	
4-Bromofluorobenzene (S)	%.	108	79-124		01/30/23 12:08	
Dibromofluoromethane (S)	%.	110	82-128		01/30/23 12:08	1d
Toluene-d8 (S)	%.	107	73-122		01/30/23 12:08	

LABORATORY CONTROL SAMPLE:	3290803					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1-Trichloroethane	ug/L	50	50.9	102	69-125	
1,1,2,2-Tetrachloroethane	ug/L	50	46.5	93	72-123	
1,1-Dichloroethene	ug/L	50	54.6	109	63-138	
1,2,4-Trimethylbenzene	ug/L	50	47.3	95	71-121	
1,2-Dibromoethane (EDB)	ug/L	50	49.6	99	75-123	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50336060

Date: 02/09/2023 08:13 AM

LABORATORY CONTROL SAMPLE:	3290803					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,2-Dichloroethane	ug/L	50	47.9	96	68-126	
1,2-Dichloropropane	ug/L	50	46.1	92	73-127	
1,3,5-Trimethylbenzene	ug/L	50	48.3	97	72-120	
Benzene	ug/L	50	49.2	98	76-121	
Chlorobenzene	ug/L	50	48.6	97	74-119	
Chloroform	ug/L	50	48.7	97	68-123	
cis-1,2-Dichloroethene	ug/L	50	48.7	97	73-122	
Ethylbenzene	ug/L	50	49.1	98	74-122	
Isopropylbenzene (Cumene)	ug/L	50	49.2	98	75-124	
Methyl-tert-butyl ether	ug/L	50	48.9	98	71-125	
n-Hexane	ug/L	50	50.8	102	60-132	
Naphthalene	ug/L	50	45.7	91	69-128	
Tetrachloroethene	ug/L	50	48.3	97	74-129	
Toluene	ug/L	50	46.7	93	70-118	
trans-1,2-Dichloroethene	ug/L	50	49.7	99	69-124	
Trichloroethene	ug/L	50	47.7	95	73-125	
Vinyl chloride	ug/L	50	50.9	102	46-134	
Xylene (Total)	ug/L	150	148	99	71-123	
4-Bromofluorobenzene (S)	%.			107	79-124	
Dibromofluoromethane (S)	%.			108	82-128	
Toluene-d8 (S)	%.			109	73-122	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Date: 02/09/2023 08:13 AM

QUALITY CONTROL DATA

Project: GE Indy Pace Project No.: 50336060 QC Batch: 715956 Analysis Method: EPA 353.2 QC Batch Method: EPA 353.2 Analysis Description: 353.2 Nitrate + Nitrite, Unpres. Laboratory: Pace Analytical Services - Indianapolis Associated Lab Samples: 50336060001 METHOD BLANK: Matrix: Water Associated Lab Samples: 50336060001 Blank Reporting MDL Qualifiers Parameter Units Result Limit Analyzed Nitrogen, Nitrate ND 0.10 0.011 01/24/23 18:04 mg/L LABORATORY CONTROL SAMPLE: 3288262 Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units mg/L Nitrogen, Nitrate 1.0 103 90-110 MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3288263 3288264 MSD MS 50335959002 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Conc. Result Result % Rec % Rec **RPD** RPD Qual Result Conc. Limits Nitrogen, Nitrate 104 20 H3 mg/L 1.2 1 1 2.2 2.2 104 90-110 MATRIX SPIKE SAMPLE: 3288265 MS MS % Rec 50335959004 Spike Parameter Units Result Conc. Result % Rec Limits Qualifiers 0.68 1.7 Nitrogen, Nitrate 1 106 90-110 H3 mg/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Parameter

Total Organic Carbon

Date: 02/09/2023 08:13 AM

Units

ug/L

QUALITY CONTROL DATA

Project: GE Indy Pace Project No.: 50336060 QC Batch: 716602 Analysis Method: SM 5310C QC Batch Method: SM 5310C Analysis Description: 5310C Total Organic Carbon Laboratory: Pace Analytical Services - Indianapolis Associated Lab Samples: 50336060001 METHOD BLANK: Matrix: Water Associated Lab Samples: 50336060001 Blank Reporting MDL Qualifiers Parameter Units Result Limit Analyzed **Total Organic Carbon** ND 1000 236 01/31/23 12:33 ug/L LABORATORY CONTROL SAMPLE: 3290662 Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units ug/L **Total Organic Carbon** 10000 10300 103 90-110 MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3290663 3290664 MSD MS 50335927001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units % Rec **RPD** RPD Result Conc. Conc. Result Result % Rec Limits Qual **Total Organic Carbon** 20 ug/L 55.0 mg/L 200000 200000 261000 260000 103 103 80-120 0 MATRIX SPIKE SAMPLE: 3290665 50335927002 MS MS Spike % Rec

Result

12.3 mg/L

Conc.

80000

Result

95900

% Rec

104

Limits

80-120

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Qualifiers

QUALIFIERS

Project: GE Indy
Pace Project No.: 50336060

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 02/09/2023 08:13 AM

- 1d A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.
- CL The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased low.
- D4 Sample was diluted due to the presence of high levels of target analytes.
- H3 Sample was received or analysis requested beyond the recognized method holding time.
- M0 Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.
- R1 RPD value was outside control limits.

METHOD CROSS REFERENCE TABLE

Project: GE Indy
Pace Project No.: 50336060

Parameter	Matrix	Analytical Method	Preparation Method
6010 MET ICP, Dissolved	Water	SW-846 6010B	SW-846 3010A

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: GE Indy
Pace Project No.: 50336060

Date: 02/09/2023 08:13 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
50336060001	MW-425-012323	EPA 300.0	716155		
50336060001	MW-425-012323	AM20GAX	758713		
50336060001	MW-425-012323	EPA 3010	716632	EPA 6010	716923
50336060001	MW-425-012323	EPA 5030/8260	716659		
50336060002	AD-100-012323	EPA 5030/8260	716659		
50336060003	MW-313-012323	EPA 5030/8260	716659		
50336060004	MW-112-012323	EPA 5030/8260	716659		
50336060005	MW-132-012323	EPA 5030/8260	716659		
50336060006	MW-133-012323	EPA 5030/8260	716659		
50336060007	MW-312-012323	EPA 5030/8260	716659		
50336060008	MW-253-012423	EPA 5030/8260	716659		
50336060009	MW-163-012423	EPA 5030/8260	716665		
50336060010	MW-303-012423	EPA 5030/8260	716665		
50336060011	MW-333-012423	EPA 5030/8260	716665		
50336060012	W-11D-012423	EPA 5030/8260	716659		
50336060014	Trip Blank-012423	EPA 5030/8260	716659		
50336060001	MW-425-012323	EPA 353.2	715956		
50336060001	MW-425-012323	SM 5310C	716602		

Pace Analytical www.pacelabs.com

Section A

CHAIN-OF-CUSTODY / Analytical Request Do

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must

WO#:50336060

Regulatory Agency

					 -
			- 11 1	- 11 1	
					 -
		-			
EU3	350	5 0			

Submitting a sample via this chain of custody constitutes acknowledgment and acceptance of the Pace Terms and Conditions found at https://info.pacelal

Required Client Information: Required Project Information: Invoice Information:

Company: Chase Forman Report To: Chase Forman Attention:

Address: 8805 Governor's Hill Drive Suite 205 Copy To: Company Name:

Cincinnati, OH 45249 Address:

Email: chase.forman@ramboll.com Purchase Order #: Pace Quote:

Phone: (740)403-1387 Fax: Project Name: GE Indy Pace Project Manager: heather.patterson@pacelabs.com,

Pace Project Manager: heather.patterson@pacelabs.com, State / Location
Pace Profile #: 9761-8

Requested Due Date: Project #: Requested Analysis Filtered (Y/N) C=COMP) COLLECTED Preservatives MATRIX Drinking Water AM20GA (G=GRAB Waste Water Residual Chlorine (Y/N) SAMPLE ID Soil/Solid Dissolved Gases by see) START END # OF CONTAINERS One Character per box. Wipe MATRIX CODE SAMPLE TYPE Sulfate 300.0 (A-Z, 0-9/, -) Other Sample Ids must be unique TEM VOC by 8 HN03 무 TIME DATE CVI 3 002 703 3 PW 3 003 3 006 007 008 009 010 2 110 012 ADDITIONAL COMMENTS RELINQUISHED BY / AFFILIATION DATE ACCEPTED BY / AFFILIATION SAMPLE CONDITIONS 1/24/23 1345 12 Nitrate 48 hour hold time SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER: SIGNATURE of SAMPLER: DATE Signed:

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Submitting a sample via this chain of custody constitutes acknowledgment and acceptance of the Pace Terms and Conditions found at https://info.pacelabs.com/hubfs/pas-standard-terms.pdf. Section B Section C Section A Required Client Information: **Required Project Information:** Invoice Information: Report To: Chase Forman Attention: Company: Chase Forman Address: Copy To: Company Name: 8805 Governor's Hill Drive Suite 205 Cincinnati, OH 45249 Address: Regulatory Agency chase.forman@ramboll.com Purchase Order #: Pace Quote Phone: (740)403-1387 Fax: Project Name: GE Indy Pace Project Manager: heather.patterson@pacelabs.com, State / Location Requested Due Date: Project #: Pace Profile #: 9761-8 IN Requested Analysis Filtered (Y/N) C=COMP) COLLECTED Preservatives MATRIX CODE **Drinking Water** DW WT (G=GRAB Waste Water ww Residual Chlorine (Y/N) Product SAMPLE ID Soil/Solid à START END OL One Character per box. WP MATRIX CODE SAMPLE TYPE Sulfate 300.0 Nitrate 353.2 ssolved Ga (A-Z, 0-9/, -) Other Na2S203 Sample Ids must be unique TEM HN03 # OF HC TIME DATE TIME 014 6 10 11 12 ADDITIONAL COMMENTS DATE SAMPLE CONDITIONS **ACCEPTED BY / AFFILIATION** DATE 1-24-22 1345 -24-23 Nitrate 48 hour hold time SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER: SIGNATURE of SAMPLER: DATE Signed

SAMPLE CONDITION UPON RECEIPT FORM

-								
Date/Time and Initials of person examining contents	: 1-24	-23/14	II - MW		_			
1. Courier: ☐ FED EX ☐ UPS ☐ CLIENT ☐ PAGE	CE U	JSPS 🗆	OTHER	5. Packing Material:	☐ Bubble Wrap	Bubble	e Bags	
2. Custody Seal on Cooler/Box Present: Yes	No				None	☐ Other		
(If yes)Seals Intact:	if no seals	were prese	ent)					
3. Thermometer: 1 2 3 4 5 6 A B C D/E)F	:			6. Ice Type: Wet	☐ Blue ☐ None	e		
4. Cooler Temperature(s):				7. If temp. is over 6°C or	under 0°C, was the PN	/ notified?:		□ No
(Initial/Corrected) RECORD TEMPS OF ALL COOLERS RECE					np should be above fre	ezing to 6°C		
All)	1	written out in the c	omments section below.			T	
	Yes	No				Yes	No	N/A
USDA Regulated Soils? (HI, ID, NY, WA, OR,CA, NM, TX, OK, AR, LA, TN, AL, MS, NC, SC, GA, FL, or Puerto Rico)			CHECKED?: Exception any container with a	ing acid/base preservation tions: VOA, coliform, LLHg septum cap or preserved wi	, O&G, RAD CHEM, and			
Short Hold Time Analysis (48 hours or less)? Analysis: N,7 (ade	/		Circle: HNO3 (2) H2SO4 Any non-conformance count form	(≥2) NaOH (>10) NaOH/Z to pH recommendations will b	ZnAc (>9) be noted on the container			
Time 5035A TC placed in Freezer or Short Holds To Lab	Time:		Residual Chlorine C	Check (SVOC 625 Pest/PC	B 608)	Present	Absent	N/A
Rush TAT Requested (4 days or less):			Residual Chlorine C	Check (Total/Amenable/Fre	e Cyanide)			
Custody Signatures Present?			Headspace Wiscons	in Sulfide?				
Containers Intact?:			Headspace in VOA \ See Containter Cou			Present	Absent	No VOA Vials Sent
Sample Label (IDs/Dates/Times) Match COC?: Except TCs, which only require sample ID			Trip Blank Present?					
Extra labels on Terracore Vials? (soils only)			Trip Blank Custody	Seals?:				1
COMMENTS: Containers - MI	N -425	5-0123	522, AD-10	0-012322 MIN	- 313 -01237	22. Mh	1-112	-01-2322
COMMENTS: Containers - MI MW - 132 - 012322 MW-133-0123 10 3VCOH VIOLS For MW-153-	, 22 W	ene all	labelled inc	westly and didnit	- march coc -	mu 1	-24-2	3
10 3VCatt vials for Mb1-153-	012423	3 not	received					
MW-153 was not sample								

** Place a RED dot on containers

that are out of conformance **

		MeOH (only)	. 2												1														Nitric	Sulfuric	Sodium Hydroxide	Sodium Hydroxide/ ZnAc
		SBS DI		V	IALS					AMB	ER G	LASS						Р	LAST	IC						HER	,		Red	Yellow	Green	Black
COC Line Item	WGFU	R	DG9H	VOA VIAL HS (>6mm)	VG9U	DG9N	VG9T	AGOU	AG1H	AG1U	AG2U	AG3S	AG3SF	AG3C	BP1U	BP1N	BP2U	врзи	BP3N	ВРЗЕ	BP3S	врзв	BP3Z	ССЗН	CG3F	Syringe Kit	Deap	Matrix	HNO3 <2	H2SO4 <2	NaOH >10	NaOH/Zn Ac >9
1			3									1						1		1								W				
2			1																									1				
3											-																	Ш				
4																												Ш				
5																1												Ш				-
6																												Ш				
7																		5										Ш				
8														_				_										Ш				
9																						_						Ш				
10			1									-																Ш				
11																												Ш				
12															2													<u>J</u>				

Container Codes

	Glas	SS					PI	astic
DG9H	40mL HCl amber voa vial	BG1T	1L Na Thiosulfate clear glass	BP1B	1L NaOH plastic	BF	P4U	125mL unpreserved plastic
DG9P	40mL TSP amber vial	BG1U	1L unpreserved glass	BP1N	1L HNO3 plastic	В	P4N	125mL HNO3 plastic
DG9S	40mL H2SO4 amber vial	BG3H	250mL HCI Clear Glass	BP1S	1L H2SO4 plastic	BF	P4S	125mL H2SO4 plastic
DG9T	40mL Na Thio amber vial	BG3U	250mL Unpres Clear Glass	BP1U	1L unpreserved plastic	Г		Miscellaneous
DG9U	40mL unpreserved amber vial	AG0U	100mL unpres amber glass	BP1Z	1L NaOH, Zn, Ac	L		Miscellatieous
VG9H	40mL HCl clear vial	AG1H	1L HCl amber glass	BP2N	500mL HNO3 plastic	Sy	yringe	Kit LL Cr+6 sampling kit
VG9T	40mL Na Thio. clear vial	AG1S	1L H2SO4 amber glass	BP2C	500mL NaOH plastic	ZF	PLC	Ziploc Bag
VG9U	40mL unpreserved clear vial	AG1T	1L Na Thiosulfate amber glass	BP2S	500mL H2SO4 plastic	R		Terracore Kit
I	40mL w/hexane wipe vial	AG1U	1liter unpres amber glass	BP2U	500mL unpreserved plastic	SI	P5T	120mL Coliform Sodium Thiosulfate
WGKU	8oz unpreserved clear jar	AG2N	500mL HNO3 amber glass	BP2Z	500mL NaOH, Zn Ac	G	N	General Container
WGFU	4oz clear soil jar	AG2S	500mL H2SO4 amber glass	BP3B	250mL NaOH plastic	U		Summa Can (air sample)
JGFU	4oz unpreserved amber wide	AG2U			250mL HNO3 plastic	V	VT	Water
CG3H	250mL clear glass HCI	AG3S	250mL H2SO4 amber glass	BP3F	250mL HNO3 plastic-field filtered	S	L	Solid Solid
CG3F	250mL clear glass HCI, Field Filter	AG3SF	250mL H2SO4 amb glass -field filtered	BP3U	250mL unpreserved plastic	0	L:	Oil
BG1H	1L HCl clear glass	AG3U	250mL unpres amber glass	BP3S	250mL H2SO4 plastic	N	AL	Non-aqueous liquid
BG1S	1L H2SO4 clear glass	AG3C	250mL NaOH amber glass	BP3Z	250mL NaOH, ZnAc plastic	W	/P	Wipe

** Place a RED dot on containers

that are out of conformance **

								7 3																					that are	e out or o	conforman	ice
		MeOH (only) SBS				_ 1-	.24-								1														Nitric	Sulfuric	Sodium Hydroxide	Sodium Hydroxide/ ZnAc
		SBS DI		V	IALS					AMB	ER G	LASS			-			Р	LAST	IC					OTI	HER			Red	Yellow	Green	Black
COC Line Item	WGFU	R	DG9H	VOA VIAL HS (>6mm)	VG9U	DG9N	VG9T	AGOU	AG1H	AG10	AG2U	AG3S	AG3SF	AG3C	BP1U	BP1N	BP2U	врзи	BP3N	BP3F	BP3S	BP3B	BP3Z	свзн	CG3F	Syringe Kit		Matrix	HNO3 <2	H2SO4 <2	NaOH >10	NaOH/Zn Ac >9
1			سموس																									WIT	-			
2			23														-										-	SE SE	w			
3			,			-								,														Ш				
4																																
5															-													Ш				
6																								-				Ш				
7																																
8																																
9																																
10					1																			,				-				
11														-																		
12																																

Container Codes

	Glas	SS				PI	astic
DG9H	40mL HCl amber voa vial	BG1T	1L Na Thiosulfate clear glass	BP1B	1L NaOH plastic	BP4U	125mL unpreserved plastic
DG9P	40mL TSP amber vial	BG1U	1L unpreserved glass	BP1N	1L HNO3 plastic		125mL HNO3 plastic
DG9S	40mL H2SO4 amber vial	BG3H	250mL HCI Clear Glass	BP1S	1L H2SO4 plastic	BP4S	125mL H2SO4 plastic
DG9T	40mL Na Thio amber vial	BG3U	250mL Unpres Clear Glass	BP1U	1L unpreserved plastic		Miscellaneous
DG9U	40mL unpreserved amber vial	AG0U	100mL unpres amber glass	BP1Z	1L NaOH, Zn, Ac		Miscellatieous
VG9H	40mL HCl clear vial	AG1H	1L HCl amber glass	BP2N	500mL HNO3 plastic	Syringe	Kit LL Cr+6 sampling kit
VG9T	40mL Na Thio. clear vial	AG1S	1L H2SO4 amber glass	BP2C	500mL NaOH plastic	ZPLC	Ziploc Bag
VG9U	40mL unpreserved clear vial	AG1T	1L Na Thiosulfate amber glass	BP2S	500mL H2SO4 plastic	R	Terracore Kit
I	40mL w/hexane wipe vial	AG1U	1liter unpres amber glass	BP2U	500mL unpreserved plastic	SP5T	120mL Coliform Sodium Thiosulfate
WGKU	8oz unpreserved clear jar	AG2N	500mL HNO3 amber glass	BP2Z	500mL NaOH, Zn Ac	GN	General Container
WGFU	4oz clear soil jar	AG2S	500mL H2SO4 amber glass	BP3B	250mL NaOH plastic	U	Summa Can (air sample)
JGFU	4oz unpreserved amber wide	AG2U	500mL unpres amber glass	BP3N	250mL HNO3 plastic	WT	Water
CG3H	250mL clear glass HCl	AG3S	250mL H2SO4 amber glass	BP3F	250mL HNO3 plastic-field filtered	SL	Solid Solid
CG3F	250mL clear glass HCl, Field Filter	AG3SF	250mL H2SO4 amb glass -field filtered	BP3U	250mL unpreserved plastic	OL:	Oil
BG1H	1L HCl clear glass	AG3U	250mL unpres amber glass	BP3S	250mL H2SO4 plastic	NAL	Non-aqueous liquid
BG1S	1L H2SO4 clear glass	AG3C	250mL NaOH amber glass	BP3Z	250mL NaOH, ZnAc plastic	WP	Wipe

March 07, 2023

Chase Forman Ramboll 8805 Governor's Hill Drive Suite 205 Cincinnati, OH 45249

RE: Project: GE Indy

Pace Project No.: 50337890

Dear Chase Forman:

Enclosed are the analytical results for sample(s) received by the laboratory on February 20, 2023. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

- Pace Analytical Gulf Coast
- Pace Analytical Services Indianapolis

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Heather Patterson

heather.patterson@pacelabs.com

Heath Pathson

(317)228-3146 Project Manager

Enclosures

cc: Dana Williams, Ramboll

CERTIFICATIONS

Project: GE Indy
Pace Project No.: 50337890

Pace Analytical Services Indianapolis

7726 Moller Road, Indianapolis, IN 46268

Illinois Accreditation #: 200074

Indiana Drinking Water Laboratory #: C-49-06

Kansas/TNI Certification #: E-10177 Kentucky UST Agency Interest #: 80226

Kentucky WW Laboratory ID #: 98019 Michigan Drinking Water Laboratory #9050 Ohio VAP Certified Laboratory #: CL0065

Oklahoma Laboratory #: 9204 Texas Certification #: T104704355 Wisconsin Laboratory #: 999788130

USDA Foreign Soil Permit #: 525-23-13-23119 USDA Compliance Agreement #: IN-SL-22-001

Pace Analytical Gulf Coast

7979 Innovation Park Drive, Baton Rouge, LA 70820

Arkansas Certification #: 88-0655 DoD ELAP Certification #: 6429-01 Florida Certification #: E87854 Illinois Certification #: 004585 Kansas Certification #: E-10354 Louisiana/LELAP Certification #: 01955 North Carolina Certification #: 618 North Dakota Certification #: R-195 Oklahoma Certification #: 2019-101 South Carolina Certification #: 73006001 Texas Certification #: T104704178-19-11 USDA Soil Permit # P330-19-00209 Virginia Certification #: 460215 Washington Certification #: C929

SAMPLE SUMMARY

Project: GE Indy
Pace Project No.: 50337890

Lab ID	Sample ID	Matrix	Date Collected	Date Received
50337890001	MW-322-022023	Water	02/20/23 10:50	02/20/23 14:15
50337890002	MW-331-022023	Water	02/20/23 11:15	02/20/23 14:15
50337890003	W-9-022023	Water	02/20/23 11:30	02/20/23 14:15
50337890004	MW-22-022023	Water	02/20/23 11:45	02/20/23 14:15
50337890005	MW-173-022023	Water	02/20/23 11:55	02/20/23 14:15
50337890006	MW-313-022023	Water	02/20/23 12:10	02/20/23 14:15
50337890007	W-10-022023	Water	02/20/23 12:40	02/20/23 14:15
50337890008	W-8-022023	Water	02/20/23 12:55	02/20/23 14:15
50337890009	MW-153-022023	Water	02/20/23 13:05	02/20/23 14:15
50337890010	Trip Blank-022023	Water	02/20/23 08:00	02/20/23 14:15

SAMPLE ANALYTE COUNT

Project: GE Indy
Pace Project No.: 50337890

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
50337890001	MW-322-022023	EPA 5030/8260	DAP		PASI-I
50337890002	MW-331-022023	EPA 5030/8260	DAP	75	PASI-I
50337890003	W-9-022023	AM20GAX	LMB	7	GCLA
		EPA 5030/8260	DAP	75	PASI-I
50337890004	MW-22-022023	EPA 5030/8260	DAP	75	PASI-I
50337890005	MW-173-022023	EPA 5030/8260	DAP	75	PASI-I
50337890006	MW-313-022023	EPA 5030/8260	DAP	75	PASI-I
50337890007	W-10-022023	EPA 5030/8260	DAP	75	PASI-I
50337890008	W-8-022023	AM20GAX	LMB	7	GCLA
		EPA 5030/8260	DAP	75	PASI-I
50337890009	MW-153-022023	EPA 5030/8260	DAP	75	PASI-I
50337890010	Trip Blank-022023	EPA 5030/8260	DAP	75	PASI-I

GCLA = Pace Analytical Gulf Coast

PASI-I = Pace Analytical Services - Indianapolis

SUMMARY OF DETECTION

Project: GE Indy
Pace Project No.: 50337890

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
50337890001	MW-322-022023					
EPA 5030/8260	Chloroethane	2340	ug/L	125	02/21/23 16:27	
EPA 5030/8260	cis-1,2-Dichloroethene	645	ug/L	125	02/21/23 16:27	
EPA 5030/8260	Vinyl chloride	815	ug/L	50.0	02/21/23 16:27	
60337890002	MW-331-022023					
EPA 5030/8260	1,1-Dichloroethane	5.4	ug/L	5.0	02/21/23 17:00	
EPA 5030/8260	cis-1,2-Dichloroethene	26.6	ug/L	5.0	02/21/23 17:00	
EPA 5030/8260	Vinyl chloride	2.4	ug/L	2.0	02/21/23 17:00	
50337890003	W-9-022023					
AM20GAX	Methane	8400	ug/L	5.0	03/01/23 09:41	
AM20GAX	Ethane	41	ug/L	1.0	03/01/23 09:41	
AM20GAX	Ethene	6.8	ug/L	1.0	03/01/23 09:41	
EPA 5030/8260	Vinyl chloride	22.3	ug/L	2.0	02/21/23 17:32	
0337890004	MW-22-022023					
EPA 5030/8260	cis-1,2-Dichloroethene	64.0	ug/L	5.0	02/21/23 18:05	
EPA 5030/8260	Vinyl chloride	121	ug/L	2.0	02/21/23 18:05	
0337890005	MW-173-022023					
EPA 5030/8260	cis-1,2-Dichloroethene	988	ug/L	125	02/21/23 18:38	
EPA 5030/8260	Vinyl chloride	91.6	ug/L	50.0	02/21/23 18:38	
60337890006	MW-313-022023					
EPA 5030/8260	Chloroethane	5.3	ug/L	5.0	02/21/23 19:10	
EPA 5030/8260	cis-1,2-Dichloroethene	209	ug/L	5.0	02/21/23 19:10	
EPA 5030/8260	Vinyl chloride	46.5	ug/L	2.0	02/21/23 19:10	
0337890009	MW-153-022023					
EPA 5030/8260	Vinyl chloride	2.3	ug/L	2.0	02/21/23 20:48	

Project: GE Indy
Pace Project No.: 5033789

Date: 03/07/2023 01:21 PM

Sample: MW-322-022023	Lab ID:	50337890001	Collected:	02/20/23	10:50	Received: 02	2/20/23 14:15 M	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Ana	lytical Services	- Indianapolis	3					
Acetone	ND	ug/L	2500	121	25		02/21/23 16:27	67-64-1	
Acrolein	ND ND	ug/L	1250	250	25		02/21/23 16:27		
Acrylonitrile	ND ND	ug/L	2500	61.2	25		02/21/23 16:27		
Benzene	ND	ug/L	125	20.6	25		02/21/23 16:27		
Bromobenzene	ND	ug/L	125	22.2	25		02/21/23 16:27		
Bromochloromethane	ND ND	ug/L	125	24.0	25		02/21/23 16:27		
Bromodichloromethane	ND ND	ug/L	125	20.6	25		02/21/23 16:27		
Bromoform	ND ND	ug/L ug/L	125	18.3	25		02/21/23 16:27		
Bromomethane	ND ND	ug/L ug/L	125	11.0	25 25		02/21/23 16:27		
	ND ND	-	625	109	25 25		02/21/23 16:27		
2-Butanone (MEK) n-Butylbenzene	ND ND	ug/L ug/L	125	20.8	25 25		02/21/23 16:27		
-		-							
sec-Butylbenzene	ND ND	ug/L	125 125	19.8 20.4	25 25		02/21/23 16:27 02/21/23 16:27		
tert-Butylbenzene		ug/L							
Carbon disulfide	ND	ug/L	250	17.5	25		02/21/23 16:27		
Carbon tetrachloride	ND	ug/L	125	17.0	25		02/21/23 16:27		
Chlorobenzene	ND	ug/L	125	23.7	25		02/21/23 16:27		
Chloroethane	2340	ug/L	125	15.7	25		02/21/23 16:27		
Chloroform	ND	ug/L	125	20.8	25		02/21/23 16:27		
Chloromethane	ND	ug/L	125	11.0	25		02/21/23 16:27		
2-Chlorotoluene	ND	ug/L	125	22.2	25		02/21/23 16:27		
1-Chlorotoluene	ND	ug/L	125	22.7	25		02/21/23 16:27		
Dibromochloromethane	ND	ug/L	125	22.4	25		02/21/23 16:27		
1,2-Dibromoethane (EDB)	ND	ug/L	125	24.4	25		02/21/23 16:27		
Dibromomethane	ND	ug/L	125	21.8	25		02/21/23 16:27		
1,2-Dichlorobenzene	ND	ug/L	125	20.2	25		02/21/23 16:27		
1,3-Dichlorobenzene	ND	ug/L	125	20.1	25		02/21/23 16:27		
1,4-Dichlorobenzene	ND	ug/L	125	21.7	25		02/21/23 16:27		
rans-1,4-Dichloro-2-butene	ND	ug/L	2500	15.4	25		02/21/23 16:27		
Dichlorodifluoromethane	ND	ug/L	125	12.5	25		02/21/23 16:27		
1,1-Dichloroethane	ND	ug/L	125	21.1	25		02/21/23 16:27		
1,2-Dichloroethane	ND	ug/L	125	21.2	25		02/21/23 16:27		
1,1-Dichloroethene	ND	ug/L	125	14.0	25		02/21/23 16:27		
cis-1,2-Dichloroethene	645	ug/L	125	22.0	25		02/21/23 16:27		
rans-1,2-Dichloroethene	ND	ug/L	125	18.0	25		02/21/23 16:27	156-60-5	
,2-Dichloropropane	ND	ug/L	125	19.8	25		02/21/23 16:27	78-87-5	
1,3-Dichloropropane	ND	ug/L	125	21.3	25		02/21/23 16:27	142-28-9	
2,2-Dichloropropane	ND	ug/L	125	22.0	25		02/21/23 16:27	594-20-7	
,1-Dichloropropene	ND	ug/L	125	19.6	25		02/21/23 16:27		
cis-1,3-Dichloropropene	ND	ug/L	125	21.4	25		02/21/23 16:27	10061-01-5	
rans-1,3-Dichloropropene	ND	ug/L	125	23.0	25		02/21/23 16:27	10061-02-6	
Ethylbenzene	ND	ug/L	125	23.8	25		02/21/23 16:27	100-41-4	
Ethyl methacrylate	ND	ug/L	2500	21.8	25		02/21/23 16:27	97-63-2	
Hexachloro-1,3-butadiene	ND	ug/L	125	16.2	25		02/21/23 16:27	87-68-3	
n-Hexane	ND	ug/L	125	11.9	25		02/21/23 16:27	110-54-3	
2-Hexanone	ND	ug/L	625	89.0	25		02/21/23 16:27	591-78-6	

Project: GE Indy
Pace Project No.: 50337890

Date: 03/07/2023 01:21 PM

Sample: MW-322-022023	Lab ID:	50337890001	Collecte	d: 02/20/2	3 10:50	Received: 02	2/20/23 14:15 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Anal	ytical Services	- Indianapo	lis					
lodomethane	ND	ug/L	250	8.4	25		02/21/23 16:27	74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	125	20.3	25		02/21/23 16:27	98-82-8	
p-Isopropyltoluene	ND	ug/L	125	22.5	25		02/21/23 16:27	99-87-6	
Methylene Chloride	ND	ug/L	125	17.6	25		02/21/23 16:27	75-09-2	
1-Methylnaphthalene	ND	ug/L	250	22.7	25		02/21/23 16:27	90-12-0	
2-Methylnaphthalene	ND	ug/L	250	21.6	25		02/21/23 16:27	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	625	90.2	25		02/21/23 16:27	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	100	16.4	25		02/21/23 16:27	1634-04-4	
Naphthalene	ND	ug/L	30.0	20.2	25		02/21/23 16:27	91-20-3	
n-Propylbenzene	ND	ug/L	125	20.8	25		02/21/23 16:27	103-65-1	
Styrene	ND	ug/L	125	21.6	25		02/21/23 16:27	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	125	24.8	25		02/21/23 16:27	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	125	23.0	25		02/21/23 16:27	79-34-5	
Tetrachloroethene	ND	ug/L	125	18.8	25		02/21/23 16:27	127-18-4	
Toluene	ND	ug/L	125	21.5	25		02/21/23 16:27	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	125	22.8	25		02/21/23 16:27		
1,2,4-Trichlorobenzene	ND	ug/L	125	19.8	25		02/21/23 16:27		
1,1,1-Trichloroethane	ND	ug/L	125	18.6	25		02/21/23 16:27		
1,1,2-Trichloroethane	ND	ug/L	125	22.0	25		02/21/23 16:27		
Trichloroethene	ND	ug/L	125	19.9	25		02/21/23 16:27		
Trichlorofluoromethane	ND	ug/L	125	14.6	25		02/21/23 16:27		
1,2,3-Trichloropropane	ND	ug/L	125	24.0	25		02/21/23 16:27		
1,2,4-Trimethylbenzene	ND	ug/L	125	22.4	25		02/21/23 16:27		
1,3,5-Trimethylbenzene	ND	ug/L	125	22.2	25		02/21/23 16:27		
Vinyl acetate	ND	ug/L	1250	40.2	25		02/21/23 16:27		L1
Vinyl chloride	815	ug/L	50.0	13.0	25		02/21/23 16:27		
Xylene (Total)	ND	ug/L	250	23.0	25		02/21/23 16:27		
Surrogates		39, ⊏	_00	20.0			32,21,20 13.21	.555 25 7	
Dibromofluoromethane (S)	107	%.	82-128		25		02/21/23 16:27	1868-53-7	D4
4-Bromofluorobenzene (S)	89	%.	79-124		25		02/21/23 16:27		
Toluene-d8 (S)	93	%.	73-122		25		02/21/23 16:27		

Project: GE Indy
Pace Project No.: 50337890

Date: 03/07/2023 01:21 PM

Sample: MW-331-022023	Lab ID:	50337890002	Collected	d: 02/20/23	3 11:15	Received: 02	2/20/23 14:15	Matrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	•	ytical Services		lis					
Acetone	ND	ug/L	100	4.8	1		02/21/23 17:0	00 67-64-1	
Acrolein	ND	ug/L	50.0	10	1		02/21/23 17:0		
Acrylonitrile	ND	ug/L	100	2.4	1		02/21/23 17:0		
Benzene	ND	ug/L	5.0	0.82	1		02/21/23 17:0		
Bromobenzene	ND	ug/L	5.0	0.89	1		02/21/23 17:0		
Bromochloromethane	ND	ug/L	5.0	0.96	1		02/21/23 17:0		
Bromodichloromethane	ND	ug/L	5.0	0.82	1		02/21/23 17:0		
Bromoform	ND	ug/L	5.0	0.73	1		02/21/23 17:0		
Bromomethane	ND	ug/L	5.0	0.44	1		02/21/23 17:0		
2-Butanone (MEK)	ND	ug/L	25.0	4.4	1		02/21/23 17:0		
n-Butylbenzene	ND ND	ug/L ug/L	5.0	0.83	1		02/21/23 17:0		
sec-Butylbenzene	ND	ug/L	5.0	0.79	1		02/21/23 17:0		
ert-Butylbenzene	ND ND	ug/L ug/L	5.0	0.73	1		02/21/23 17:0		
Carbon disulfide	ND ND	ug/L ug/L	10.0	0.70	1		02/21/23 17:0		
Carbon tetrachloride	ND ND	ug/L ug/L	5.0	0.78	1		02/21/23 17:0		
Chlorobenzene	ND ND	-	5.0	0.08	1		02/21/23 17:0		
		ug/L		0.93					
Chloroethane Chloroform	ND	ug/L	5.0		1 1		02/21/23 17:0		
	ND	ug/L	5.0	0.83			02/21/23 17:0		
Chloromethane	ND	ug/L	5.0	0.44	1		02/21/23 17:0		
2-Chlorotoluene	ND	ug/L	5.0	0.89	1		02/21/23 17:0		
4-Chlorotoluene	ND	ug/L	5.0	0.91	1		02/21/23 17:0		
Dibromochloromethane	ND	ug/L	5.0	0.89	1		02/21/23 17:0		
1,2-Dibromoethane (EDB)	ND	ug/L	5.0	0.97	1		02/21/23 17:0		
Dibromomethane	ND	ug/L	5.0	0.87	1		02/21/23 17:0		
1,2-Dichlorobenzene	ND	ug/L	5.0	0.81	1		02/21/23 17:0		
1,3-Dichlorobenzene	ND	ug/L	5.0	0.80	1		02/21/23 17:0		
1,4-Dichlorobenzene	ND	ug/L	5.0	0.87	1		02/21/23 17:0		
rans-1,4-Dichloro-2-butene	ND	ug/L	100	0.62	1		02/21/23 17:0		
Dichlorodifluoromethane	ND	ug/L	5.0	0.50	1		02/21/23 17:0		
1,1-Dichloroethane	5.4	ug/L	5.0	0.84	1		02/21/23 17:0		
1,2-Dichloroethane	ND	ug/L	5.0	0.85	1		02/21/23 17:0		
1,1-Dichloroethene	ND	ug/L	5.0	0.56	1		02/21/23 17:0		
cis-1,2-Dichloroethene	26.6	ug/L	5.0	0.88	1		02/21/23 17:0		
rans-1,2-Dichloroethene	ND	ug/L	5.0	0.72	1		02/21/23 17:0		
1,2-Dichloropropane	ND	ug/L	5.0	0.79	1		02/21/23 17:0		
1,3-Dichloropropane	ND	ug/L	5.0	0.85	1		02/21/23 17:0	00 142-28-9	
2,2-Dichloropropane	ND	ug/L	5.0	0.88	1		02/21/23 17:0		
1,1-Dichloropropene	ND	ug/L	5.0	0.78	1		02/21/23 17:0		
cis-1,3-Dichloropropene	ND	ug/L	5.0	0.86	1		02/21/23 17:0	00 10061-01-5	
rans-1,3-Dichloropropene	ND	ug/L	5.0	0.92	1		02/21/23 17:0	00 10061-02-6	
Ethylbenzene	ND	ug/L	5.0	0.95	1		02/21/23 17:0	00 100-41-4	
Ethyl methacrylate	ND	ug/L	100	0.87	1		02/21/23 17:0	00 97-63-2	
Hexachloro-1,3-butadiene	ND	ug/L	5.0	0.65	1		02/21/23 17:0	00 87-68-3	
n-Hexane	ND	ug/L	5.0	0.48	1		02/21/23 17:0	00 110-54-3	
2-Hexanone	ND	ug/L	25.0	3.6	1		02/21/23 17:0	00 591-78-6	

Project: GE Indy
Pace Project No.: 50337890

Date: 03/07/2023 01:21 PM

Sample: MW-331-022023	Lab ID:	50337890002	Collecte	d: 02/20/23	3 11:15	Received: 02	2/20/23 14:15 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Ana	lytical Services	- Indianapo	lis					
lodomethane	ND	ug/L	10.0	0.33	1		02/21/23 17:00	74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	5.0	0.81	1		02/21/23 17:00	98-82-8	
p-Isopropyltoluene	ND	ug/L	5.0	0.90	1		02/21/23 17:00	99-87-6	
Methylene Chloride	ND	ug/L	5.0	0.70	1		02/21/23 17:00	75-09-2	
1-Methylnaphthalene	ND	ug/L	10.0	0.91	1		02/21/23 17:00	90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	0.86	1		02/21/23 17:00	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	3.6	1		02/21/23 17:00	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	4.0	0.66	1		02/21/23 17:00	1634-04-4	
Naphthalene	ND	ug/L	1.2	0.81	1		02/21/23 17:00	91-20-3	
n-Propylbenzene	ND	ug/L	5.0	0.83	1		02/21/23 17:00	103-65-1	
Styrene	ND	ug/L	5.0	0.86	1		02/21/23 17:00	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.99	1		02/21/23 17:00	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.92	1		02/21/23 17:00	79-34-5	
Tetrachloroethene	ND	ug/L	5.0	0.75	1		02/21/23 17:00	127-18-4	
Toluene	ND	ug/L	5.0	0.86	1		02/21/23 17:00	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	0.91	1		02/21/23 17:00	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	5.0	0.79	1		02/21/23 17:00	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	5.0	0.74	1		02/21/23 17:00	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	5.0	0.88	1		02/21/23 17:00	79-00-5	
Trichloroethene	ND	ug/L	5.0	0.80	1		02/21/23 17:00	79-01-6	
Trichlorofluoromethane	ND	ug/L	5.0	0.58	1		02/21/23 17:00	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	5.0	0.96	1		02/21/23 17:00	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/L	5.0	0.90	1		02/21/23 17:00	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.89	1		02/21/23 17:00	108-67-8	
Vinyl acetate	ND	ug/L	50.0	1.6	1		02/21/23 17:00	108-05-4	L1
Vinyl chloride	2.4	ug/L	2.0	0.52	1		02/21/23 17:00		
Kylene (Total)	ND	ug/L	10.0	0.92	1		02/21/23 17:00	1330-20-7	
Surrogates		3						-	
Dibromofluoromethane (S)	107	%.	82-128		1		02/21/23 17:00	1868-53-7	
4-Bromofluorobenzene (S)	91	%.	79-124		1		02/21/23 17:00	460-00-4	
Toluene-d8 (S)	94	%.	73-122		1		02/21/23 17:00	2037-26-5	

Project: GE Indy
Pace Project No.: 50337890

Date: 03/07/2023 01:21 PM

Sample: W-9-022023	Lab ID:	50337890003	Collected	1: 02/20/23	11:30	Received: 02	2/20/23 14:15 M	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Indicator Gases Water LHC	Analytica	Method: AM20	GAX						
	Pace Ana	lytical Gulf Coa	st						
Methane	8400	ug/L	5.0	2.0	1		03/01/23 09:41	74-82-8	
Ethane	41	ug/L	1.0	0.17	1		03/01/23 09:41		
Ethene	6.8	ug/L	1.0	0.24	1		03/01/23 09:41		
n-Propane	ND	ug/L	1.0	0.29	1		03/01/23 09:41		
Propylene	ND	ug/L	1.0	0.31	1		03/01/23 09:41		
sobutane	ND	ug/L	2.0	0.065	1		03/01/23 09:41		
n-Butane	ND ND	ug/L	2.0	0.003	1		03/01/23 09:41		
. 2 4.40		-		0.0 .	•		00/01/20 00111	00	
8260 MSV Indiana		Method: EPA 5							
	Pace Ana	llytical Services	- Indianapol	is					
Acetone	ND	ug/L	100	4.8	1		02/21/23 17:32	67-64-1	
Acrolein	ND	ug/L	50.0	10	1		02/21/23 17:32	107-02-8	
Acrylonitrile	ND	ug/L	100	2.4	1		02/21/23 17:32	107-13-1	
Benzene	ND	ug/L	5.0	0.82	1		02/21/23 17:32	71-43-2	
Bromobenzene	ND	ug/L	5.0	0.89	1		02/21/23 17:32		
Bromochloromethane	ND	ug/L	5.0	0.96	1		02/21/23 17:32		
Bromodichloromethane	ND	ug/L	5.0	0.82	1		02/21/23 17:32		
Bromoform	ND	ug/L	5.0	0.73	1		02/21/23 17:32		
Bromomethane	ND	ug/L	5.0	0.44	1		02/21/23 17:32		
2-Butanone (MEK)	ND	ug/L	25.0	4.4	1		02/21/23 17:32		
n-Butylbenzene	ND	ug/L	5.0	0.83	1		02/21/23 17:32		
sec-Butylbenzene	ND	ug/L	5.0	0.79	1		02/21/23 17:32		
ert-Butylbenzene	ND	ug/L	5.0	0.82	1		02/21/23 17:32		
Carbon disulfide	ND	ug/L	10.0	0.70	1		02/21/23 17:32		
Carbon tetrachloride	ND	ug/L	5.0	0.68	1		02/21/23 17:32		
Chlorobenzene	ND	ug/L	5.0	0.95	1		02/21/23 17:32		
Chloroethane	ND	ug/L	5.0	0.63	1		02/21/23 17:32		
Chloroform	ND	ug/L	5.0	0.83	1		02/21/23 17:32		
Chloromethane	ND	ug/L	5.0	0.44	1		02/21/23 17:32		
2-Chlorotoluene	ND ND	ug/L	5.0	0.44	1		02/21/23 17:32		
4-Chlorotoluene	ND ND	ug/L	5.0	0.03	1		02/21/23 17:32		
Dibromochloromethane	ND ND	ug/L	5.0	0.89	1		02/21/23 17:32		
1,2-Dibromoethane (EDB)	ND ND	ug/L ug/L	5.0	0.89	1		02/21/23 17:32		
Dibromomethane	ND ND	ug/L ug/L	5.0	0.97	1		02/21/23 17:32		
	ND ND	ug/L	5.0	0.81			02/21/23 17:32		
1,2-Dichlorobenzene		•			1				
1,3-Dichlorobenzene	ND	ug/L	5.0	0.80	1		02/21/23 17:32		
1,4-Dichlorobenzene	ND	ug/L	5.0	0.87	1		02/21/23 17:32		
rans-1,4-Dichloro-2-butene	ND	ug/L	100	0.62	1		02/21/23 17:32		
Dichlorodifluoromethane	ND	ug/L	5.0	0.50	1		02/21/23 17:32		
1,1-Dichloroethane	ND	ug/L	5.0	0.84	1		02/21/23 17:32		
1,2-Dichloroethane	ND	ug/L	5.0	0.85	1		02/21/23 17:32		
1,1-Dichloroethene	ND	ug/L	5.0	0.56	1		02/21/23 17:32		
cis-1,2-Dichloroethene	ND	ug/L	5.0	0.88	1		02/21/23 17:32		
trans-1,2-Dichloroethene	ND	ug/L	5.0	0.72	1		02/21/23 17:32		
1,2-Dichloropropane	ND	ug/L	5.0	0.79	1		02/21/23 17:32	78-87-5	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: GE Indy
Pace Project No.: 50337890

Date: 03/07/2023 01:21 PM

Sample: W-9-022023	Lab ID:	50337890003	Collecte	d: 02/20/23	3 11:30	Received: 02	2/20/23 14:15	Matrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Faianieleis				IVIDE .		— Frepareu	— Allalyzeu	CAS NO.	
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Anal	ytical Services	- Indianapo	lis					
1,3-Dichloropropane	ND	ug/L	5.0	0.85	1		02/21/23 17:	32 142-28-9	
2,2-Dichloropropane	ND	ug/L	5.0	0.88	1		02/21/23 17:	32 594-20-7	
1,1-Dichloropropene	ND	ug/L	5.0	0.78	1		02/21/23 17:	32 563-58-6	
cis-1,3-Dichloropropene	ND	ug/L	5.0	0.86	1		02/21/23 17:	32 10061-01-5	
trans-1,3-Dichloropropene	ND	ug/L	5.0	0.92	1		02/21/23 17:	32 10061-02-6	
Ethylbenzene	ND	ug/L	5.0	0.95	1		02/21/23 17:	32 100-41-4	
Ethyl methacrylate	ND	ug/L	100	0.87	1		02/21/23 17:	32 97-63-2	
Hexachloro-1,3-butadiene	ND	ug/L	5.0	0.65	1		02/21/23 17:	32 87-68-3	
n-Hexane	ND	ug/L	5.0	0.48	1		02/21/23 17:	32 110-54-3	
2-Hexanone	ND	ug/L	25.0	3.6	1			32 591-78-6	
lodomethane	ND	ug/L	10.0	0.33	1		02/21/23 17:	32 74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	5.0	0.81	1		02/21/23 17:	32 98-82-8	
p-Isopropyltoluene	ND	ug/L	5.0	0.90	1		02/21/23 17:	32 99-87-6	
Methylene Chloride	ND	ug/L	5.0	0.70	1		02/21/23 17:	32 75-09-2	
I-Methylnaphthalene	ND	ug/L	10.0	0.91	1		02/21/23 17:	32 90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	0.86	1		02/21/23 17:	32 91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	3.6	1		02/21/23 17:	32 108-10-1	
Methyl-tert-butyl ether	ND	ug/L	4.0	0.66	1			32 1634-04-4	
Naphthalene	ND	ug/L	1.2	0.81	1		02/21/23 17:	32 91-20-3	
r-Propylbenzene	ND	ug/L	5.0	0.83	1			32 103-65-1	
Styrene	ND	ug/L	5.0	0.86	1		02/21/23 17:	32 100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.99	1		02/21/23 17:	32 630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.92	1		02/21/23 17:		
Tetrachloroethene	ND	ug/L	5.0	0.75	1			32 127-18-4	
Toluene	ND	ug/L	5.0	0.86	1		02/21/23 17:	32 108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	0.91	1		02/21/23 17:		
1,2,4-Trichlorobenzene	ND	ug/L	5.0	0.79	1			32 120-82-1	
1,1,1-Trichloroethane	ND	ug/L	5.0	0.74	1		02/21/23 17:		
1,1,2-Trichloroethane	ND	ug/L	5.0	0.88	1		02/21/23 17:		
Trichloroethene	ND	ug/L	5.0	0.80	1		02/21/23 17:		
Frichlorofluoromethane	ND	ug/L	5.0	0.58	1		02/21/23 17:		
1,2,3-Trichloropropane	ND	ug/L	5.0	0.96	1		02/21/23 17:		
1,2,4-Trimethylbenzene	ND	ug/L	5.0	0.90	1		02/21/23 17:		
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.89	1			32 108-67-8	
√inyl acetate	ND	ug/L	50.0	1.6	1			32 108-05-4	L1
/inyl chloride	22.3	ug/L	2.0	0.52	1		02/21/23 17:		
Kylene (Total)	ND	ug/L	10.0	0.92	1			32 1330-20-7	
Surrogates	5	~ 5 , –		0.02	•		,,	000 -0 .	
Dibromofluoromethane (S)	108	%.	82-128		1		02/21/23 17:	32 1868-53-7	
1-Bromofluorobenzene (S)	89	%.	79-124		1			32 460-00-4	
Toluene-d8 (S)	93	%.	73-122		1			32 2037-26-5	

Project: GE Indy
Pace Project No.: 50337890

Date: 03/07/2023 01:21 PM

Sample: MW-22-022023	Lab ID:	50337890004	Collected	d: 02/20/23	11:45	Received: 02	2/20/23 14:15	Matrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	•	ytical Services		lis					
Acetone	ND	ug/L	100	4.8	1		02/21/23 18:0	ns 67-64-1	
Acrolein	ND	ug/L	50.0	10	1		02/21/23 18:0		
Acrylonitrile	ND	ug/L	100	2.4	1		02/21/23 18:0		
Benzene	ND	ug/L	5.0	0.82	1		02/21/23 18:0		
Bromobenzene	ND	ug/L	5.0	0.89	1		02/21/23 18:0		
Bromochloromethane	ND	ug/L	5.0	0.96	1		02/21/23 18:0		
Bromodichloromethane	ND ND	ug/L ug/L	5.0	0.82	1		02/21/23 18:0		
Bromoform	ND ND	ug/L ug/L	5.0	0.82	1		02/21/23 18:0		
Bromomethane	ND		5.0	0.73	1		02/21/23 18:0		
	ND ND	ug/L	25.0	4.4	1		02/21/23 18:0		
2-Butanone (MEK)	ND ND	ug/L	25.0 5.0	0.83	1		02/21/23 18:0		
n-Butylbenzene		ug/L		0.83			02/21/23 18:0		
sec-Butylbenzene	ND	ug/L	5.0		1 1				
ert-Butylbenzene	ND	ug/L	5.0	0.82			02/21/23 18:0		
Carbon disulfide	ND	ug/L	10.0	0.70	1		02/21/23 18:0		
Carbon tetrachloride	ND	ug/L	5.0	0.68	1		02/21/23 18:0		
Chlorobenzene	ND	ug/L	5.0	0.95	1		02/21/23 18:0		
Chloroethane	ND	ug/L	5.0	0.63	1		02/21/23 18:0		
Chloroform	ND	ug/L	5.0	0.83	1		02/21/23 18:0		
Chloromethane	ND	ug/L	5.0	0.44	1		02/21/23 18:0		
2-Chlorotoluene	ND	ug/L	5.0	0.89	1		02/21/23 18:0		
l-Chlorotoluene	ND	ug/L	5.0	0.91	1		02/21/23 18:0		
Dibromochloromethane	ND	ug/L	5.0	0.89	1		02/21/23 18:0		
1,2-Dibromoethane (EDB)	ND	ug/L	5.0	0.97	1		02/21/23 18:0		
Dibromomethane	ND	ug/L	5.0	0.87	1		02/21/23 18:0		
1,2-Dichlorobenzene	ND	ug/L	5.0	0.81	1		02/21/23 18:0		
1,3-Dichlorobenzene	ND	ug/L	5.0	0.80	1		02/21/23 18:0	05 541-73-1	
1,4-Dichlorobenzene	ND	ug/L	5.0	0.87	1		02/21/23 18:0		
rans-1,4-Dichloro-2-butene	ND	ug/L	100	0.62	1		02/21/23 18:0		
Dichlorodifluoromethane	ND	ug/L	5.0	0.50	1		02/21/23 18:0		
1,1-Dichloroethane	ND	ug/L	5.0	0.84	1		02/21/23 18:0	05 75-34-3	
1,2-Dichloroethane	ND	ug/L	5.0	0.85	1		02/21/23 18:0	05 107-06-2	
1,1-Dichloroethene	ND	ug/L	5.0	0.56	1		02/21/23 18:0	05 75-35-4	
cis-1,2-Dichloroethene	64.0	ug/L	5.0	0.88	1		02/21/23 18:0	05 156-59-2	
rans-1,2-Dichloroethene	ND	ug/L	5.0	0.72	1		02/21/23 18:0	05 156-60-5	
,2-Dichloropropane	ND	ug/L	5.0	0.79	1		02/21/23 18:0	05 78-87-5	
1,3-Dichloropropane	ND	ug/L	5.0	0.85	1		02/21/23 18:0	05 142-28-9	
2,2-Dichloropropane	ND	ug/L	5.0	0.88	1		02/21/23 18:0	05 594-20-7	
,1-Dichloropropene	ND	ug/L	5.0	0.78	1		02/21/23 18:0	05 563-58-6	
cis-1,3-Dichloropropene	ND	ug/L	5.0	0.86	1		02/21/23 18:0	05 10061-01-5	
rans-1,3-Dichloropropene	ND	ug/L	5.0	0.92	1		02/21/23 18:0	05 10061-02-6	
Ethylbenzene	ND	ug/L	5.0	0.95	1		02/21/23 18:0		
Ethyl methacrylate	ND	ug/L	100	0.87	1		02/21/23 18:0	05 97-63-2	
Hexachloro-1,3-butadiene	ND	ug/L	5.0	0.65	1		02/21/23 18:0		
n-Hexane	ND	ug/L	5.0	0.48	1		02/21/23 18:0		
2-Hexanone	ND	ug/L	25.0	3.6	1		02/21/23 18:0		

Project: GE Indy
Pace Project No.: 50337890

Date: 03/07/2023 01:21 PM

Sample: MW-22-022023	Lab ID:	50337890004	Collecte	d: 02/20/23	3 11:45	Received: 02	2/20/23 14:15 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Anal	ytical Services	- Indianapo	lis					
lodomethane	ND	ug/L	10.0	0.33	1		02/21/23 18:05	74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	5.0	0.81	1		02/21/23 18:05	98-82-8	
p-Isopropyltoluene	ND	ug/L	5.0	0.90	1		02/21/23 18:05	99-87-6	
Methylene Chloride	ND	ug/L	5.0	0.70	1		02/21/23 18:05	75-09-2	
1-Methylnaphthalene	ND	ug/L	10.0	0.91	1		02/21/23 18:05	90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	0.86	1		02/21/23 18:05	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	3.6	1		02/21/23 18:05	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	4.0	0.66	1		02/21/23 18:05	1634-04-4	
Naphthalene	ND	ug/L	1.2	0.81	1		02/21/23 18:05	91-20-3	
n-Propylbenzene	ND	ug/L	5.0	0.83	1		02/21/23 18:05	103-65-1	
Styrene	ND	ug/L	5.0	0.86	1		02/21/23 18:05	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.99	1		02/21/23 18:05	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.92	1		02/21/23 18:05	79-34-5	
Tetrachloroethene	ND	ug/L	5.0	0.75	1		02/21/23 18:05	127-18-4	
Toluene	ND	ug/L	5.0	0.86	1		02/21/23 18:05	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	0.91	1		02/21/23 18:05	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	5.0	0.79	1		02/21/23 18:05		
1,1,1-Trichloroethane	ND	ug/L	5.0	0.74	1		02/21/23 18:05		
1,1,2-Trichloroethane	ND	ug/L	5.0	0.88	1		02/21/23 18:05	79-00-5	
Trichloroethene	ND	ug/L	5.0	0.80	1		02/21/23 18:05		
Trichlorofluoromethane	ND	ug/L	5.0	0.58	1		02/21/23 18:05		
1,2,3-Trichloropropane	ND	ug/L	5.0	0.96	1		02/21/23 18:05	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/L	5.0	0.90	1		02/21/23 18:05		
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.89	1		02/21/23 18:05		
Vinyl acetate	ND	ug/L	50.0	1.6	1		02/21/23 18:05		L1
Vinyl chloride	121	ug/L	2.0	0.52	1		02/21/23 18:05		
Xylene (Total)	ND	ug/L	10.0	0.92	1		02/21/23 18:05		
Surrogates	5	~ g , –		0.02	•		1=,1.,20 .3.00	. 300 20 .	
Dibromofluoromethane (S)	107	%.	82-128		1		02/21/23 18:05	1868-53-7	
4-Bromofluorobenzene (S)	89	%.	79-124		1		02/21/23 18:05	460-00-4	
Toluene-d8 (S)	92	%.	73-122		1		02/21/23 18:05		

Project: GE Indy
Pace Project No.: 50337890

Date: 03/07/2023 01:21 PM

Sample: MW-173-022023	Lab ID:	50337890005	Collecte	d: 02/20/2	3 11:55	Received: 02/20/23 14:15 Matrix: Water			
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 50	030/8260						
		lytical Services -		olis					
Acetone	ND	ug/L	2500	121	25		02/21/23 18:3	88 67-64-1	
Acrolein	ND	ug/L	1250	250	25		02/21/23 18:3		
Acrylonitrile	ND	ug/L	2500	61.2	25		02/21/23 18:3		
Benzene	ND	ug/L	125	20.6	25		02/21/23 18:3		
Bromobenzene	ND	ug/L	125	22.2	25		02/21/23 18:3	-	
Bromochloromethane	ND	ug/L	125	24.0	25		02/21/23 18:3		
Bromodichloromethane	ND	ug/L	125	20.6	25		02/21/23 18:3		
Bromoform	ND	ug/L ug/L	125	18.3	25 25		02/21/23 18:3		
Bromomethane	ND ND	ug/L ug/L	125	11.0	25		02/21/23 18:3		
2-Butanone (MEK)	ND ND	_	625	109	25 25		02/21/23 18:3		
		ug/L							
n-Butylbenzene	ND	ug/L	125	20.8	25 25		02/21/23 18:3		
sec-Butylbenzene	ND	ug/L	125	19.8	25 25		02/21/23 18:3		
tert-Butylbenzene	ND	ug/L	125	20.4	25		02/21/23 18:3		
Carbon disulfide	ND	ug/L	250	17.5	25		02/21/23 18:3		
Carbon tetrachloride	ND	ug/L	125	17.0	25		02/21/23 18:3		
Chlorobenzene	ND	ug/L	125	23.7	25		02/21/23 18:3		
Chloroethane	ND	ug/L	125	15.7	25		02/21/23 18:3		
Chloroform	ND	ug/L	125	20.8	25		02/21/23 18:3		
Chloromethane	ND	ug/L	125	11.0	25		02/21/23 18:3		
2-Chlorotoluene	ND	ug/L	125	22.2	25		02/21/23 18:3		
4-Chlorotoluene	ND	ug/L	125	22.7	25		02/21/23 18:3	88 106-43-4	
Dibromochloromethane	ND	ug/L	125	22.4	25		02/21/23 18:3	88 124-48-1	
1,2-Dibromoethane (EDB)	ND	ug/L	125	24.4	25		02/21/23 18:3	88 106-93-4	
Dibromomethane	ND	ug/L	125	21.8	25		02/21/23 18:3	88 74-95-3	
1,2-Dichlorobenzene	ND	ug/L	125	20.2	25		02/21/23 18:3	88 95-50-1	
1,3-Dichlorobenzene	ND	ug/L	125	20.1	25		02/21/23 18:3	88 541-73-1	
1,4-Dichlorobenzene	ND	ug/L	125	21.7	25		02/21/23 18:3	8 106-46-7	
trans-1,4-Dichloro-2-butene	ND	ug/L	2500	15.4	25		02/21/23 18:3	8 110-57-6	
Dichlorodifluoromethane	ND	ug/L	125	12.5	25		02/21/23 18:3	88 75-71-8	
1,1-Dichloroethane	ND	ug/L	125	21.1	25		02/21/23 18:3	88 75-34-3	
1,2-Dichloroethane	ND	ug/L	125	21.2	25		02/21/23 18:3	88 107-06-2	
1,1-Dichloroethene	ND	ug/L	125	14.0	25		02/21/23 18:3		
cis-1,2-Dichloroethene	988	ug/L	125	22.0	25		02/21/23 18:3		
trans-1,2-Dichloroethene	ND	ug/L	125	18.0	25		02/21/23 18:3	88 156-60-5	
1,2-Dichloropropane	ND	ug/L	125	19.8	25		02/21/23 18:3		
1,3-Dichloropropane	ND	ug/L	125	21.3	25		02/21/23 18:3		
2,2-Dichloropropane	ND	ug/L	125	22.0	25		02/21/23 18:3		
1,1-Dichloropropene	ND	ug/L	125	19.6	25		02/21/23 18:3		
cis-1,3-Dichloropropene	ND	ug/L	125	21.4	25			88 10061-01-5	
trans-1,3-Dichloropropene	ND	ug/L	125	23.0	25			88 10061-02-6	
Ethylbenzene	ND ND	ug/L	125	23.8	25		02/21/23 18:3		
Ethyl methacrylate	ND ND	ug/L ug/L	2500	21.8	25		02/21/23 18:3		
Hexachloro-1,3-butadiene	ND ND	ug/L ug/L	125	16.2	25 25		02/21/23 18:3		
n-Hexane	ND ND	-	125 125	11.9	25 25		02/21/23 18:3		
n-нехапе 2-Hexanone	ND ND	ug/L ug/L	625	89.0	25 25		02/21/23 18:3		

Project: GE Indy
Pace Project No.: 50337890

Date: 03/07/2023 01:21 PM

Sample: MW-173-022023	Lab ID:	50337890005	Collecte	d: 02/20/23	3 11:55	Received: 02	2/20/23 14:15 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF ——	Prepared	Analyzed	CAS No.	Qual
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Anal	ytical Services	- Indianapo	lis					
lodomethane	ND	ug/L	250	8.4	25		02/21/23 18:38	74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	125	20.3	25		02/21/23 18:38	98-82-8	
p-Isopropyltoluene	ND	ug/L	125	22.5	25		02/21/23 18:38	99-87-6	
Methylene Chloride	ND	ug/L	125	17.6	25		02/21/23 18:38	75-09-2	
1-Methylnaphthalene	ND	ug/L	250	22.7	25		02/21/23 18:38	90-12-0	
2-Methylnaphthalene	ND	ug/L	250	21.6	25		02/21/23 18:38	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	625	90.2	25		02/21/23 18:38	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	100	16.4	25		02/21/23 18:38	1634-04-4	
Naphthalene	ND	ug/L	30.0	20.2	25		02/21/23 18:38	91-20-3	
n-Propylbenzene	ND	ug/L	125	20.8	25		02/21/23 18:38	103-65-1	
Styrene	ND	ug/L	125	21.6	25		02/21/23 18:38	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	125	24.8	25		02/21/23 18:38	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	125	23.0	25		02/21/23 18:38	79-34-5	
Tetrachloroethene	ND	ug/L	125	18.8	25		02/21/23 18:38	127-18-4	
Toluene	ND	ug/L	125	21.5	25		02/21/23 18:38	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	125	22.8	25		02/21/23 18:38	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	125	19.8	25		02/21/23 18:38	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	125	18.6	25		02/21/23 18:38	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	125	22.0	25		02/21/23 18:38	79-00-5	
Trichloroethene	ND	ug/L	125	19.9	25		02/21/23 18:38	79-01-6	
Trichlorofluoromethane	ND	ug/L	125	14.6	25		02/21/23 18:38	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	125	24.0	25		02/21/23 18:38	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/L	125	22.4	25		02/21/23 18:38	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	125	22.2	25		02/21/23 18:38	108-67-8	
Vinyl acetate	ND	ug/L	1250	40.2	25		02/21/23 18:38	108-05-4	L1
Vinyl chloride	91.6	ug/L	50.0	13.0	25		02/21/23 18:38	75-01-4	
Xylene (Total)	ND	ug/L	250	23.0	25		02/21/23 18:38		
Surrogates		3			-			-	
Dibromofluoromethane (S)	108	%.	82-128		25		02/21/23 18:38	1868-53-7	D4
4-Bromofluorobenzene (S)	90	%.	79-124		25		02/21/23 18:38	460-00-4	
Toluene-d8 (S)	92	%.	73-122		25		02/21/23 18:38	2037-26-5	

Project: GE Indy
Pace Project No.: 50337890

Date: 03/07/2023 01:21 PM

Sample: MW-313-022023	Lab ID:	50337890006	Collected	d: 02/20/23	3 12:10	Received: 02	2/20/23 14:15	Matrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	•	ytical Services		lis					
Acetone	ND	ug/L	100	4.8	1		02/21/23 19:	10 67-64-1	
Acrolein	ND	ug/L	50.0	10	1		02/21/23 19:	10 107-02-8	
Acrylonitrile	ND	ug/L	100	2.4	1		02/21/23 19:	10 107-13-1	
Benzene	ND	ug/L	5.0	0.82	1		02/21/23 19:	10 71-43-2	
Bromobenzene	ND	ug/L	5.0	0.89	1		02/21/23 19:	10 108-86-1	
Bromochloromethane	ND	ug/L	5.0	0.96	1		02/21/23 19:	10 74-97-5	
Bromodichloromethane	ND	ug/L	5.0	0.82	1		02/21/23 19:		
Bromoform	ND	ug/L	5.0	0.73	1		02/21/23 19:		
Bromomethane	ND	ug/L	5.0	0.44	1		02/21/23 19:		
2-Butanone (MEK)	ND	ug/L	25.0	4.4	1		02/21/23 19:		
n-Butylbenzene	ND	ug/L	5.0	0.83	1			10 104-51-8	
sec-Butylbenzene	ND	ug/L	5.0	0.79	1			10 135-98-8	
tert-Butylbenzene	ND	ug/L	5.0	0.82	1		02/21/23 19:		
Carbon disulfide	ND	ug/L	10.0	0.70	1		02/21/23 19:		
Carbon tetrachloride	ND	ug/L ug/L	5.0	0.68	1		02/21/23 19:		
Chlorobenzene	ND ND	ug/L ug/L	5.0	0.00	1			10 108-90-7	
Chloroethane	5.3	-	5.0	0.93	1		02/21/23 19:		
Chloroform	ND	ug/L	5.0	0.83	1		02/21/23 19:		
		ug/L		0.63	1				
Chloromethane	ND	ug/L	5.0		1		02/21/23 19:		
2-Chlorotoluene	ND	ug/L	5.0	0.89			02/21/23 19:		
4-Chlorotoluene	ND	ug/L	5.0	0.91	1			10 106-43-4	
Dibromochloromethane	ND	ug/L	5.0	0.89	1			10 124-48-1	
1,2-Dibromoethane (EDB)	ND	ug/L	5.0	0.97	1			10 106-93-4	
Dibromomethane	ND	ug/L	5.0	0.87	1		02/21/23 19:		
1,2-Dichlorobenzene	ND	ug/L	5.0	0.81	1		02/21/23 19:		
1,3-Dichlorobenzene	ND	ug/L	5.0	0.80	1			10 541-73-1	
1,4-Dichlorobenzene	ND	ug/L	5.0	0.87	1			10 106-46-7	
rans-1,4-Dichloro-2-butene	ND	ug/L	100	0.62	1			10 110-57-6	
Dichlorodifluoromethane	ND	ug/L	5.0	0.50	1		02/21/23 19:		
1,1-Dichloroethane	ND	ug/L	5.0	0.84	1		02/21/23 19:		
1,2-Dichloroethane	ND	ug/L	5.0	0.85	1			10 107-06-2	
1,1-Dichloroethene	ND	ug/L	5.0	0.56	1		02/21/23 19:		
cis-1,2-Dichloroethene	209	ug/L	5.0	0.88	1			10 156-59-2	
rans-1,2-Dichloroethene	ND	ug/L	5.0	0.72	1			10 156-60-5	
1,2-Dichloropropane	ND	ug/L	5.0	0.79	1		02/21/23 19:	10 78-87-5	
1,3-Dichloropropane	ND	ug/L	5.0	0.85	1		02/21/23 19:	10 142-28-9	
2,2-Dichloropropane	ND	ug/L	5.0	0.88	1		02/21/23 19:	10 594-20-7	
1,1-Dichloropropene	ND	ug/L	5.0	0.78	1			10 563-58-6	
cis-1,3-Dichloropropene	ND	ug/L	5.0	0.86	1		02/21/23 19:	10 10061-01-5	
rans-1,3-Dichloropropene	ND	ug/L	5.0	0.92	1		02/21/23 19:	10 10061-02-6	
Ethylbenzene	ND	ug/L	5.0	0.95	1		02/21/23 19:	10 100-41-4	
Ethyl methacrylate	ND	ug/L	100	0.87	1		02/21/23 19:	10 97-63-2	
Hexachloro-1,3-butadiene	ND	ug/L	5.0	0.65	1		02/21/23 19:	10 87-68-3	
n-Hexane	ND	ug/L	5.0	0.48	1		02/21/23 19:	10 110-54-3	
2-Hexanone	ND	ug/L	25.0	3.6	1		02/21/23 19:	10 591-78-6	

Project: GE Indy
Pace Project No.: 50337890

Date: 03/07/2023 01:21 PM

Sample: MW-313-022023	Lab ID:	50337890006	Collecte	d: 02/20/2	3 12:10	Received: 02	2/20/23 14:15 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Ana	lytical Services	- Indianapo	lis					
lodomethane	ND	ug/L	10.0	0.33	1		02/21/23 19:10	74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	5.0	0.81	1		02/21/23 19:10	98-82-8	
p-Isopropyltoluene	ND	ug/L	5.0	0.90	1		02/21/23 19:10	99-87-6	
Methylene Chloride	ND	ug/L	5.0	0.70	1		02/21/23 19:10	75-09-2	
1-Methylnaphthalene	ND	ug/L	10.0	0.91	1		02/21/23 19:10	90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	0.86	1		02/21/23 19:10	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	3.6	1		02/21/23 19:10	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	4.0	0.66	1		02/21/23 19:10	1634-04-4	
Naphthalene	ND	ug/L	1.2	0.81	1		02/21/23 19:10	91-20-3	
n-Propylbenzene	ND	ug/L	5.0	0.83	1		02/21/23 19:10	103-65-1	
Styrene	ND	ug/L	5.0	0.86	1		02/21/23 19:10	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.99	1		02/21/23 19:10	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.92	1		02/21/23 19:10	79-34-5	
Tetrachloroethene	ND	ug/L	5.0	0.75	1		02/21/23 19:10	127-18-4	
Toluene	ND	ug/L	5.0	0.86	1		02/21/23 19:10	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	0.91	1		02/21/23 19:10	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	5.0	0.79	1		02/21/23 19:10	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	5.0	0.74	1		02/21/23 19:10	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	5.0	0.88	1		02/21/23 19:10	79-00-5	
Trichloroethene	ND	ug/L	5.0	0.80	1		02/21/23 19:10	79-01-6	
Trichlorofluoromethane	ND	ug/L	5.0	0.58	1		02/21/23 19:10	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	5.0	0.96	1		02/21/23 19:10	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/L	5.0	0.90	1		02/21/23 19:10	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.89	1		02/21/23 19:10	108-67-8	
Vinyl acetate	ND	ug/L	50.0	1.6	1		02/21/23 19:10	108-05-4	L1
Vinyl chloride	46.5	ug/L	2.0	0.52	1		02/21/23 19:10		
Xylene (Total)	ND	ug/L	10.0	0.92	1		02/21/23 19:10		
Surrogates		3							
Dibromofluoromethane (S)	110	%.	82-128		1		02/21/23 19:10	1868-53-7	
4-Bromofluorobenzene (S)	88	%.	79-124		1		02/21/23 19:10	460-00-4	
Toluene-d8 (S)	93	%.	73-122		1		02/21/23 19:10	2037-26-5	

Project: GE Indy
Pace Project No.: 50337890

Date: 03/07/2023 01:21 PM

Sample: W-10-022023	Lab ID:	50337890007	Collecte	d: 02/20/23	3 12:40	Received: 02	2/20/23 14:15 N	latrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 50	030/8260						
	•	lytical Services -		olis					
Acetone	ND	ug/L	100	4.8	1		02/21/23 19:43	3 67-64-1	
Acrolein	ND	ug/L	50.0	10	1		02/21/23 19:43		
Acrylonitrile	ND	ug/L	100	2.4	1		02/21/23 19:43		
Benzene	ND	ug/L	5.0	0.82	1		02/21/23 19:43		
Bromobenzene	ND	ug/L	5.0	0.89	1		02/21/23 19:43		
Bromochloromethane	ND	ug/L	5.0	0.96	1		02/21/23 19:43		
Bromodichloromethane	ND	ug/L	5.0	0.82	1		02/21/23 19:43		
Bromoform	ND ND	ug/L ug/L	5.0	0.02	1		02/21/23 19:43		
Bromomethane	ND	ug/L ug/L	5.0	0.73	1		02/21/23 19:43		
	ND ND	-		4.4	1		02/21/23 19:43		
2-Butanone (MEK)		ug/L	25.0		1				
n-Butylbenzene	ND	ug/L	5.0	0.83			02/21/23 19:43		
sec-Butylbenzene	ND	ug/L	5.0	0.79	1		02/21/23 19:43		
tert-Butylbenzene	ND	ug/L	5.0	0.82	1		02/21/23 19:43		
Carbon disulfide	ND	ug/L	10.0	0.70	1		02/21/23 19:43		
Carbon tetrachloride	ND	ug/L	5.0	0.68	1		02/21/23 19:43		
Chlorobenzene	ND	ug/L	5.0	0.95	1		02/21/23 19:43		
Chloroethane	ND	ug/L	5.0	0.63	1		02/21/23 19:43		
Chloroform	ND	ug/L	5.0	0.83	1		02/21/23 19:43		
Chloromethane	ND	ug/L	5.0	0.44	1		02/21/23 19:43		
2-Chlorotoluene	ND	ug/L	5.0	0.89	1		02/21/23 19:43	3 95-49-8	
4-Chlorotoluene	ND	ug/L	5.0	0.91	1		02/21/23 19:43	3 106-43-4	
Dibromochloromethane	ND	ug/L	5.0	0.89	1		02/21/23 19:43		
1,2-Dibromoethane (EDB)	ND	ug/L	5.0	0.97	1		02/21/23 19:43	3 106-93-4	
Dibromomethane	ND	ug/L	5.0	0.87	1		02/21/23 19:43	3 74-95-3	
1,2-Dichlorobenzene	ND	ug/L	5.0	0.81	1		02/21/23 19:43	3 95-50-1	
1,3-Dichlorobenzene	ND	ug/L	5.0	0.80	1		02/21/23 19:43	3 541-73-1	
1,4-Dichlorobenzene	ND	ug/L	5.0	0.87	1		02/21/23 19:43	3 106-46-7	
trans-1,4-Dichloro-2-butene	ND	ug/L	100	0.62	1		02/21/23 19:43	3 110-57-6	
Dichlorodifluoromethane	ND	ug/L	5.0	0.50	1		02/21/23 19:43	3 75-71-8	
1,1-Dichloroethane	ND	ug/L	5.0	0.84	1		02/21/23 19:43	3 75-34-3	
1,2-Dichloroethane	ND	ug/L	5.0	0.85	1		02/21/23 19:43	3 107-06-2	
1,1-Dichloroethene	ND	ug/L	5.0	0.56	1		02/21/23 19:43		
cis-1,2-Dichloroethene	ND	ug/L	5.0	0.88	1		02/21/23 19:43		
rans-1,2-Dichloroethene	ND	ug/L	5.0	0.72	1		02/21/23 19:43		
1,2-Dichloropropane	ND	ug/L	5.0	0.79	1		02/21/23 19:43		
1,3-Dichloropropane	ND	ug/L	5.0	0.85	1		02/21/23 19:43		
2,2-Dichloropropane	ND	ug/L	5.0	0.88	1		02/21/23 19:43		
1,1-Dichloropropene	ND ND	ug/L	5.0	0.38	1		02/21/23 19:43		
cis-1,3-Dichloropropene	ND	ug/L	5.0	0.86	1		02/21/23 19:43		
trans-1,3-Dichloropropene	ND ND	ug/L ug/L	5.0	0.92	1		02/21/23 19:43		
Ethylbenzene	ND ND	ug/L ug/L	5.0	0.92	1		02/21/23 19:43		
Ethyl methacrylate		-							
tnyi methacrylate Hexachloro-1,3-butadiene	ND ND	ug/L	100 5.0	0.87	1		02/21/23 19:43		
·	ND	ug/L	5.0	0.65	1		02/21/23 19:43		
n-Hexane	ND	ug/L	5.0	0.48	1		02/21/23 19:43		
2-Hexanone	ND	ug/L	25.0	3.6	1		02/21/23 19:43	3 591-78-6	

Project: GE Indy
Pace Project No.: 50337890

Date: 03/07/2023 01:21 PM

Sample: W-10-022023	Lab ID:	50337890007	Collecte	d: 02/20/23	3 12:40	Received: 02	2/20/23 14:15 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Anal	ytical Services	- Indianapo	lis					
lodomethane	ND	ug/L	10.0	0.33	1		02/21/23 19:43	74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	5.0	0.81	1		02/21/23 19:43	98-82-8	
p-Isopropyltoluene	ND	ug/L	5.0	0.90	1		02/21/23 19:43	99-87-6	
Methylene Chloride	ND	ug/L	5.0	0.70	1		02/21/23 19:43	75-09-2	
1-Methylnaphthalene	ND	ug/L	10.0	0.91	1		02/21/23 19:43	90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	0.86	1		02/21/23 19:43	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	3.6	1		02/21/23 19:43	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	4.0	0.66	1		02/21/23 19:43	1634-04-4	
Naphthalene	ND	ug/L	1.2	0.81	1		02/21/23 19:43	91-20-3	
n-Propylbenzene	ND	ug/L	5.0	0.83	1		02/21/23 19:43	103-65-1	
Styrene	ND	ug/L	5.0	0.86	1		02/21/23 19:43	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.99	1		02/21/23 19:43	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.92	1		02/21/23 19:43	79-34-5	
Tetrachloroethene	ND	ug/L	5.0	0.75	1		02/21/23 19:43	127-18-4	
Toluene	ND	ug/L	5.0	0.86	1		02/21/23 19:43	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	0.91	1		02/21/23 19:43	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	5.0	0.79	1		02/21/23 19:43	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	5.0	0.74	1		02/21/23 19:43	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	5.0	0.88	1		02/21/23 19:43	79-00-5	
Trichloroethene	ND	ug/L	5.0	0.80	1		02/21/23 19:43	79-01-6	
Trichlorofluoromethane	ND	ug/L	5.0	0.58	1		02/21/23 19:43	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	5.0	0.96	1		02/21/23 19:43	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/L	5.0	0.90	1		02/21/23 19:43	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.89	1		02/21/23 19:43	108-67-8	
Vinyl acetate	ND	ug/L	50.0	1.6	1		02/21/23 19:43		L1
Vinyl chloride	ND	ug/L	2.0	0.52	1		02/21/23 19:43		
Xylene (Total)	ND	ug/L	10.0	0.92	1		02/21/23 19:43		
Surrogates		- 3						 -	
Dibromofluoromethane (S)	109	%.	82-128		1		02/21/23 19:43	1868-53-7	
4-Bromofluorobenzene (S)	89	%.	79-124		1		02/21/23 19:43	460-00-4	
Toluene-d8 (S)	93	%.	73-122		1		02/21/23 19:43	2037-26-5	

Project: GE Indy
Pace Project No.: 5033789

Date: 03/07/2023 01:21 PM

Sample: W-8-022023	Lab ID:	50337890008	Collected	: 02/20/23	12:55	Received: 02	2/20/23 14:15 M	latrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Indicator Gases Water LHC	Analytica	Method: AM20	GAX						
	Pace Ana	lytical Gulf Coa	st						
Methane	ND	ug/L	5.0	2.0	1		03/01/23 10:03	74-82-8	
Ethane	ND	ug/L	1.0	0.17	1		03/01/23 10:03		
Ethene	ND	ug/L	1.0	0.24	1		03/01/23 10:03		
n-Propane	ND	ug/L	1.0	0.29	1		03/01/23 10:03		
Propylene	ND	ug/L	1.0	0.31	1		03/01/23 10:03		
sobutane	ND	ug/L	2.0	0.065	1		03/01/23 10:03		
n-Butane	ND	ug/L	2.0	0.54	1		03/01/23 10:03		
8260 MSV Indiana		Method: EPA 5		is					
A 1		•	·				00/04/00 00 40	07.04.4	
Acetone	ND	ug/L	100	4.8	1		02/21/23 20:16		
Acrolein	ND	ug/L	50.0	10	1		02/21/23 20:16		
Acrylonitrile	ND	ug/L	100	2.4	1		02/21/23 20:16		
Benzene	ND	ug/L	5.0	0.82	1		02/21/23 20:16		
Bromobenzene	ND	ug/L	5.0	0.89	1		02/21/23 20:16		
Bromochloromethane	ND	ug/L	5.0	0.96	1		02/21/23 20:16		
Bromodichloromethane	ND	ug/L	5.0	0.82	1		02/21/23 20:16		
Bromoform	ND	ug/L	5.0	0.73	1		02/21/23 20:16		
Bromomethane	ND	ug/L	5.0	0.44	1		02/21/23 20:16	74-83-9	
2-Butanone (MEK)	ND	ug/L	25.0	4.4	1		02/21/23 20:16	78-93-3	
n-Butylbenzene	ND	ug/L	5.0	0.83	1		02/21/23 20:16	104-51-8	
sec-Butylbenzene	ND	ug/L	5.0	0.79	1		02/21/23 20:16	135-98-8	
ert-Butylbenzene	ND	ug/L	5.0	0.82	1		02/21/23 20:16	98-06-6	
Carbon disulfide	ND	ug/L	10.0	0.70	1		02/21/23 20:16	75-15-0	
Carbon tetrachloride	ND	ug/L	5.0	0.68	1		02/21/23 20:16	56-23-5	
Chlorobenzene	ND	ug/L	5.0	0.95	1		02/21/23 20:16	108-90-7	
Chloroethane	ND	ug/L	5.0	0.63	1		02/21/23 20:16	75-00-3	
Chloroform	ND	ug/L	5.0	0.83	1		02/21/23 20:16	67-66-3	
Chloromethane	ND	ug/L	5.0	0.44	1		02/21/23 20:16	74-87-3	
2-Chlorotoluene	ND	ug/L	5.0	0.89	1		02/21/23 20:16	95-49-8	
1-Chlorotoluene	ND	ug/L	5.0	0.91	1		02/21/23 20:16		
Dibromochloromethane	ND	ug/L	5.0	0.89	1		02/21/23 20:16		
1,2-Dibromoethane (EDB)	ND	ug/L	5.0	0.97	1		02/21/23 20:16	_	
Dibromomethane	ND	ug/L	5.0	0.87	1		02/21/23 20:16		
1,2-Dichlorobenzene	ND	ug/L	5.0	0.81	1		02/21/23 20:16		
,3-Dichlorobenzene	ND	ug/L	5.0	0.80	1		02/21/23 20:16		
,4-Dichlorobenzene	ND ND	ug/L	5.0	0.87	1		02/21/23 20:16		
rans-1,4-Dichloro-2-butene	ND ND	ug/L ug/L	100	0.62	1		02/21/23 20:16		
Dichlorodifluoromethane	ND ND	-	5.0	0.62	1		02/21/23 20:16		
		ug/L							
1,1-Dichloroethane	ND	ug/L	5.0	0.84	1		02/21/23 20:16		
1,2-Dichloroethane	ND	ug/L	5.0	0.85	1		02/21/23 20:16		
1,1-Dichloroethene	ND	ug/L	5.0	0.56	1		02/21/23 20:16		
cis-1,2-Dichloroethene	ND	ug/L	5.0	0.88	1		02/21/23 20:16		
trans-1,2-Dichloroethene	ND	ug/L	5.0	0.72	1		02/21/23 20:16		
1,2-Dichloropropane	ND	ug/L	5.0	0.79	1		02/21/23 20:16	78-87-5	

Project: GE Indy
Pace Project No.: 50337890

Date: 03/07/2023 01:21 PM

Sample: W-8-022023	Lab ID:	50337890008	Collected	d: 02/20/23	12:55	Received: 02	2/20/23 14:15	Matrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL .	DF	Prepared	Analyzed	CAS No.	Qua
3260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	-	lytical Services		lis					
1,3-Dichloropropane	ND	ug/L	5.0	0.85	1		02/21/23 20:	16 142-28-9	
2,2-Dichloropropane	ND	ug/L	5.0	0.88	1			16 594-20-7	
1,1-Dichloropropene	ND	ug/L	5.0	0.78	1		02/21/23 20:		
cis-1,3-Dichloropropene	ND	ug/L	5.0	0.86	1			16 10061-01-5	
rans-1,3-Dichloropropene	ND	ug/L	5.0	0.92	1			16 10061-02-6	
Ethylbenzene	ND	ug/L	5.0	0.95	1		02/21/23 20:		
Ethyl methacrylate	ND	ug/L	100	0.87	1		02/21/23 20:		
Hexachloro-1,3-butadiene	ND	ug/L	5.0	0.65	1		02/21/23 20:		
n-Hexane	ND	ug/L	5.0	0.48	1		02/21/23 20:		
2-Hexanone	ND ND	ug/L ug/L	25.0	3.6	1			16 110-34-3 16 591-78-6	
odomethane	ND ND	ug/L ug/L	10.0	0.33	1		02/21/23 20:		
		Ū							
sopropylbenzene (Cumene)	ND	ug/L	5.0	0.81	1		02/21/23 20:		
o-Isopropyltoluene	ND	ug/L	5.0	0.90	1		02/21/23 20:		
Methylene Chloride	ND	ug/L	5.0	0.70	1		02/21/23 20:		
I-Methylnaphthalene	ND	ug/L	10.0	0.91	1		02/21/23 20:		
2-Methylnaphthalene	ND	ug/L	10.0	0.86	1		02/21/23 20:		
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	3.6	1		02/21/23 20:		
Methyl-tert-butyl ether	ND	ug/L	4.0	0.66	1			16 1634-04-4	
Naphthalene	ND	ug/L	1.2	0.81	1		02/21/23 20:		
n-Propylbenzene	ND	ug/L	5.0	0.83	1		02/21/23 20:	16 103-65-1	
Styrene	ND	ug/L	5.0	0.86	1		02/21/23 20:	16 100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.99	1		02/21/23 20:	16 630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.92	1		02/21/23 20:	16 79-34-5	
Tetrachloroethene	ND	ug/L	5.0	0.75	1		02/21/23 20:	16 127-18-4	
Toluene	ND	ug/L	5.0	0.86	1		02/21/23 20:	16 108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	0.91	1		02/21/23 20:	16 87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	5.0	0.79	1		02/21/23 20:	16 120-82-1	
1,1,1-Trichloroethane	ND	ug/L	5.0	0.74	1		02/21/23 20:	16 71-55-6	
1,1,2-Trichloroethane	ND	ug/L	5.0	0.88	1		02/21/23 20:	16 79-00-5	
Trichloroethene	ND	ug/L	5.0	0.80	1		02/21/23 20:	16 79-01-6	
Trichlorofluoromethane	ND	ug/L	5.0	0.58	1		02/21/23 20:	16 75-69-4	
1,2,3-Trichloropropane	ND	ug/L	5.0	0.96	1		02/21/23 20:		
1,2,4-Trimethylbenzene	ND	ug/L	5.0	0.90	1		02/21/23 20:		
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.89	1		02/21/23 20:		
/inyl acetate	ND	ug/L	50.0	1.6	1		02/21/23 20:		L1
Vinyl chloride	ND	ug/L	2.0	0.52	1		02/21/23 20:		
Xylene (Total)	ND ND	ug/L ug/L	10.0	0.52	1			16 1330-20-7	
Surrogates	טויו	ug/L	10.0	0.32			02121123 20.	10 1000-20-7	
Dibromofluoromethane (S)	110	%.	82-128		1		02/21/23 20.	16 1868-53-7	
4-Bromofluorobenzene (S)	91	%.	79-124		1		02/21/23 20:		
			10 124				UZIZ 1/ZU ZU.	10 700 00-4	

Project: GE Indy
Pace Project No.: 50337890

Date: 03/07/2023 01:21 PM

Sample: MW-153-022023	Lab ID:	50337890009	Collecte	d: 02/20/23	3 13:05	Received: 02	2/20/23 14:15 M	latrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 50	030/8260						
	•	lytical Services -		olis					
Acetone	ND	ug/L	100	4.8	1		02/21/23 20:48	3 67-64-1	
Acrolein	ND	ug/L	50.0	10	1		02/21/23 20:48		
Acrylonitrile	ND	ug/L	100	2.4	1		02/21/23 20:48		
Benzene	ND	ug/L	5.0	0.82	1		02/21/23 20:48		
Bromobenzene	ND	ug/L	5.0	0.89	1		02/21/23 20:48	-	
Bromochloromethane	ND	ug/L	5.0	0.96	1		02/21/23 20:48		
Bromodichloromethane	ND	ug/L	5.0	0.82	1		02/21/23 20:48		
Bromoform	ND	ug/L	5.0	0.73	1		02/21/23 20:48		
Bromomethane	ND	ug/L	5.0	0.44	1		02/21/23 20:48		
2-Butanone (MEK)	ND	ug/L	25.0	4.4	1		02/21/23 20:48		
n-Butylbenzene	ND	ug/L	5.0	0.83	1		02/21/23 20:48		
sec-Butylbenzene	ND	ug/L	5.0	0.79	1		02/21/23 20:48		
tert-Butylbenzene	ND	ug/L	5.0	0.82	1		02/21/23 20:48		
Carbon disulfide	ND	ug/L	10.0	0.70	1		02/21/23 20:48		
Carbon tetrachloride	ND	ug/L	5.0	0.78	1		02/21/23 20:48		
Chlorobenzene	ND	ug/L	5.0	0.95	1		02/21/23 20:48		
Chloroethane	ND	ug/L	5.0	0.63	1		02/21/23 20:48		
Chloroform	ND	ug/L ug/L	5.0	0.83	1		02/21/23 20:48		
Chloromethane	ND ND	ug/L ug/L	5.0	0.63	1		02/21/23 20:48		
2-Chlorotoluene	ND ND	ug/L ug/L	5.0	0.44	1		02/21/23 20:48		
4-Chlorotoluene	ND ND	ug/L ug/L	5.0	0.89	1		02/21/23 20:48		
Dibromochloromethane	ND ND	ug/L ug/L		0.89	1		02/21/23 20:48		
	ND ND		5.0 5.0	0.89	1		02/21/23 20:48		
1,2-Dibromoethane (EDB)		ug/L			1				
Dibromomethane	ND	ug/L	5.0	0.87			02/21/23 20:48		
1,2-Dichlorobenzene	ND	ug/L	5.0	0.81	1		02/21/23 20:48		
1,3-Dichlorobenzene	ND	ug/L	5.0	0.80	1		02/21/23 20:48		
1,4-Dichlorobenzene	ND	ug/L	5.0	0.87	1		02/21/23 20:48		
rans-1,4-Dichloro-2-butene	ND	ug/L	100	0.62	1		02/21/23 20:48		
Dichlorodifluoromethane	ND	ug/L	5.0	0.50	1		02/21/23 20:48		
1,1-Dichloroethane	ND	ug/L	5.0	0.84	1		02/21/23 20:48		
1,2-Dichloroethane	ND	ug/L	5.0	0.85	1		02/21/23 20:48		
1,1-Dichloroethene	ND	ug/L	5.0	0.56	1		02/21/23 20:48		
cis-1,2-Dichloroethene	ND	ug/L	5.0	0.88	1		02/21/23 20:48		
rans-1,2-Dichloroethene	ND	ug/L	5.0	0.72	1		02/21/23 20:48		
1,2-Dichloropropane	ND	ug/L	5.0	0.79	1		02/21/23 20:48		
1,3-Dichloropropane	ND	ug/L	5.0	0.85	1		02/21/23 20:48		
2,2-Dichloropropane	ND	ug/L	5.0	0.88	1		02/21/23 20:48		
1,1-Dichloropropene	ND	ug/L	5.0	0.78	1		02/21/23 20:48		
cis-1,3-Dichloropropene	ND	ug/L	5.0	0.86	1		02/21/23 20:48		
rans-1,3-Dichloropropene	ND	ug/L	5.0	0.92	1		02/21/23 20:48		
Ethylbenzene	ND	ug/L	5.0	0.95	1		02/21/23 20:48	3 100-41-4	
Ethyl methacrylate	ND	ug/L	100	0.87	1		02/21/23 20:48	3 97-63-2	
Hexachloro-1,3-butadiene	ND	ug/L	5.0	0.65	1		02/21/23 20:48	87-68-3	
n-Hexane	ND	ug/L	5.0	0.48	1		02/21/23 20:48	3 110-54-3	
2-Hexanone	ND	ug/L	25.0	3.6	1		02/21/23 20:48	3 591-78-6	

Project: GE Indy
Pace Project No.: 50337890

Date: 03/07/2023 01:21 PM

Sample: MW-153-022023	Lab ID:	50337890009	Collecte	d: 02/20/23	3 13:05	Received: 02	2/20/23 14:15 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF ——	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Ana	lytical Services	- Indianapo	lis					
lodomethane	ND	ug/L	10.0	0.33	1		02/21/23 20:48	74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	5.0	0.81	1		02/21/23 20:48	98-82-8	
p-Isopropyltoluene	ND	ug/L	5.0	0.90	1		02/21/23 20:48	99-87-6	
Methylene Chloride	ND	ug/L	5.0	0.70	1		02/21/23 20:48	75-09-2	
1-Methylnaphthalene	ND	ug/L	10.0	0.91	1		02/21/23 20:48	90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	0.86	1		02/21/23 20:48	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	3.6	1		02/21/23 20:48	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	4.0	0.66	1		02/21/23 20:48	1634-04-4	
Naphthalene	ND	ug/L	1.2	0.81	1		02/21/23 20:48	91-20-3	
n-Propylbenzene	ND	ug/L	5.0	0.83	1		02/21/23 20:48	103-65-1	
Styrene	ND	ug/L	5.0	0.86	1		02/21/23 20:48	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.99	1		02/21/23 20:48	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.92	1		02/21/23 20:48	79-34-5	
Tetrachloroethene	ND	ug/L	5.0	0.75	1		02/21/23 20:48	127-18-4	
Toluene	ND	ug/L	5.0	0.86	1		02/21/23 20:48	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	0.91	1		02/21/23 20:48	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	5.0	0.79	1		02/21/23 20:48	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	5.0	0.74	1		02/21/23 20:48	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	5.0	0.88	1		02/21/23 20:48	79-00-5	
Trichloroethene	ND	ug/L	5.0	0.80	1		02/21/23 20:48	79-01-6	
Trichlorofluoromethane	ND	ug/L	5.0	0.58	1		02/21/23 20:48	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	5.0	0.96	1		02/21/23 20:48	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/L	5.0	0.90	1		02/21/23 20:48	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.89	1		02/21/23 20:48	108-67-8	
Vinyl acetate	ND	ug/L	50.0	1.6	1		02/21/23 20:48	108-05-4	L1
Vinyl chloride	2.3	ug/L	2.0	0.52	1		02/21/23 20:48		
Xylene (Total)	ND	ug/L	10.0	0.92	1		02/21/23 20:48		
Surrogates		J							
Dibromofluoromethane (S)	109	%.	82-128		1		02/21/23 20:48	1868-53-7	
4-Bromofluorobenzene (S)	88	%.	79-124		1		02/21/23 20:48	460-00-4	
Toluene-d8 (S)	92	%.	73-122		1		02/21/23 20:48	2037-26-5	

Project: GE Indy
Pace Project No.: 50337890

Date: 03/07/2023 01:21 PM

Sample: Trip Blank-022023	Lab ID:	50337890010	Collected:	02/20/23	08:00	Received: 02	2/20/23 14:15 M	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Ana	lytical Services	- Indianapolis	S					
Acetone	ND	ug/L	100	4.8	1		02/21/23 15:55	67-64-1	
Acrolein	ND	ug/L	50.0	10	1		02/21/23 15:55		
Acrylonitrile	ND	ug/L	100	2.4	1		02/21/23 15:55		
Benzene	ND	ug/L	5.0	0.82	1		02/21/23 15:55		
Bromobenzene	ND	ug/L	5.0	0.89	1		02/21/23 15:55		
Bromochloromethane	ND	ug/L	5.0	0.96	1		02/21/23 15:55		
Bromodichloromethane	ND	ug/L	5.0	0.82	1		02/21/23 15:55		
Bromoform	ND	ug/L	5.0	0.73	1		02/21/23 15:55		
Bromomethane	ND	ug/L	5.0	0.44	1		02/21/23 15:55		
2-Butanone (MEK)	ND	ug/L	25.0	4.4	1		02/21/23 15:55		
n-Butylbenzene	ND ND	ug/L ug/L	5.0	0.83	1		02/21/23 15:55		
sec-Butylbenzene	ND	ug/L	5.0	0.79	1		02/21/23 15:55		
ert-Butylbenzene	ND	ug/L	5.0	0.73	1		02/21/23 15:55		
Carbon disulfide	ND	ug/L	10.0	0.70	1		02/21/23 15:55		
Carbon tetrachloride	ND ND	ug/L	5.0	0.70	1		02/21/23 15:55		
Chlorobenzene	ND ND	-	5.0	0.08	1		02/21/23 15:55		
Chloroethane		ug/L	5.0 5.0	0.93	1		02/21/23 15:55		
Chloroform	ND	ug/L		0.83					
	ND	ug/L	5.0		1		02/21/23 15:55		
Chloromethane	ND	ug/L	5.0	0.44	1		02/21/23 15:55		
2-Chlorotoluene	ND	ug/L	5.0	0.89	1		02/21/23 15:55		
1-Chlorotoluene	ND	ug/L	5.0	0.91	1		02/21/23 15:55		
Dibromochloromethane	ND	ug/L	5.0	0.89	1		02/21/23 15:55		
I,2-Dibromoethane (EDB)	ND	ug/L	5.0	0.97	1		02/21/23 15:55		
Dibromomethane	ND	ug/L	5.0	0.87	1		02/21/23 15:55		
1,2-Dichlorobenzene	ND	ug/L	5.0	0.81	1		02/21/23 15:55		
1,3-Dichlorobenzene	ND	ug/L	5.0	0.80	1		02/21/23 15:55		
1,4-Dichlorobenzene	ND	ug/L	5.0	0.87	1		02/21/23 15:55		
rans-1,4-Dichloro-2-butene	ND	ug/L	100	0.62	1		02/21/23 15:55		
Dichlorodifluoromethane	ND	ug/L	5.0	0.50	1		02/21/23 15:55		
I,1-Dichloroethane	ND	ug/L	5.0	0.84	1		02/21/23 15:55		
1,2-Dichloroethane	ND	ug/L	5.0	0.85	1		02/21/23 15:55		
,1-Dichloroethene	ND	ug/L	5.0	0.56	1		02/21/23 15:55		
cis-1,2-Dichloroethene	ND	ug/L	5.0	0.88	1		02/21/23 15:55		
rans-1,2-Dichloroethene	ND	ug/L	5.0	0.72	1		02/21/23 15:55		
,2-Dichloropropane	ND	ug/L	5.0	0.79	1		02/21/23 15:55		
1,3-Dichloropropane	ND	ug/L	5.0	0.85	1		02/21/23 15:55		
2,2-Dichloropropane	ND	ug/L	5.0	0.88	1		02/21/23 15:55		
,1-Dichloropropene	ND	ug/L	5.0	0.78	1		02/21/23 15:55		
cis-1,3-Dichloropropene	ND	ug/L	5.0	0.86	1		02/21/23 15:55		
rans-1,3-Dichloropropene	ND	ug/L	5.0	0.92	1		02/21/23 15:55	10061-02-6	
Ethylbenzene	ND	ug/L	5.0	0.95	1		02/21/23 15:55	100-41-4	
Ethyl methacrylate	ND	ug/L	100	0.87	1		02/21/23 15:55	97-63-2	
Hexachloro-1,3-butadiene	ND	ug/L	5.0	0.65	1		02/21/23 15:55	87-68-3	
n-Hexane	ND	ug/L	5.0	0.48	1		02/21/23 15:55	110-54-3	
2-Hexanone	ND	ug/L	25.0	3.6	1		02/21/23 15:55	591-78-6	

Project: GE Indy
Pace Project No.: 50337890

Date: 03/07/2023 01:21 PM

Sample: Trip Blank-022023	Lab ID:	50337890010	Collecte	d: 02/20/23	3 08:00	Received: 02	2/20/23 14:15 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Anal	ytical Services	- Indianapo	lis					
lodomethane	ND	ug/L	10.0	0.33	1		02/21/23 15:55	74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	5.0	0.81	1		02/21/23 15:55	98-82-8	
p-Isopropyltoluene	ND	ug/L	5.0	0.90	1		02/21/23 15:55	99-87-6	
Methylene Chloride	ND	ug/L	5.0	0.70	1		02/21/23 15:55	75-09-2	
1-Methylnaphthalene	ND	ug/L	10.0	0.91	1		02/21/23 15:55	90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	0.86	1		02/21/23 15:55	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	3.6	1		02/21/23 15:55	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	4.0	0.66	1		02/21/23 15:55	1634-04-4	
Naphthalene	ND	ug/L	1.2	0.81	1		02/21/23 15:55	91-20-3	
n-Propylbenzene	ND	ug/L	5.0	0.83	1		02/21/23 15:55	103-65-1	
Styrene	ND	ug/L	5.0	0.86	1		02/21/23 15:55	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.99	1		02/21/23 15:55	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.92	1		02/21/23 15:55	79-34-5	
Tetrachloroethene	ND	ug/L	5.0	0.75	1		02/21/23 15:55	127-18-4	
Toluene	ND	ug/L	5.0	0.86	1		02/21/23 15:55	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	0.91	1		02/21/23 15:55	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	5.0	0.79	1		02/21/23 15:55	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	5.0	0.74	1		02/21/23 15:55	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	5.0	0.88	1		02/21/23 15:55	79-00-5	
Trichloroethene	ND	ug/L	5.0	0.80	1		02/21/23 15:55	79-01-6	
Trichlorofluoromethane	ND	ug/L	5.0	0.58	1		02/21/23 15:55	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	5.0	0.96	1		02/21/23 15:55	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/L	5.0	0.90	1		02/21/23 15:55	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.89	1		02/21/23 15:55	108-67-8	
Vinyl acetate	ND	ug/L	50.0	1.6	1		02/21/23 15:55	108-05-4	L1
Vinyl chloride	ND	ug/L	2.0	0.52	1		02/21/23 15:55		
Xylene (Total)	ND	ug/L	10.0	0.92	1		02/21/23 15:55		
Surrogates		- 3						 -	
Dibromofluoromethane (S)	108	%.	82-128		1		02/21/23 15:55	1868-53-7	
4-Bromofluorobenzene (S)	90	%.	79-124		1		02/21/23 15:55	460-00-4	
Toluene-d8 (S)	93	%.	73-122		1		02/21/23 15:55	2037-26-5	

Project: GE Indy
Pace Project No.: 50337890

Date: 03/07/2023 01:21 PM

QC Batch: 760768 Analysis Method: AM20GAX

QC Batch Method: AM20GAX Analysis Description: Indicator Gases Water LHC

Laboratory: Pace Analytical Gulf Coast

Associated Lab Samples: 50337890003, 50337890008

METHOD BLANK: 2456306 Matrix: Water

Associated Lab Samples: 50337890003, 50337890008

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Methane	ug/L	ND	5.0	2.0	03/01/23 07:00	
Ethane	ug/L	ND	1.0	0.17	03/01/23 07:00	
Ethene	ug/L	ND	1.0	0.24	03/01/23 07:00	
n-Propane	ug/L	ND	1.0	0.29	03/01/23 07:00	
Propylene	ug/L	ND	1.0	0.31	03/01/23 07:00	
Isobutane	ug/L	ND	2.0	0.065	03/01/23 07:00	
n-Butane	ug/L	ND	2.0	0.54	03/01/23 07:00	

LABORATORY CONTROL SAMPLE	E & LCSD: 2456307		24	56308						
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
Methane	ug/L	750	610	700	82	94	70-130	14	20	
Ethane	ug/L	38	38	37	100	98	70-130	2	20	
Ethene	ug/L	35	36	35	101	99	70-130	2	20	
n-Propane	ug/L	56	53	50	96	90	70-130	7	20	
Propylene	ug/L	53	48	44	90	83	70-130	9	20	
Isobutane	ug/L	73	63	62	86	85	70-130	2	20	
n-Butane	ug/L	73	56	56	77	77	70-130	0	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50337890

Date: 03/07/2023 01:21 PM

QC Batch: 719672 Analysis Method: EPA 5030/8260
QC Batch Method: EPA 5030/8260 Analysis Description: 8260 MSV

Laboratory: Pace Analytical Services - Indianapolis

Associated Lab Samples: 50337890001, 50337890002, 50337890003, 50337890004, 50337890005, 50337890006, 50337890007,

50337890008, 50337890009, 50337890010

METHOD BLANK: 3303572 Matrix: Water

Associated Lab Samples: 50337890001, 50337890002, 50337890003, 50337890004, 50337890005, 50337890006, 50337890007,

50337890008, 50337890009, 50337890010

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	ND	5.0	0.99	02/21/23 11:02	
1,1,1-Trichloroethane	ug/L	ND	5.0	0.74	02/21/23 11:02	
1,1,2,2-Tetrachloroethane	ug/L	ND	5.0	0.92	02/21/23 11:02	
1,1,2-Trichloroethane	ug/L	ND	5.0	0.88	02/21/23 11:02	
1,1-Dichloroethane	ug/L	ND	5.0	0.84	02/21/23 11:02	
1,1-Dichloroethene	ug/L	ND	5.0	0.56	02/21/23 11:02	
1,1-Dichloropropene	ug/L	ND	5.0	0.78	02/21/23 11:02	
1,2,3-Trichlorobenzene	ug/L	ND	5.0	0.91	02/21/23 11:02	
1,2,3-Trichloropropane	ug/L	ND	5.0	0.96	02/21/23 11:02	
1,2,4-Trichlorobenzene	ug/L	ND	5.0	0.79	02/21/23 11:02	
1,2,4-Trimethylbenzene	ug/L	ND	5.0	0.90	02/21/23 11:02	
1,2-Dibromoethane (EDB)	ug/L	ND	5.0	0.97	02/21/23 11:02	
1,2-Dichlorobenzene	ug/L	ND	5.0	0.81	02/21/23 11:02	
1,2-Dichloroethane	ug/L	ND	5.0	0.85	02/21/23 11:02	
1,2-Dichloropropane	ug/L	ND	5.0	0.79	02/21/23 11:02	
1,3,5-Trimethylbenzene	ug/L	ND	5.0	0.89	02/21/23 11:02	
1,3-Dichlorobenzene	ug/L	ND	5.0	0.80	02/21/23 11:02	
1,3-Dichloropropane	ug/L	ND	5.0	0.85	02/21/23 11:02	
1,4-Dichlorobenzene	ug/L	ND	5.0	0.87	02/21/23 11:02	
1-Methylnaphthalene	ug/L	ND	10.0	0.91	02/21/23 11:02	
2,2-Dichloropropane	ug/L	ND	5.0	0.88	02/21/23 11:02	
2-Butanone (MEK)	ug/L	ND	25.0	4.4	02/21/23 11:02	
2-Chlorotoluene	ug/L	ND	5.0	0.89	02/21/23 11:02	
2-Hexanone	ug/L	ND	25.0	3.6	02/21/23 11:02	
2-Methylnaphthalene	ug/L	ND	10.0	0.86	02/21/23 11:02	
4-Chlorotoluene	ug/L	ND	5.0	0.91	02/21/23 11:02	
4-Methyl-2-pentanone (MIBK)	ug/L	ND	25.0	3.6	02/21/23 11:02	
Acetone	ug/L	ND	100	4.8	02/21/23 11:02	
Acrolein	ug/L	ND	50.0	10	02/21/23 11:02	
Acrylonitrile	ug/L	ND	100	2.4	02/21/23 11:02	
Benzene	ug/L	ND	5.0	0.82	02/21/23 11:02	
Bromobenzene	ug/L	ND	5.0	0.89	02/21/23 11:02	
Bromochloromethane	ug/L	ND	5.0	0.96	02/21/23 11:02	
Bromodichloromethane	ug/L	ND	5.0	0.82	02/21/23 11:02	
Bromoform	ug/L	ND	5.0	0.73	02/21/23 11:02	
Bromomethane	ug/L	ND	5.0	0.44	02/21/23 11:02	
Carbon disulfide	ug/L	ND	10.0	0.70	02/21/23 11:02	
Carbon tetrachloride	ug/L	ND	5.0	0.68	02/21/23 11:02	
Chlorobenzene	ug/L	ND	5.0	0.95	02/21/23 11:02	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy Pace Project No.: 50337890

Date: 03/07/2023 01:21 PM

METHOD BLANK: 3303572 Matrix: Water

Associated Lab Samples:

50337890008, 50337890009, 50337890010

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Chloroethane	ug/L	ND ND	5.0	0.63	02/21/23 11:02	
Chloroform	ug/L	ND	5.0	0.83	02/21/23 11:02	
Chloromethane	ug/L	ND	5.0	0.44	02/21/23 11:02	
cis-1,2-Dichloroethene	ug/L	ND	5.0	0.88	02/21/23 11:02	
cis-1,3-Dichloropropene	ug/L	ND	5.0	0.86	02/21/23 11:02	
Dibromochloromethane	ug/L	ND	5.0	0.89	02/21/23 11:02	
Dibromomethane	ug/L	ND	5.0	0.87	02/21/23 11:02	
Dichlorodifluoromethane	ug/L	ND	5.0	0.50	02/21/23 11:02	
Ethyl methacrylate	ug/L	ND	100	0.87	02/21/23 11:02	
Ethylbenzene	ug/L	ND	5.0	0.95	02/21/23 11:02	
Hexachloro-1,3-butadiene	ug/L	ND	5.0	0.65	02/21/23 11:02	
lodomethane	ug/L	ND	10.0	0.33	02/21/23 11:02	
Isopropylbenzene (Cumene)	ug/L	ND	5.0	0.81	02/21/23 11:02	
Methyl-tert-butyl ether	ug/L	ND	4.0	0.66	02/21/23 11:02	
Methylene Chloride	ug/L	ND	5.0	0.70	02/21/23 11:02	
n-Butylbenzene	ug/L	ND	5.0	0.83	02/21/23 11:02	
n-Hexane	ug/L	ND	5.0	0.48	02/21/23 11:02	
n-Propylbenzene	ug/L	ND	5.0	0.83	02/21/23 11:02	
Naphthalene	ug/L	ND	1.2	0.81	02/21/23 11:02	
p-Isopropyltoluene	ug/L	ND	5.0	0.90	02/21/23 11:02	
sec-Butylbenzene	ug/L	ND	5.0	0.79	02/21/23 11:02	
Styrene	ug/L	ND	5.0	0.86	02/21/23 11:02	
tert-Butylbenzene	ug/L	ND	5.0	0.82	02/21/23 11:02	
Tetrachloroethene	ug/L	ND	5.0	0.75	02/21/23 11:02	
Toluene	ug/L	ND	5.0	0.86	02/21/23 11:02	
trans-1,2-Dichloroethene	ug/L	ND	5.0	0.72	02/21/23 11:02	
trans-1,3-Dichloropropene	ug/L	ND	5.0	0.92	02/21/23 11:02	
trans-1,4-Dichloro-2-butene	ug/L	ND	100	0.62	02/21/23 11:02	
Trichloroethene	ug/L	ND	5.0	0.80	02/21/23 11:02	
Trichlorofluoromethane	ug/L	ND	5.0	0.58	02/21/23 11:02	
Vinyl acetate	ug/L	ND	50.0	1.6	02/21/23 11:02	
Vinyl chloride	ug/L	ND	2.0	0.52	02/21/23 11:02	
Xylene (Total)	ug/L	ND	10.0	0.92	02/21/23 11:02	
4-Bromofluorobenzene (S)	%.	91	79-124		02/21/23 11:02	
Dibromofluoromethane (S)	%.	107	82-128		02/21/23 11:02	1d
Toluene-d8 (S)	%.	93	73-122		02/21/23 11:02	

LABORATORY CONTROL SAMPLE:	3303573					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	50	49.0	98	77-125	
1,1,1-Trichloroethane	ug/L	50	52.7	105	69-125	
1,1,2,2-Tetrachloroethane	ug/L	50	41.2	82	72-123	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50337890

Date: 03/07/2023 01:21 PM

LABORATORY CONTROL SAMPLE:	3303573					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,2-Trichloroethane	ug/L		42.0	84	73-124	
1,1-Dichloroethane	ug/L	50	44.3	89	71-124	
1,1-Dichloroethene	ug/L	50	51.3	103	63-138	
1,1-Dichloropropene	ug/L	50	52.4	105	80-142	
1,2,3-Trichlorobenzene	ug/L	50	53.0	106	67-134	
1,2,3-Trichloropropane	ug/L	50	44.5	89	75-122	
1,2,4-Trichlorobenzene	ug/L	50	50.3	101	68-132	
1,2,4-Trimethylbenzene	ug/L	50	48.7	97	71-121	
,2-Dibromoethane (EDB)	ug/L	50	45.2	90	75-123	
,2-Dichlorobenzene	ug/L	50	47.4	95	76-118	
,2-Dichloroethane	ug/L	50	53.7	107	68-126	
,2-Dichloropropane	ug/L	50	46.7	93	73-127	
,3,5-Trimethylbenzene	ug/L	50	49.5	99	72-120	
,3-Dichlorobenzene	ug/L	50	50.3	101	75-119	
,3-Dichloropropane	ug/L	50	41.4	83	77-125	
,4-Dichlorobenzene	ug/L	50	48.6	97	74-118	
-Methylnaphthalene	ug/L	50	57.4	115	51-164	
2,2-Dichloropropane	ug/L	50	49.3	99	52-137	
-Butanone (MEK)	ug/L	250	234	94	57-130	
-Chlorotoluene	ug/L	50	45.5	91	69-123	
-Hexanone	ug/L	250	230	92	57-130	
-Methylnaphthalene	ug/L	50	57.3	115	57-159	
-Chlorotoluene	ug/L	50	49.0	98	74-122	
-Methyl-2-pentanone (MIBK)	ug/L	250	231	93	58-134	
cetone	ug/L	250	200	80	41-133	
crolein	ug/L	1000	915	91	43-124	
crylonitrile	ug/L	250	249	100	66-131	
enzene	ug/L	50	45.8	92	76-121	
Bromobenzene	ug/L	50 50	46.0	92	67-127	
romochloromethane	ug/L	50	42.3	85	65-126	
Bromodichloromethane	ug/L	50	53.5	107	72-125	
Bromoform	ug/L	50	46.8	94	57-134	
Bromomethane	ug/L	50	42.2	84	10-187	
Carbon disulfide	ug/L	50	44.8	90	59-125	
Carbon tetrachloride	ug/L	50	54.1	108	71-134	
Chlorobenzene	ug/L	50	48.3	97	74-119	
Chloroethane	ug/L	50 50	46.1	92	49-152	
Chloroform	ug/L	50	46.2	92	68-123	
Chloromethane	ug/L	50	38.7	92 77	33-133	
is-1,2-Dichloroethene	ug/L	50	48.1	96	73-122	
is-1,3-Dichloropropene	ug/L	50	42.8	86	69-128	
Dibromochloromethane	ug/L	50	47.2	94	69-127	
Dibromomethane	ug/L	50	46.4	93	74-126	
Dichlorodifluoromethane	ug/L ug/L	50	31.9	93 64	19-136	
Ethyl methacrylate	ug/L ug/L	50 50	44.1J	88	65-127	
	-	50 50	44.13 50.7	101	74-122	
Ethylbenzene Hexachloro-1,3-butadiene	ug/L					
iexacilioro-1,3-butadiene	ug/L	50	52.8	106	65-140	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: GE Indy
Pace Project No.: 50337890

Date: 03/07/2023 01:21 PM

LABORATORY CONTROL SAMPLE:	3303573					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
lodomethane	ug/L	50	27.6		10-181	
sopropylbenzene (Cumene)	ug/L	50	52.7	105	75-124	
Methyl-tert-butyl ether	ug/L	50	45.6	91	71-125	
Methylene Chloride	ug/L	50	47.9	96	71-125	
-Butylbenzene	ug/L	50	48.9	98	68-124	
-Hexane	ug/L	50	46.9	94	60-132	
-Propylbenzene	ug/L	50	48.4	97	75-122	
laphthalene	ug/L	50	50.2	100	69-128	
o-Isopropyltoluene	ug/L	50	51.2	102	73-125	
ec-Butylbenzene	ug/L	50	50.4	101	76-125	
tyrene	ug/L	50	52.5	105	74-126	
ert-Butylbenzene	ug/L	50	50.6	101	69-123	
etrachloroethene	ug/L	50	51.3	103	74-129	
oluene	ug/L	50	45.4	91	70-118	
ans-1,2-Dichloroethene	ug/L	50	49.2	98	69-124	
ans-1,3-Dichloropropene	ug/L	50	43.6	87	66-125	
rans-1,4-Dichloro-2-butene	ug/L	50	47.6J	95	43-155	
richloroethene	ug/L	50	47.5	95	73-125	
richlorofluoromethane	ug/L	50	51.1	102	56-139	
/inyl acetate	ug/L	200	229	114	46-101 L	_1
'inyl chloride	ug/L	50	40.3	81	46-134	
ylene (Total)	ug/L	150	151	101	71-123	
-Bromofluorobenzene (S)	%.			96	79-124	
Dibromofluoromethane (S)	%.			104	82-128	
oluene-d8 (S)	%.			94	73-122	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: GE Indy
Pace Project No.: 50337890

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 03/07/2023 01:21 PM

- 1d A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume DAP 02/22/23
- D4 Sample was diluted due to the presence of high levels of target analytes.
- L1 Analyte recovery in the laboratory control sample (LCS) was above QC limits. Results for this analyte in associated samples may be biased high.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: GE Indy
Pace Project No.: 50337890

Date: 03/07/2023 01:21 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
50337890003	W-9-022023	AM20GAX	760768		
50337890008	W-8-022023	AM20GAX	760768		
50337890001	MW-322-022023	EPA 5030/8260	719672		
50337890002	MW-331-022023	EPA 5030/8260	719672		
50337890003	W-9-022023	EPA 5030/8260	719672		
50337890004	MW-22-022023	EPA 5030/8260	719672		
50337890005	MW-173-022023	EPA 5030/8260	719672		
50337890006	MW-313-022023	EPA 5030/8260	719672		
50337890007	W-10-022023	EPA 5030/8260	719672		
50337890008	W-8-022023	EPA 5030/8260	719672		
50337890009	MW-153-022023	EPA 5030/8260	719672		
50337890010	Trip Blank-022023	EPA 5030/8260	719672		

WWW.PACELABS.COM

Section B

CHAIN-OF-CUSTODY / Anal

The Chain-of-Custody is a LEGAL DOCUME Submitting a sample via this chain of custody constitutes acknowledgment and acceptance of the Pace Terms and Condit

Section A	Section B S	ection C	
Required Client Information:		voice Information:	Of
Company: Chase Forman	Chao i Cilian	ttention:	
Address: 8805 Governor's Hill Drive Suite 205		ompany Name:	
Cincinnati, OH 45249		ddress:	Regulatory Agency
Email: chase.forman@ramboll.com		ace Quote:	
Phone: (740)403-1387 Fax:		ace Project Manager: heather.patterson@pacelabs.com,	State / Location
Requested Due Date:	Project #:	ace Profile #: 9761-8	IN
SAMPLE ID One Character per box. (A-Z, 0-9/, -) Sample Ids must be unique 1	Water DW WT WT ARR OT TS WARDLE TIME DATE TIME	Preserved Analyses Lest Analyses Lest Analyses Lest Analyses Lest Analyses Lest Analyses Lest Analyses Lest Analyses Lest Analyses Lest Analyses Lest Analyses Lest Analyses Lest Analyses Lest Analyses Lest Analyses Lest Analyses Lest Analyses Lest Analyse Lest Anal	DATE TIME SAMPLE CONDITIONS 22023 1415 8.0 4 5 4
	SAMPLER NAME AND SIGNATUR PRINT Name of SAMPLER: SIGNATURE of SAMPLER:	MAAA SAWAAA DATE Signed: 7	TANA DE CONTROL OF THE PLANE OF

SAMPLE CONDITION UPON RECEIPT FORM

	-			
Date/Time and Initials of person examining contents	:	04	1500 2/29/23	
1. Courier: ☐ FED EX ☐ UPS ☐ CLIENT ☐ PAG	CE DI	JSPS 🗆	OTHER5. Packing Material: Bubble Wrap Bubble Bags	
2. Custody Seal on Cooler/Box Present: Yes	☑ No		□ None □ Other	
(If yes)Seals Intact: \square Yes \square No (leave blank	if no seals	were prese	ent)	
3. Thermometer: 1 2 3 4 5 6 A B C(D)E F			6. Ice Type: Wet □ Blue □ None	
4. Cooler Temperature(s): 198.0 (Initial/Corrected) RECORD TEMPS OF ALL COOLERS RECEI	VED (use Co	mments belov	7. If temp. is over 6°C or under 0°C, was the PM notified?: Yes cooler temp should be above freezing to 6°C	□ No
All	discrepand	ies will be	written out in the comments section below.	
	Yes	No	Yes No	N/A
USDA Regulated Soils? (HI, ID, NY, WA, OR,CA, NM, TX, OK, AR, LA, TN, AL, MS, NC, SC, GA, FL, or Puerto Rico)			All containers needing acid/base preservation have been pH <u>CHECKED</u> ?: Exceptions: VOA, coliform, LLHg, O&G, RAD CHEM, and any container with a septum cap or preserved with HCI.	
Short Hold Time Analysis (48 hours or less)? Analysis:			Circle: HNO3 (<2) H2SO4 (<2) NaOH (>10) NaOH/ZnAc (>9) Any non-conformance to pH recommendations will be noted on the container count form	
Time 5035A TC placed in Freezer or Short Holds To Lab	Time:		Present Absent	N/A
			Residual Chlorine Check (SVOC 625 Pest/PCB 608)	
Rush TAT Requested (4 days or less):	/	/	Residual Chlorine Check (Total/Amenable/Free Cyanide)	
Custody Signatures Present?	<u> </u>		Headspace Wisconsin Sulfide?	
Containers Intact?:	1		Headspace in VOA Vials (>6mm): See Containter Count form for details	No VOA Vials Sent
Sample Label (IDs/Dates/Times) Match COC?: Except TCs, which only require sample ID			Trip Blank Present?	
Extra labels on Terracore Vials? (soils only)			Trip Blank Custody Seals?:	
COMMENTS: LOW VOLUME 1/2	VG9	U f	ov W-8-022023, JC 2/20/23 "	
			Pac	ge 34 of 35

** Place a RED dot on containers that are out of conformance **

		MeOH (only)						1																				Nitric	Sulfuric	Sodium Hydroxide	Sodium Hydroxide/ ZnAc
		SBS DI		V	IALS					AMB	ER G	LASS						Р	LAST	IC					OTH	HER		Red	Yellow	Green	Black
COC Line Item	WGFU	R	H690 (G9H	VOA VIAL HS (>6mm)	VG9U	DG9N	VG9T	AG0U	AG1H	AG1U	AG2U	AG3S	AG3SF	AG3C	BP1U	BP1N	BP2U	врзи	BP3N	BP3F	BP3S	BP3B	BP3Z	сезн	CG3F	Syringe Kit	Matrix	HNO3 <2	H2SO4 <2	NaOH >10	NaOH/Zn Ac >9
1			3																								M				
2																											1				
3					à																										
4		, "											0.0																		
5																															
6																															
7																															
8					2																										
9						-																	,								
10		7																													
11																															
12																															

_			0-	1
`or	ta:	ner	(:0	des

	Glas	SS	¥,				P	lastic
DG9H	40mL HCl amber voa vial	BG1T	1L Na Thiosulfate clear glass	BP1B	1L NaOH plastic		BP4U	125mL unpreserved plastic
DG9P	40mL TSP amber vial	BG1U	1L unpreserved glass	BP1N	1L HNO3 plastic		BP4N	125mL HNO3 plastic
DG9S	40mL H2SO4 amber vial	BG3H	250mL HCI Clear Glass	BP1S	1L H2SO4 plastic		BP4S	125mL H2SO4 plastic
DG9T	40mL Na Thio amber vial	BG3U	250mL Unpres Clear Glass	BP1U	1L unpreserved plastic			Miscellaneous
DG9U	40mL unpreserved amber vial	AG0U	100mL unpres amber glass	BP1Z	1L NaOH, Zn, Ac			Miscellatieous
VG9H	40mL HCl clear vial	AG1H	1L HCl amber glass	BP2N	500mL HNO3 plastic		Syringe	Kit LL Cr+6 sampling kit
VG9T	40mL Na Thio. clear vial	AG1S	1L H2SO4 amber glass	BP2C	500mL NaOH plastic		ZPLC	Ziploc Bag
VG9U	40mL unpreserved clear vial	AG1T	1L Na Thiosulfate amber glass	BP2S	500mL H2SO4 plastic	1	R	Terracore Kit
I	40mL w/hexane wipe vial	AG1U	1liter unpres amber glass	BP2U	500mL unpreserved plastic		SP5T	120mL Coliform Sodium Thiosulfate
WGKU	8oz unpreserved clear jar	AG2N	500mL HNO3 amber glass	BP2Z	500mL NaOH, Zn Ac		GN	General Container
WGFU	4oz clear soil jar	AG2S	500mL H2SO4 amber glass	BP3B	250mL NaOH plastic		U	Summa Can (air sample)
JGFU	4oz unpreserved amber wide	AG2U	500mL unpres amber glass	BP3N	250mL HNO3 plastic		WT	Water
CG3H	250mL clear glass HCl	AG3S	250mL H2SO4 amber glass	BP3F	250mL HNO3 plastic-field filtered		SL	Solid Solid
CG3F	250mL clear glass HCl, Field Filter	AĞ3SF	250mL H2SO4 amb glass -field filtered	BP3U	250mL unpreserved plastic		OL:	Oil
BG1H	1L HCl clear glass	AG3U	250mL unpres amber glass	BP3S	250mL H2SO4 plastic		NAL	Non-aqueous liquid
BG1S	1L H2SO4 clear glass	AG3C	250mL NaOH amber glass	BP3Z	250mL NaOH, ZnAc plastic		WP	Wipe

March 28, 2023

Chase Forman Ramboll 8805 Governor's Hill Drive Suite 205 Cincinnati, OH 45249

RE: Project: GE Indy

Pace Project No.: 50339745

Dear Chase Forman:

Enclosed are the analytical results for sample(s) received by the laboratory on March 15, 2023. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Indianapolis

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Heather Patterson

heather.patterson@pacelabs.com

Heath Pathson

(317)228-3146 Project Manager

Enclosures

cc: Matt Starrett, Ramboll Dana Williams, Ramboll

CERTIFICATIONS

Project: GE Indy
Pace Project No.: 50339745

Pace Analytical Services Indianapolis

7726 Moller Road, Indianapolis, IN 46268
Illinois Accreditation #: 200074
Indiana Drinking Water Laboratory #: C-49-06
Kansas/TNI Certification #: E-10177
Kentucky UST Agency Interest #: 80226
Kentucky WW Laboratory ID #: 98019
Michigan Drinking Water Laboratory #9050

Ohio VAP Certified Laboratory #: CL0065 Oklahoma Laboratory #: 9204 Texas Certification #: T104704355 Wisconsin Laboratory #: 999788130 USDA Foreign Soil Permit #: 525-23-13-23119 USDA Compliance Agreement #: IN-SL-22-001

SAMPLE SUMMARY

Project: GE Indy
Pace Project No.: 50339745

Lab ID	Sample ID	Matrix	Date Collected	Date Received
50339745001	MW-323-031523	Water	03/15/23 13:55	03/15/23 16:00
50339745002	MW-251-031523	Water	03/15/23 14:05	03/15/23 16:00
50339745003	MW-41-031523	Water	03/15/23 14:15	03/15/23 16:00
50339745004	MW-131-031523	Water	03/15/23 14:25	03/15/23 16:00
50339745005	MW-241-031523	Water	03/15/23 14:45	03/15/23 16:00
50339745006	Trip Blank-031523	Water	03/15/23 08:00	03/15/23 16:00

SAMPLE ANALYTE COUNT

Project: GE Indy
Pace Project No.: 50339745

Sample ID	Method	Analysts	Analytes Reported	Laboratory
MW-323-031523	EPA 5030/8260	TMW	75	PASI-I
MW-251-031523	EPA 5030/8260	ALA, TMW	75	PASI-I
MW-41-031523	EPA 5030/8260	TMW	75	PASI-I
MW-131-031523	EPA 5030/8260	KLP	75	PASI-I
MW-241-031523	EPA 5030/8260	KLP	75	PASI-I
Trip Blank-031523	EPA 5030/8260	KLP	75	PASI-I
•	MW-323-031523 MW-251-031523 MW-41-031523 MW-131-031523 MW-241-031523	MW-323-031523 EPA 5030/8260 MW-251-031523 EPA 5030/8260 MW-41-031523 EPA 5030/8260 MW-131-031523 EPA 5030/8260 MW-241-031523 EPA 5030/8260	MW-323-031523 EPA 5030/8260 TMW MW-251-031523 EPA 5030/8260 ALA, TMW MW-41-031523 EPA 5030/8260 TMW MW-131-031523 EPA 5030/8260 KLP MW-241-031523 EPA 5030/8260 KLP	Sample ID Method Analysts Reported MW-323-031523 EPA 5030/8260 TMW 75 MW-251-031523 EPA 5030/8260 ALA, TMW 75 MW-41-031523 EPA 5030/8260 TMW 75 MW-131-031523 EPA 5030/8260 KLP 75 MW-241-031523 EPA 5030/8260 KLP 75

PASI-I = Pace Analytical Services - Indianapolis

SUMMARY OF DETECTION

Project: GE Indy
Pace Project No.: 50339745

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
50339745001	MW-323-031523					
EPA 5030/8260	cis-1,2-Dichloroethene	51.2	ug/L	5.0	03/23/23 05:52	
EPA 5030/8260	Vinyl chloride	2.6	ug/L	2.0	03/23/23 05:52	
50339745002	MW-251-031523					
EPA 5030/8260	Benzene	27.7	ug/L	25.0	03/23/23 06:23	
EPA 5030/8260	Chloroethane	708	ug/L	25.0	03/23/23 06:23	
EPA 5030/8260	1,1-Dichloroethane	581	ug/L	25.0	03/23/23 06:23	
EPA 5030/8260	1,2-Dichloroethane	142	ug/L	25.0	03/23/23 06:23	
EPA 5030/8260	1,1-Dichloroethene	35.9	ug/L	25.0	03/23/23 06:23	
EPA 5030/8260	cis-1,2-Dichloroethene	15700	ug/L	1250	03/25/23 00:22	
EPA 5030/8260	trans-1,2-Dichloroethene	179	ug/L	25.0	03/23/23 06:23	
EPA 5030/8260	Vinyl chloride	2260	ug/L	50.0	03/23/23 06:55	
50339745004	MW-131-031523					
EPA 5030/8260	Carbon tetrachloride	5.3	ug/L	5.0	03/24/23 07:38	
EPA 5030/8260	Chloroform	8.0	ug/L	5.0	03/24/23 07:38	
EPA 5030/8260	1,1-Dichloroethane	19.1	ug/L	5.0	03/24/23 07:38	
EPA 5030/8260	cis-1,2-Dichloroethene	9.5	ug/L	5.0	03/24/23 07:38	
EPA 5030/8260	1,1,1-Trichloroethane	164	ug/L	5.0	03/24/23 07:38	
EPA 5030/8260	Trichloroethene	40.7	ug/L	5.0	03/24/23 07:38	

Project: GE Indy
Pace Project No.: 50339745

Date: 03/28/2023 12:14 PM

Sample: MW-323-031523	Lab ID:	50339745001	Collecte	d: 03/15/23	3 13:55	Received: 03	3/15/23 16:00 N	fatrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical I	Method: EPA 50	030/8260						
	Pace Analy	tical Services -	- Indianapo	olis					
Acetone	ND	ug/L	100	15.3	1		03/23/23 05:52	2 67-64-1	
Acrolein	ND	ug/L	50.0	20.4	1		03/23/23 05:52	2 107-02-8	
Acrylonitrile	ND	ug/L	100	3.0	1		03/23/23 05:52	2 107-13-1	
Benzene	ND	ug/L	5.0	0.27	1		03/23/23 05:52	2 71-43-2	
Bromobenzene	ND	ug/L	5.0	0.40	1		03/23/23 05:52	2 108-86-1	
Bromochloromethane	ND	ug/L	5.0	0.46	1		03/23/23 05:52	2 74-97-5	
Bromodichloromethane	ND	ug/L	5.0	0.49	1		03/23/23 05:52		
Bromoform	ND	ug/L	5.0	4.0	1		03/23/23 05:52		
Bromomethane	ND	ug/L	5.0	0.72	1		03/23/23 05:52		
2-Butanone (MEK)	ND	ug/L	25.0	10.5	1		03/23/23 05:52		
n-Butylbenzene	ND	ug/L	5.0	0.33	1		03/23/23 05:52		
sec-Butylbenzene	ND	ug/L	5.0	0.33	1		03/23/23 05:52	2 135-98-8	
tert-Butylbenzene	ND	ug/L	5.0	0.30	1		03/23/23 05:52		
Carbon disulfide	ND	ug/L	10.0	0.79	1		03/23/23 05:52		
Carbon tetrachloride	ND	ug/L	5.0	0.44	1		03/23/23 05:52		
Chlorobenzene	ND	ug/L	5.0	0.33	1		03/23/23 05:52		
Chloroethane	ND	ug/L	5.0	1.6	1		03/23/23 05:52		
Chloroform	ND	ug/L	5.0	2.0	1		03/23/23 05:52		
Chloromethane	ND	ug/L	5.0	0.50	1		03/23/23 05:52		
2-Chlorotoluene	ND	ug/L	5.0	0.38	1		03/23/23 05:52		
4-Chlorotoluene	ND	ug/L	5.0	0.35	1		03/23/23 05:52		
Dibromochloromethane	ND	ug/L	5.0	0.54	1		03/23/23 05:52		
1,2-Dibromoethane (EDB)	ND ND	ug/L	5.0	0.72	1		03/23/23 05:52		
Dibromomethane	ND	ug/L	5.0	4.0	1		03/23/23 05:52		
1,2-Dichlorobenzene	ND ND	ug/L	5.0	0.33	1		03/23/23 05:52		
1,3-Dichlorobenzene	ND	ug/L	5.0	0.34	1		03/23/23 05:52		
1,4-Dichlorobenzene	ND ND	ug/L ug/L	5.0	0.34	1		03/23/23 05:52		
trans-1,4-Dichloro-2-butene	ND ND	ug/L ug/L	100	2.2	1		03/23/23 05:52		
Dichlorodifluoromethane	ND ND	ug/L	5.0	0.57	1		03/23/23 05:52		
1,1-Dichloroethane	ND ND	ug/L ug/L	5.0	0.37	1		03/23/23 05:52		
1,1-Dichloroethane	ND ND	•	5.0	0.29	1		03/23/23 05:52		
,	ND ND	ug/L		0.32	1		03/23/23 05:52		
1,1-Dichloroethene cis-1,2-Dichloroethene	51.2	ug/L ug/L	5.0 5.0	0.42	1		03/23/23 05:52		
·	ND	-		0.29	1		03/23/23 05:52		
trans-1,2-Dichloroethene	ND ND	ug/L	5.0 5.0						
1,2-Dichloropropane		ug/L		0.42	1		03/23/23 05:52 03/23/23 05:52		
1,3-Dichloropropane	ND	ug/L	5.0	0.35	1				
2,2-Dichloropropane	ND	ug/L	5.0	0.35	1		03/23/23 05:52		
1,1-Dichloropropene	ND	ug/L	5.0	0.46	1		03/23/23 05:52		
cis-1,3-Dichloropropene	ND	ug/L	5.0	0.43	1		03/23/23 05:52		
trans-1,3-Dichloropropene	ND	ug/L	5.0	0.45	1		03/23/23 05:52		
Ethylbenzene	ND	ug/L	5.0	0.34	1		03/23/23 05:52		
Ethyl methacrylate	ND	ug/L	100	0.63	1		03/23/23 05:52		
Hexachloro-1,3-butadiene	ND	ug/L	5.0	0.56	1		03/23/23 05:52		
n-Hexane	ND	ug/L	5.0	0.47	1		03/23/23 05:52		
2-Hexanone	ND	ug/L	25.0	3.3	1		03/23/23 05:52	2 591-78-6	

Project: GE Indy
Pace Project No.: 50339745

Date: 03/28/2023 12:14 PM

Sample: MW-323-031523	Lab ID:	50339745001	Collecte	d: 03/15/23	3 13:55	Received: 03	3/15/23 16:00 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Anal	lytical Services	- Indianapo	lis					
lodomethane	ND	ug/L	10.0	1.5	1		03/23/23 05:52	74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	5.0	0.36	1		03/23/23 05:52	98-82-8	
p-Isopropyltoluene	ND	ug/L	5.0	0.33	1		03/23/23 05:52	99-87-6	
Methylene Chloride	ND	ug/L	5.0	3.8	1		03/23/23 05:52	75-09-2	
1-Methylnaphthalene	ND	ug/L	10.0	5.6	1		03/23/23 05:52	90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	5.2	1		03/23/23 05:52	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	2.6	1		03/23/23 05:52	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	4.0	0.31	1		03/23/23 05:52	1634-04-4	
Naphthalene	ND	ug/L	1.2	1.1	1		03/23/23 05:52	91-20-3	
n-Propylbenzene	ND	ug/L	5.0	0.28	1		03/23/23 05:52	103-65-1	
Styrene	ND	ug/L	5.0	0.35	1		03/23/23 05:52	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.42	1		03/23/23 05:52	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.41	1		03/23/23 05:52	79-34-5	
Tetrachloroethene	ND	ug/L	5.0	0.50	1		03/23/23 05:52	127-18-4	
Toluene	ND	ug/L	5.0	0.32	1		03/23/23 05:52	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	0.93	1		03/23/23 05:52	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	5.0	0.75	1		03/23/23 05:52	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	5.0	0.42	1		03/23/23 05:52	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	5.0	0.81	1		03/23/23 05:52	79-00-5	
Trichloroethene	ND	ug/L	5.0	0.52	1		03/23/23 05:52	79-01-6	
Trichlorofluoromethane	ND	ug/L	5.0	0.53	1		03/23/23 05:52	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	5.0	1.3	1		03/23/23 05:52	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/L	5.0	0.28	1		03/23/23 05:52	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.34	1		03/23/23 05:52	108-67-8	
Vinyl acetate	ND	ug/L	50.0	1.2	1		03/23/23 05:52		
Vinyl chloride	2.6	ug/L	2.0	0.52	1		03/23/23 05:52		
Xylene (Total)	ND	ug/L	10.0	1.3	1		03/23/23 05:52		
Surrogates		· 3· -							
Dibromofluoromethane (S)	101	%.	82-128		1		03/23/23 05:52	1868-53-7	
4-Bromofluorobenzene (S)	104	%.	79-124		1		03/23/23 05:52	460-00-4	
Toluene-d8 (S)	93	%.	73-122		1		03/23/23 05:52	2037-26-5	

Project: GE Indy
Pace Project No.: 50339745

Date: 03/28/2023 12:14 PM

Sample: MW-251-031523	Lab ID:	50339745002	Collecte	d: 03/15/2	3 14:05	Received: 03/15/23 16:00 Matrix: Water			
			Report						
Parameters	Results	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 50	030/8260						
	•	lytical Services -		lis					
Acetone	ND	ug/L	500	76.5	5		03/23/23 06:23	3 67-64-1	
Acrolein	ND	ug/L	250	102	5		03/23/23 06:23		
Acrylonitrile	ND	ug/L	500	15.1	5		03/23/23 06:23		
Benzene	27.7	ug/L	25.0	1.3	5		03/23/23 06:23		
Bromobenzene	ND	ug/L	25.0	2.0	5		03/23/23 06:23	-	
Bromochloromethane	ND	ug/L	25.0	2.3	5		03/23/23 06:23		
Bromodichloromethane	ND ND	ug/L ug/L	25.0	2.5	5		03/23/23 06:23		
Bromoform	ND ND	ug/L ug/L	25.0	20.2	5		03/23/23 06:23		
Bromomethane				3.6					
	ND	ug/L	25.0 125		5 5		03/23/23 06:23		
2-Butanone (MEK)	ND	ug/L	125	52.5	5		03/23/23 06:23		
n-Butylbenzene	ND	ug/L	25.0	1.6	5		03/23/23 06:23		
sec-Butylbenzene	ND	ug/L	25.0	1.7	5		03/23/23 06:23		
tert-Butylbenzene	ND	ug/L	25.0	1.5	5		03/23/23 06:23		
Carbon disulfide	ND	ug/L	50.0	3.9	5		03/23/23 06:23		
Carbon tetrachloride	ND	ug/L	25.0	2.2	5		03/23/23 06:23		
Chlorobenzene	ND	ug/L	25.0	1.7	5		03/23/23 06:23		
Chloroethane	708	ug/L	25.0	8.0	5		03/23/23 06:23	3 75-00-3	
Chloroform	ND	ug/L	25.0	10.0	5		03/23/23 06:23	3 67-66-3	
Chloromethane	ND	ug/L	25.0	2.5	5		03/23/23 06:23	3 74-87-3	
2-Chlorotoluene	ND	ug/L	25.0	1.9	5		03/23/23 06:23	95-49-8	
4-Chlorotoluene	ND	ug/L	25.0	1.8	5		03/23/23 06:23	3 106-43-4	
Dibromochloromethane	ND	ug/L	25.0	2.7	5		03/23/23 06:23	3 124-48-1	
1,2-Dibromoethane (EDB)	ND	ug/L	25.0	3.6	5		03/23/23 06:23	3 106-93-4	
Dibromomethane	ND	ug/L	25.0	20.0	5		03/23/23 06:23	3 74-95-3	
1,2-Dichlorobenzene	ND	ug/L	25.0	1.6	5		03/23/23 06:23	3 95-50-1	
1,3-Dichlorobenzene	ND	ug/L	25.0	1.7	5		03/23/23 06:23		
1,4-Dichlorobenzene	ND	ug/L	25.0	1.7	5		03/23/23 06:23		
trans-1,4-Dichloro-2-butene	ND	ug/L	500	11.0	5		03/23/23 06:23		
Dichlorodifluoromethane	ND	ug/L	25.0	2.8	5		03/23/23 06:23		
1,1-Dichloroethane	581	ug/L	25.0	1.4	5		03/23/23 06:23		
1,2-Dichloroethane	142	ug/L	25.0	2.6	5		03/23/23 06:23		
1,1-Dichloroethene	35.9	ug/L	25.0	2.1	5		03/23/23 06:23		
cis-1,2-Dichloroethene	15700	ug/L	1250	63.2	250		03/25/23 00:23		
•		•	25.0	3.2					
rans-1,2-Dichloroethene	179	ug/L			5		03/23/23 06:23		
1,2-Dichloropropane	ND	ug/L	25.0	2.1	5		03/23/23 06:23		
1,3-Dichloropropane	ND	ug/L	25.0	1.8	5		03/23/23 06:23		
2,2-Dichloropropane	ND	ug/L	25.0	1.7	5		03/23/23 06:23		
1,1-Dichloropropene	ND	ug/L	25.0	2.3	5		03/23/23 06:23		
cis-1,3-Dichloropropene	ND	ug/L	25.0	2.1	5		03/23/23 06:23		
rans-1,3-Dichloropropene	ND	ug/L	25.0	2.2	5		03/23/23 06:23		
Ethylbenzene	ND	ug/L	25.0	1.7	5		03/23/23 06:23		
Ethyl methacrylate	ND	ug/L	500	3.2	5		03/23/23 06:23		
Hexachloro-1,3-butadiene	ND	ug/L	25.0	2.8	5		03/23/23 06:23		
n-Hexane	ND	ug/L	25.0	2.4	5		03/23/23 06:23	3 110-54-3	
2-Hexanone	ND	ug/L	125	16.4	5		03/23/23 06:23	3 591-78-6	

Project: GE Indy
Pace Project No.: 50339745

Date: 03/28/2023 12:14 PM

Sample: MW-251-031523	Lab ID:	50339745002	Collecte	d: 03/15/23	3 14:05	Received: 03	3/15/23 16:00 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Anal	ytical Services	- Indianapo	lis					
lodomethane	ND	ug/L	50.0	7.6	5		03/23/23 06:23	74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	25.0	1.8	5		03/23/23 06:23	98-82-8	
p-Isopropyltoluene	ND	ug/L	25.0	1.6	5		03/23/23 06:23	99-87-6	
Methylene Chloride	ND	ug/L	25.0	19.0	5		03/23/23 06:23	75-09-2	
1-Methylnaphthalene	ND	ug/L	50.0	28.0	5		03/23/23 06:23	90-12-0	
2-Methylnaphthalene	ND	ug/L	50.0	26.0	5		03/23/23 06:23	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	125	12.8	5		03/23/23 06:23	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	20.0	1.6	5		03/23/23 06:23	1634-04-4	
Naphthalene	ND	ug/L	6.0	5.4	5		03/23/23 06:23	91-20-3	
n-Propylbenzene	ND	ug/L	25.0	1.4	5		03/23/23 06:23	103-65-1	
Styrene	ND	ug/L	25.0	1.8	5		03/23/23 06:23	100-42-5	
1,1,2-Tetrachloroethane	ND	ug/L	25.0	2.1	5		03/23/23 06:23	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	25.0	2.0	5		03/23/23 06:23	79-34-5	
Tetrachloroethene	ND	ug/L	25.0	2.5	5		03/23/23 06:23	127-18-4	
Toluene	ND	ug/L	25.0	1.6	5		03/23/23 06:23	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	25.0	4.7	5		03/23/23 06:23		
1,2,4-Trichlorobenzene	ND	ug/L	25.0	3.8	5		03/23/23 06:23		
1,1,1-Trichloroethane	ND	ug/L	25.0	2.1	5		03/23/23 06:23		
1,1,2-Trichloroethane	ND	ug/L	25.0	4.0	5		03/23/23 06:23		
Trichloroethene	ND	ug/L	25.0	2.6	5		03/23/23 06:23		
Trichlorofluoromethane	ND	ug/L	25.0	2.7	5		03/23/23 06:23		
1,2,3-Trichloropropane	ND	ug/L	25.0	6.5	5		03/23/23 06:23		
1,2,4-Trimethylbenzene	ND	ug/L	25.0	1.4	5		03/23/23 06:23		
1,3,5-Trimethylbenzene	ND	ug/L	25.0	1.7	5		03/23/23 06:23		
Vinyl acetate	ND	ug/L	250	6.0	5		03/23/23 06:23		
Vinyl chloride	2260	ug/L	50.0	13.0	25		03/23/23 06:55		
Xylene (Total)	ND	ug/L	50.0	6.5	5		03/23/23 06:23		
Surrogates	.10	~9, _	00.0	0.0	J		33,20,20 33.20	.300 20 7	
Dibromofluoromethane (S)	101	%.	82-128		5		03/23/23 06:23	1868-53-7	D4
4-Bromofluorobenzene (S)	102	%.	79-124		5		03/23/23 06:23		
Toluene-d8 (S)	92	%.	73-122		5		03/23/23 06:23		

Project: GE Indy
Pace Project No.: 50339745

Date: 03/28/2023 12:14 PM

Sample: MW-41-031523	Lab ID:	50339745003	Collecte	d: 03/15/2	3 14:15	Received: 03	3/15/23 16:00 N	fatrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 50	030/8260						
	•	lytical Services -		olis					
Acetone	ND	ug/L	100	15.3	1		03/23/23 07:20	6 67-64-1	
Acrolein	ND	ug/L	50.0	20.4	1		03/23/23 07:20		
Acrylonitrile	ND	ug/L	100	3.0	1		03/23/23 07:20		
Benzene	ND	ug/L	5.0	0.27	1		03/23/23 07:20		
Bromobenzene	ND	ug/L	5.0	0.40	1		03/23/23 07:26		
Bromochloromethane	ND	ug/L	5.0	0.46	1		03/23/23 07:20		
Bromodichloromethane	ND	ug/L	5.0	0.49	1		03/23/23 07:20		
Bromoform	ND	ug/L	5.0	4.0	1		03/23/23 07:20		
Bromomethane	ND	ug/L	5.0	0.72	1		03/23/23 07:20		
	ND ND	_	25.0	10.5	1		03/23/23 07:20		
2-Butanone (MEK)		ug/L			1				
n-Butylbenzene	ND	ug/L	5.0	0.33	1		03/23/23 07:20 03/23/23 07:20		
sec-Butylbenzene	ND	ug/L	5.0	0.33			03/23/23 07:20		
ert-Butylbenzene	ND	ug/L	5.0	0.30	1				
Carbon disulfide	ND	ug/L	10.0	0.79	1		03/23/23 07:20		
Carbon tetrachloride	ND	ug/L	5.0	0.44	1		03/23/23 07:20		
Chlorobenzene	ND	ug/L	5.0	0.33	1		03/23/23 07:20		
Chloroethane	ND	ug/L	5.0	1.6	1		03/23/23 07:20		
Chloroform	ND	ug/L	5.0	2.0	1		03/23/23 07:20		
Chloromethane	ND	ug/L	5.0	0.50	1		03/23/23 07:20		
2-Chlorotoluene	ND	ug/L	5.0	0.38	1		03/23/23 07:20		
1-Chlorotoluene	ND	ug/L	5.0	0.35	1		03/23/23 07:20	5 106-43-4	
Dibromochloromethane	ND	ug/L	5.0	0.54	1		03/23/23 07:20	6 124-48-1	
1,2-Dibromoethane (EDB)	ND	ug/L	5.0	0.72	1		03/23/23 07:20	6 106-93-4	
Dibromomethane	ND	ug/L	5.0	4.0	1		03/23/23 07:20	6 74-95-3	
1,2-Dichlorobenzene	ND	ug/L	5.0	0.33	1		03/23/23 07:20	95-50-1	
1,3-Dichlorobenzene	ND	ug/L	5.0	0.34	1		03/23/23 07:20	5 541-73-1	
1,4-Dichlorobenzene	ND	ug/L	5.0	0.33	1		03/23/23 07:20	6 106-46-7	
rans-1,4-Dichloro-2-butene	ND	ug/L	100	2.2	1		03/23/23 07:20	6 110-57-6	
Dichlorodifluoromethane	ND	ug/L	5.0	0.57	1		03/23/23 07:20	6 75-71-8	
1,1-Dichloroethane	ND	ug/L	5.0	0.29	1		03/23/23 07:20	6 75-34-3	
1,2-Dichloroethane	ND	ug/L	5.0	0.52	1		03/23/23 07:20	6 107-06-2	
1,1-Dichloroethene	ND	ug/L	5.0	0.42	1		03/23/23 07:20	6 75-35-4	
cis-1,2-Dichloroethene	ND	ug/L	5.0	0.29	1		03/23/23 07:20	5 156-59-2	
rans-1,2-Dichloroethene	ND	ug/L	5.0	0.65	1		03/23/23 07:20	6 156-60-5	
1,2-Dichloropropane	ND	ug/L	5.0	0.42	1		03/23/23 07:20		
1,3-Dichloropropane	ND	ug/L	5.0	0.35	1		03/23/23 07:20		
2,2-Dichloropropane	ND	ug/L	5.0	0.35	1		03/23/23 07:20		
I,1-Dichloropropene	ND	ug/L	5.0	0.46	1		03/23/23 07:20		
cis-1,3-Dichloropropene	ND	ug/L	5.0	0.43	1		03/23/23 07:20		
rans-1,3-Dichloropropene	ND	ug/L	5.0	0.45	1			6 10061-02-6	
Ethylbenzene	ND	ug/L	5.0	0.43	1		03/23/23 07:20		
Ethyl methacrylate	ND	ug/L	100	0.63	1		03/23/23 07:20		
Hexachloro-1,3-butadiene	ND ND	ug/L ug/L	5.0	0.56	1		03/23/23 07:20		
n-Hexane	ND ND	ug/L ug/L	5.0	0.30	1		03/23/23 07:20		
n-nexane 2-Hexanone	ND ND	ug/L ug/L	25.0	3.3	1		03/23/23 07:20		

Project: GE Indy
Pace Project No.: 50339745

Date: 03/28/2023 12:14 PM

Sample: MW-41-031523	Lab ID:	50339745003	Collecte	d: 03/15/23	3 14:15	Received: 03	8/15/23 16:00 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	5030/8260						
	Pace Anal	ytical Services	- Indianapo	lis					
lodomethane	ND	ug/L	10.0	1.5	1		03/23/23 07:26	74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	5.0	0.36	1		03/23/23 07:26	98-82-8	
p-Isopropyltoluene	ND	ug/L	5.0	0.33	1		03/23/23 07:26	99-87-6	
Methylene Chloride	ND	ug/L	5.0	3.8	1		03/23/23 07:26	75-09-2	
1-Methylnaphthalene	ND	ug/L	10.0	5.6	1		03/23/23 07:26	90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	5.2	1		03/23/23 07:26	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	2.6	1		03/23/23 07:26	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	4.0	0.31	1		03/23/23 07:26	1634-04-4	
Naphthalene	ND	ug/L	1.2	1.1	1		03/23/23 07:26	91-20-3	
n-Propylbenzene	ND	ug/L	5.0	0.28	1		03/23/23 07:26	103-65-1	
Styrene	ND	ug/L	5.0	0.35	1		03/23/23 07:26	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.42	1		03/23/23 07:26	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.41	1		03/23/23 07:26	79-34-5	
Tetrachloroethene	ND	ug/L	5.0	0.50	1		03/23/23 07:26	127-18-4	
Toluene	ND	ug/L	5.0	0.32	1		03/23/23 07:26	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	0.93	1		03/23/23 07:26	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	5.0	0.75	1		03/23/23 07:26	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	5.0	0.42	1		03/23/23 07:26	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	5.0	0.81	1		03/23/23 07:26	79-00-5	
Trichloroethene	ND	ug/L	5.0	0.52	1		03/23/23 07:26	79-01-6	
Trichlorofluoromethane	ND	ug/L	5.0	0.53	1		03/23/23 07:26	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	5.0	1.3	1		03/23/23 07:26	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/L	5.0	0.28	1		03/23/23 07:26	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.34	1		03/23/23 07:26	108-67-8	
Vinyl acetate	ND	ug/L	50.0	1.2	1		03/23/23 07:26	108-05-4	
Vinyl chloride	ND	ug/L	2.0	0.52	1		03/23/23 07:26	75-01-4	
Xylene (Total)	ND	ug/L	10.0	1.3	1		03/23/23 07:26	1330-20-7	
Surrogates		-							
Dibromofluoromethane (S)	102	%.	82-128		1		03/23/23 07:26	1868-53-7	
4-Bromofluorobenzene (S)	102	%.	79-124		1		03/23/23 07:26	460-00-4	
Toluene-d8 (S)	92	%.	73-122		1		03/23/23 07:26	2037-26-5	

Project: GE Indy
Pace Project No.: 50339745

Date: 03/28/2023 12:14 PM

Sample: MW-131-031523	Lab ID:	50339745004	Collecte	d: 03/15/23	3 14:25	Received: 03	3/15/23 16:00 M	latrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 50	030/8260						
	•	lytical Services -		olis					
Acetone	ND	ug/L	100	7.6	1		03/24/23 07:38	8 67-64-1	
Acrolein	ND	ug/L	50.0	27.1	1		03/24/23 07:38		
Acrylonitrile	ND	ug/L	100	5.8	1		03/24/23 07:38		
Benzene	ND	ug/L	5.0	0.86	1		03/24/23 07:38		
Bromobenzene	ND	ug/L	5.0	0.75	1		03/24/23 07:38		
Bromochloromethane	ND	ug/L	5.0	1.2	1		03/24/23 07:38		
Bromodichloromethane	ND	ug/L	5.0	0.70	1		03/24/23 07:38		
Bromoform	ND ND	ug/L	5.0	1.0	1		03/24/23 07:38		
Bromomethane	ND	ug/L	5.0	0.56	1		03/24/23 07:38		
	ND ND			5.4	1		03/24/23 07:38		
2-Butanone (MEK)		ug/L	25.0		1				
n-Butylbenzene	ND	ug/L	5.0	0.97			03/24/23 07:38		
sec-Butylbenzene	ND	ug/L	5.0	0.87	1		03/24/23 07:38		
tert-Butylbenzene	ND	ug/L	5.0	1.0	1		03/24/23 07:38		
Carbon disulfide	ND	ug/L	10.0	0.97	1		03/24/23 07:38		
Carbon tetrachloride	5.3	ug/L	5.0	0.76	1		03/24/23 07:38		
Chlorobenzene	ND	ug/L	5.0	0.90	1		03/24/23 07:38		
Chloroethane	ND	ug/L	5.0	1.3	1		03/24/23 07:38		
Chloroform	8.0	ug/L	5.0	0.84	1		03/24/23 07:38		
Chloromethane	ND	ug/L	5.0	1.4	1		03/24/23 07:38		
2-Chlorotoluene	ND	ug/L	5.0	0.95	1		03/24/23 07:38	95-49-8	
4-Chlorotoluene	ND	ug/L	5.0	0.94	1		03/24/23 07:38	3 106-43-4	
Dibromochloromethane	ND	ug/L	5.0	0.80	1		03/24/23 07:38	3 124-48-1	
1,2-Dibromoethane (EDB)	ND	ug/L	5.0	0.68	1		03/24/23 07:38	3 106-93-4	
Dibromomethane	ND	ug/L	5.0	1.0	1		03/24/23 07:38	3 74-95-3	
1,2-Dichlorobenzene	ND	ug/L	5.0	1.0	1		03/24/23 07:38	95-50-1	
1,3-Dichlorobenzene	ND	ug/L	5.0	0.92	1		03/24/23 07:38	3 541-73-1	
1,4-Dichlorobenzene	ND	ug/L	5.0	0.91	1		03/24/23 07:38	3 106-46-7	
trans-1,4-Dichloro-2-butene	ND	ug/L	100	1.0	1		03/24/23 07:38	3 110-57-6	
Dichlorodifluoromethane	ND	ug/L	5.0	2.4	1		03/24/23 07:38	3 75-71-8	
1,1-Dichloroethane	19.1	ug/L	5.0	0.95	1		03/24/23 07:38	3 75-34-3	
1,2-Dichloroethane	ND	ug/L	5.0	0.84	1		03/24/23 07:38		
1,1-Dichloroethene	ND	ug/L	5.0	0.83	1		03/24/23 07:38		
cis-1,2-Dichloroethene	9.5	ug/L	5.0	0.91	1		03/24/23 07:38		
trans-1,2-Dichloroethene	ND	ug/L	5.0	0.93	1		03/24/23 07:38		
1,2-Dichloropropane	ND	ug/L	5.0	0.89	1		03/24/23 07:38		
1,3-Dichloropropane	ND	ug/L	5.0	1.1	1		03/24/23 07:38		
2,2-Dichloropropane	ND	ug/L	5.0	0.75	1		03/24/23 07:38		
1,1-Dichloropropene	ND ND	ug/L	5.0	1.0	1		03/24/23 07:38		
cis-1,3-Dichloropropene	ND	ug/L	5.0	0.67	1		03/24/23 07:38		
trans-1,3-Dichloropropene	ND ND	ug/L ug/L	5.0	0.82	1		03/24/23 07:38		
Ethylbenzene	ND ND	ug/L ug/L	5.0	0.62	1		03/24/23 07:38		
Ethyl methacrylate									
tnyi methacrylate Hexachloro-1,3-butadiene	ND ND	ug/L	100 5.0	0.89	1		03/24/23 07:38		
,	ND	ug/L	5.0	1.1	1		03/24/23 07:38		
n-Hexane	ND	ug/L	5.0	0.74	1		03/24/23 07:38		
2-Hexanone	ND	ug/L	25.0	8.0	1		03/24/23 07:38	591-78-6	

Project: GE Indy
Pace Project No.: 50339745

Date: 03/28/2023 12:14 PM

Sample: MW-131-031523	Lab ID:	50339745004	Collecte	d: 03/15/23	3 14:25	Received: 03	3/15/23 16:00 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Ana	lytical Services	- Indianapo	lis					
lodomethane	ND	ug/L	10.0	0.67	1		03/24/23 07:38	74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	5.0	0.75	1		03/24/23 07:38	98-82-8	
p-Isopropyltoluene	ND	ug/L	5.0	0.90	1		03/24/23 07:38	99-87-6	
Methylene Chloride	ND	ug/L	5.0	3.9	1		03/24/23 07:38	75-09-2	
1-Methylnaphthalene	ND	ug/L	10.0	2.0	1		03/24/23 07:38	90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	1.5	1		03/24/23 07:38	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	5.5	1		03/24/23 07:38	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	4.0	0.72	1		03/24/23 07:38	1634-04-4	
Naphthalene	ND	ug/L	1.2	0.98	1		03/24/23 07:38	91-20-3	
n-Propylbenzene	ND	ug/L	5.0	0.87	1		03/24/23 07:38	103-65-1	
Styrene	ND	ug/L	5.0	0.85	1		03/24/23 07:38	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.79	1		03/24/23 07:38	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.83	1		03/24/23 07:38	79-34-5	
Tetrachloroethene	ND	ug/L	5.0	0.87	1		03/24/23 07:38	127-18-4	
Toluene	ND	ug/L	5.0	0.88	1		03/24/23 07:38	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	1.4	1		03/24/23 07:38	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	5.0	1.2	1		03/24/23 07:38	120-82-1	
1,1,1-Trichloroethane	164	ug/L	5.0	0.83	1		03/24/23 07:38	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	5.0	0.98	1		03/24/23 07:38	79-00-5	
Trichloroethene	40.7	ug/L	5.0	0.97	1		03/24/23 07:38	79-01-6	
Trichlorofluoromethane	ND	ug/L	5.0	1.0	1		03/24/23 07:38	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	5.0	0.82	1		03/24/23 07:38	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/L	5.0	0.87	1		03/24/23 07:38	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.80	1		03/24/23 07:38	108-67-8	
Vinyl acetate	ND	ug/L	50.0	3.0	1		03/24/23 07:38	108-05-4	
Vinyl chloride	ND	ug/L	2.0	1.5	1		03/24/23 07:38		
Xylene (Total)	ND	ug/L	10.0	0.77	1		03/24/23 07:38		
Surrogates		- J ·							
Dibromofluoromethane (S)	112	%.	82-128		1		03/24/23 07:38	1868-53-7	
4-Bromofluorobenzene (S)	108	%.	79-124		1		03/24/23 07:38	460-00-4	
Toluene-d8 (S)	94	%.	73-122		1		03/24/23 07:38	2037-26-5	

Project: GE Indy
Pace Project No.: 50339745

Date: 03/28/2023 12:14 PM

Sample: MW-241-031523	Lab ID:	50339745005	Collecte	d: 03/15/2	3 14:45	Received: 03	3/15/23 16:00 N	latrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 50	030/8260						
	•	lytical Services -		olis					
Acetone	ND	ug/L	100	7.6	1		03/24/23 08:03	3 67-64-1	
Acrolein	ND	ug/L	50.0	27.1	1		03/24/23 08:03		
Acrylonitrile	ND	ug/L	100	5.8	1		03/24/23 08:03		
Benzene	ND	ug/L	5.0	0.86	1		03/24/23 08:03		
Bromobenzene	ND	ug/L	5.0	0.75	1		03/24/23 08:03		
Bromochloromethane	ND	ug/L	5.0	1.2	1		03/24/23 08:03		
Bromodichloromethane	ND	ug/L	5.0	0.70	1		03/24/23 08:03		
Bromoform	ND	ug/L	5.0	1.0	1		03/24/23 08:03		
Bromomethane	ND	ug/L	5.0	0.56	1		03/24/23 08:03		
2-Butanone (MEK)	ND	ug/L	25.0	5.4	1		03/24/23 08:03		
n-Butylbenzene	ND	ug/L	5.0	0.97	1		03/24/23 08:03		
sec-Butylbenzene	ND	ug/L	5.0	0.87	1		03/24/23 08:03		
tert-Butylbenzene	ND	ug/L	5.0	1.0	1		03/24/23 08:03		
Carbon disulfide	ND	ug/L	10.0	0.97	1		03/24/23 08:03		
Carbon tetrachloride	ND	ug/L	5.0	0.76	1		03/24/23 08:03		
Chlorobenzene	ND	ug/L	5.0	0.90	1		03/24/23 08:03		
Chloroethane	ND	ug/L	5.0	1.3	1		03/24/23 08:03		
Chloroform	ND ND	ug/L ug/L	5.0	0.84	1		03/24/23 08:03		
Chloromethane	ND	ug/L ug/L	5.0	1.4	1		03/24/23 08:03		
2-Chlorotoluene	ND ND	_	5.0	0.95	1		03/24/23 08:03		
4-Chlorotoluene	ND ND	ug/L ug/L	5.0	0.93	1		03/24/23 08:03		
Dibromochloromethane	ND ND	ug/L ug/L		0.80	1		03/24/23 08:03		
	ND ND		5.0 5.0	0.68	1				
1,2-Dibromoethane (EDB)		ug/L					03/24/23 08:03		
Dibromomethane	ND	ug/L	5.0	1.0	1		03/24/23 08:03		
1,2-Dichlorobenzene	ND	ug/L	5.0	1.0	1		03/24/23 08:03		
1,3-Dichlorobenzene	ND	ug/L	5.0	0.92	1		03/24/23 08:03		
1,4-Dichlorobenzene	ND	ug/L	5.0	0.91	1		03/24/23 08:03		
rans-1,4-Dichloro-2-butene	ND	ug/L	100	1.0	1		03/24/23 08:03		
Dichlorodifluoromethane	ND	ug/L	5.0	2.4	1		03/24/23 08:03		
1,1-Dichloroethane	ND	ug/L	5.0	0.95	1		03/24/23 08:03		
1,2-Dichloroethane	ND	ug/L	5.0	0.84	1		03/24/23 08:03		
1,1-Dichloroethene	ND	ug/L	5.0	0.83	1		03/24/23 08:03		
cis-1,2-Dichloroethene	ND	ug/L	5.0	0.91	1		03/24/23 08:03		
rans-1,2-Dichloroethene	ND	ug/L	5.0	0.93	1		03/24/23 08:03		
1,2-Dichloropropane	ND	ug/L	5.0	0.89	1		03/24/23 08:03		
,3-Dichloropropane	ND	ug/L	5.0	1.1	1		03/24/23 08:03		
2,2-Dichloropropane	ND	ug/L	5.0	0.75	1		03/24/23 08:03		
1,1-Dichloropropene	ND	ug/L	5.0	1.0	1		03/24/23 08:03		
cis-1,3-Dichloropropene	ND	ug/L	5.0	0.67	1		03/24/23 08:03	3 10061-01-5	
rans-1,3-Dichloropropene	ND	ug/L	5.0	0.82	1		03/24/23 08:03	3 10061-02-6	
Ethylbenzene	ND	ug/L	5.0	0.72	1		03/24/23 08:03	3 100-41-4	
Ethyl methacrylate	ND	ug/L	100	0.89	1		03/24/23 08:03	3 97-63-2	
Hexachloro-1,3-butadiene	ND	ug/L	5.0	1.1	1		03/24/23 08:03	87-68-3	
n-Hexane	ND	ug/L	5.0	0.74	1		03/24/23 08:03	3 110-54-3	
2-Hexanone	ND	ug/L	25.0	8.0	1		03/24/23 08:03	3 591-78-6	

Project: GE Indy
Pace Project No.: 50339745

Date: 03/28/2023 12:14 PM

Sample: MW-241-031523	Lab ID:	50339745005	Collecte	d: 03/15/23	3 14:45	Received: 03	3/15/23 16:00 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Ana	lytical Services	- Indianapo	lis					
lodomethane	ND	ug/L	10.0	0.67	1		03/24/23 08:03	74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	5.0	0.75	1		03/24/23 08:03	98-82-8	
p-Isopropyltoluene	ND	ug/L	5.0	0.90	1		03/24/23 08:03	99-87-6	
Methylene Chloride	ND	ug/L	5.0	3.9	1		03/24/23 08:03	75-09-2	
1-Methylnaphthalene	ND	ug/L	10.0	2.0	1		03/24/23 08:03	90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	1.5	1		03/24/23 08:03	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	5.5	1		03/24/23 08:03	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	4.0	0.72	1		03/24/23 08:03	1634-04-4	
Naphthalene	ND	ug/L	1.2	0.98	1		03/24/23 08:03	91-20-3	
n-Propylbenzene	ND	ug/L	5.0	0.87	1		03/24/23 08:03	103-65-1	
Styrene	ND	ug/L	5.0	0.85	1		03/24/23 08:03	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.79	1		03/24/23 08:03	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.83	1		03/24/23 08:03	79-34-5	
Tetrachloroethene	ND	ug/L	5.0	0.87	1		03/24/23 08:03	127-18-4	
Toluene	ND	ug/L	5.0	0.88	1		03/24/23 08:03	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	1.4	1		03/24/23 08:03	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	5.0	1.2	1		03/24/23 08:03	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	5.0	0.83	1		03/24/23 08:03	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	5.0	0.98	1		03/24/23 08:03	79-00-5	
Trichloroethene	ND	ug/L	5.0	0.97	1		03/24/23 08:03	79-01-6	
Trichlorofluoromethane	ND	ug/L	5.0	1.0	1		03/24/23 08:03		
1,2,3-Trichloropropane	ND	ug/L	5.0	0.82	1		03/24/23 08:03	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/L	5.0	0.87	1		03/24/23 08:03	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.80	1		03/24/23 08:03		
Vinyl acetate	ND	ug/L	50.0	3.0	1		03/24/23 08:03		
Vinyl chloride	ND	ug/L	2.0	1.5	1		03/24/23 08:03		
Xylene (Total)	ND	ug/L	10.0	0.77	1		03/24/23 08:03		
Surrogates	.12	~ <i>9</i> , –		J	•		23,2 ,,20 03.00		
Dibromofluoromethane (S)	108	%.	82-128		1		03/24/23 08:03	1868-53-7	
4-Bromofluorobenzene (S)	104	%.	79-124		1		03/24/23 08:03	460-00-4	
Toluene-d8 (S)	94	%.	73-122		1		03/24/23 08:03		

Project: GE Indy
Pace Project No.: 50339745

Date: 03/28/2023 12:14 PM

Sample: Trip Blank-031523	Lab ID:	50339745006	Collected:	03/15/23	08:00	Received: 03	3/15/23 16:00 M	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Ana	lytical Services	- Indianapolis	S					
Acetone	ND	ug/L	100	7.6	1		03/24/23 08:28	67-64-1	
Acrolein	ND	ug/L	50.0	27.1	1		03/24/23 08:28		
Acrylonitrile	ND	ug/L	100	5.8	1		03/24/23 08:28		
Benzene	ND	ug/L	5.0	0.86	1		03/24/23 08:28		
Bromobenzene	ND	ug/L	5.0	0.75	1		03/24/23 08:28		
Bromochloromethane	ND	ug/L	5.0	1.2	1		03/24/23 08:28		
Bromodichloromethane	ND ND	ug/L	5.0	0.70	1		03/24/23 08:28		
Bromoform	ND	ug/L	5.0	1.0	1		03/24/23 08:28		
Bromomethane	ND ND	ug/L	5.0	0.56	1		03/24/23 08:28		
2-Butanone (MEK)	ND ND	ug/L ug/L	25.0	5.4	1		03/24/23 08:28		
n-Butylbenzene	ND ND	ug/L ug/L	25.0 5.0	0.97	1		03/24/23 08:28		
ec-Butylbenzene	ND ND	ug/L ug/L	5.0 5.0	0.97	1		03/24/23 08:28		
ert-Butylbenzene	ND ND	ug/L ug/L	5.0	1.0	1		03/24/23 08:28		
Carbon disulfide	ND ND	-	10.0	0.97	1		03/24/23 08:28		
		ug/L		0.97	1				
Carbon tetrachloride	ND	ug/L	5.0				03/24/23 08:28		
Chlorobenzene	ND	ug/L	5.0	0.90	1		03/24/23 08:28		
Chloroethane	ND	ug/L	5.0	1.3	1		03/24/23 08:28		
Chloroform	ND	ug/L	5.0	0.84	1		03/24/23 08:28		
Chloromethane	ND	ug/L	5.0	1.4	1		03/24/23 08:28		
2-Chlorotoluene	ND	ug/L	5.0	0.95	1		03/24/23 08:28		
1-Chlorotoluene	ND	ug/L	5.0	0.94	1		03/24/23 08:28		
Dibromochloromethane	ND	ug/L	5.0	0.80	1		03/24/23 08:28		
,2-Dibromoethane (EDB)	ND	ug/L	5.0	0.68	1		03/24/23 08:28		
Dibromomethane	ND	ug/L	5.0	1.0	1		03/24/23 08:28		
I,2-Dichlorobenzene	ND	ug/L	5.0	1.0	1		03/24/23 08:28		
1,3-Dichlorobenzene	ND	ug/L	5.0	0.92	1		03/24/23 08:28		
1,4-Dichlorobenzene	ND	ug/L	5.0	0.91	1		03/24/23 08:28		
rans-1,4-Dichloro-2-butene	ND	ug/L	100	1.0	1		03/24/23 08:28		
Dichlorodifluoromethane	ND	ug/L	5.0	2.4	1		03/24/23 08:28		
1,1-Dichloroethane	ND	ug/L	5.0	0.95	1		03/24/23 08:28		
,2-Dichloroethane	ND	ug/L	5.0	0.84	1		03/24/23 08:28		
1,1-Dichloroethene	ND	ug/L	5.0	0.83	1		03/24/23 08:28		
cis-1,2-Dichloroethene	ND	ug/L	5.0	0.91	1		03/24/23 08:28		
rans-1,2-Dichloroethene	ND	ug/L	5.0	0.93	1		03/24/23 08:28	156-60-5	
,2-Dichloropropane	ND	ug/L	5.0	0.89	1		03/24/23 08:28	78-87-5	
,3-Dichloropropane	ND	ug/L	5.0	1.1	1		03/24/23 08:28	142-28-9	
2,2-Dichloropropane	ND	ug/L	5.0	0.75	1		03/24/23 08:28	594-20-7	
,1-Dichloropropene	ND	ug/L	5.0	1.0	1		03/24/23 08:28		
cis-1,3-Dichloropropene	ND	ug/L	5.0	0.67	1		03/24/23 08:28		
rans-1,3-Dichloropropene	ND	ug/L	5.0	0.82	1		03/24/23 08:28	10061-02-6	
Ethylbenzene	ND	ug/L	5.0	0.72	1		03/24/23 08:28	100-41-4	
Ethyl methacrylate	ND	ug/L	100	0.89	1		03/24/23 08:28	97-63-2	
lexachloro-1,3-butadiene	ND	ug/L	5.0	1.1	1		03/24/23 08:28	87-68-3	
n-Hexane	ND	ug/L	5.0	0.74	1		03/24/23 08:28	110-54-3	
2-Hexanone	ND	ug/L	25.0	8.0	1		03/24/23 08:28	591-78-6	

Project: GE Indy
Pace Project No.: 50339745

Date: 03/28/2023 12:14 PM

Sample: Trip Blank-031523	Lab ID:	50339745006	Collecte	d: 03/15/23	3 08:00	Received: 03	3/15/23 16:00 Ma	atrix: Water	
			Report						
Parameters	Results -	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Ana	lytical Services	- Indianapo	lis					
lodomethane	ND	ug/L	10.0	0.67	1		03/24/23 08:28	74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	5.0	0.75	1		03/24/23 08:28	98-82-8	
p-Isopropyltoluene	ND	ug/L	5.0	0.90	1		03/24/23 08:28	99-87-6	
Methylene Chloride	ND	ug/L	5.0	3.9	1		03/24/23 08:28	75-09-2	
1-Methylnaphthalene	ND	ug/L	10.0	2.0	1		03/24/23 08:28	90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	1.5	1		03/24/23 08:28	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	5.5	1		03/24/23 08:28	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	4.0	0.72	1		03/24/23 08:28	1634-04-4	
Naphthalene	ND	ug/L	1.2	0.98	1		03/24/23 08:28	91-20-3	
n-Propylbenzene	ND	ug/L	5.0	0.87	1		03/24/23 08:28	103-65-1	
Styrene	ND	ug/L	5.0	0.85	1		03/24/23 08:28	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.79	1		03/24/23 08:28	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.83	1		03/24/23 08:28	79-34-5	
Tetrachloroethene	ND	ug/L	5.0	0.87	1		03/24/23 08:28	127-18-4	
Toluene	ND	ug/L	5.0	0.88	1		03/24/23 08:28	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	1.4	1		03/24/23 08:28	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	5.0	1.2	1		03/24/23 08:28		
1,1,1-Trichloroethane	ND	ug/L	5.0	0.83	1		03/24/23 08:28	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	5.0	0.98	1		03/24/23 08:28	79-00-5	
Trichloroethene	ND	ug/L	5.0	0.97	1		03/24/23 08:28		
Trichlorofluoromethane	ND	ug/L	5.0	1.0	1		03/24/23 08:28		
1,2,3-Trichloropropane	ND	ug/L	5.0	0.82	1		03/24/23 08:28	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/L	5.0	0.87	1		03/24/23 08:28		
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.80	1		03/24/23 08:28		
Vinyl acetate	ND	ug/L	50.0	3.0	1		03/24/23 08:28		
Vinyl chloride	ND	ug/L	2.0	1.5	1		03/24/23 08:28		
Xylene (Total)	ND	ug/L	10.0	0.77	1		03/24/23 08:28		
Surrogates	.15	~ 3 , –		J	•		- 3,, - 0 00.20		
Dibromofluoromethane (S)	106	%.	82-128		1		03/24/23 08:28	1868-53-7	
4-Bromofluorobenzene (S)	105	%.	79-124		1		03/24/23 08:28	460-00-4	
Toluene-d8 (S)	95	%.	73-122		1		03/24/23 08:28		

Project: GE Indy
Pace Project No.: 50339745

Date: 03/28/2023 12:14 PM

QC Batch: 724400 Analysis Method: EPA 5030/8260
QC Batch Method: EPA 5030/8260 Analysis Description: 8260 MSV

Laboratory: Pace Analytical Services - Indianapolis

Associated Lab Samples: 50339745001, 50339745002, 50339745003

METHOD BLANK: 3324081 Matrix: Water

Associated Lab Samples: 50339745001, 50339745002, 50339745003

,	,	Blank	Reporting					
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers		
1,1,1,2-Tetrachloroethane	ug/L	ND -	5.0	0.42	03/22/23 23:28			
1,1,1-Trichloroethane	ug/L	ND	5.0	0.42	03/22/23 23:28			
1,1,2,2-Tetrachloroethane	ug/L	ND	5.0	0.41	03/22/23 23:28			
1,1,2-Trichloroethane	ug/L	ND	5.0	0.81	03/22/23 23:28			
1,1-Dichloroethane	ug/L	ND	5.0	0.29	03/22/23 23:28			
1,1-Dichloroethene	ug/L	ND	5.0	0.42	03/22/23 23:28			
1,1-Dichloropropene	ug/L	ND	5.0	0.46	03/22/23 23:28			
1,2,3-Trichlorobenzene	ug/L	ND	5.0	0.93	03/22/23 23:28			
1,2,3-Trichloropropane	ug/L	ND	5.0	1.3	03/22/23 23:28			
1,2,4-Trichlorobenzene	ug/L	ND	5.0	0.75	03/22/23 23:28			
1,2,4-Trimethylbenzene	ug/L	ND	5.0	0.28	03/22/23 23:28			
1,2-Dibromoethane (EDB)	ug/L	ND	5.0	0.72	03/22/23 23:28			
1,2-Dichlorobenzene	ug/L	ND	5.0	0.33	03/22/23 23:28			
1,2-Dichloroethane	ug/L	ND	5.0	0.52	03/22/23 23:28			
1,2-Dichloropropane	ug/L	ND	5.0	0.42	03/22/23 23:28			
1,3,5-Trimethylbenzene	ug/L	ND	5.0	0.34	03/22/23 23:28			
1,3-Dichlorobenzene	ug/L	ND	5.0	0.34	03/22/23 23:28			
1,3-Dichloropropane	ug/L	ND	5.0	0.35	03/22/23 23:28			
1,4-Dichlorobenzene	ug/L	ND	5.0	0.33	03/22/23 23:28			
1-Methylnaphthalene	ug/L	ND	10.0	5.6	03/22/23 23:28			
2,2-Dichloropropane	ug/L	ND	5.0	0.35	03/22/23 23:28			
2-Butanone (MEK)	ug/L	ND	25.0	10.5	03/22/23 23:28			
2-Chlorotoluene	ug/L	ND	5.0	0.38	03/22/23 23:28			
2-Hexanone	ug/L	ND	25.0	3.3	03/22/23 23:28			
2-Methylnaphthalene	ug/L	ND	10.0	5.2	03/22/23 23:28			
4-Chlorotoluene	ug/L	ND	5.0	0.35	03/22/23 23:28			
4-Methyl-2-pentanone (MIBK)	ug/L	ND	25.0	2.6	03/22/23 23:28			
Acetone	ug/L	ND	100	15.3	03/22/23 23:28			
Acrolein	ug/L	ND	50.0	20.4	03/22/23 23:28			
Acrylonitrile	ug/L	ND	100	3.0	03/22/23 23:28			
Benzene	ug/L	ND	5.0	0.27	03/22/23 23:28			
Bromobenzene	ug/L	ND	5.0	0.40	03/22/23 23:28			
Bromochloromethane	ug/L	ND	5.0	0.46	03/22/23 23:28			
Bromodichloromethane	ug/L	ND	5.0	0.49	03/22/23 23:28			
Bromoform	ug/L	ND	5.0	4.0	03/22/23 23:28			
Bromomethane	ug/L	ND	5.0	0.72	03/22/23 23:28			
Carbon disulfide	ug/L	ND	10.0	0.79	03/22/23 23:28			
Carbon tetrachloride	ug/L	ND	5.0	0.44	03/22/23 23:28			
Chlorobenzene	ug/L	ND	5.0	0.33	03/22/23 23:28			
Chloroethane	ug/L	ND	5.0	1.6	03/22/23 23:28			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50339745

Date: 03/28/2023 12:14 PM

METHOD BLANK: 3324081 Matrix: Water

Associated Lab Samples: 50339745001, 50339745002, 50339745003

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Chloroform	ug/L	ND	5.0	2.0	03/22/23 23:28	
Chloromethane	ug/L	ND	5.0	0.50	03/22/23 23:28	
cis-1,2-Dichloroethene	ug/L	ND	5.0	0.29	03/22/23 23:28	
cis-1,3-Dichloropropene	ug/L	ND	5.0	0.43	03/22/23 23:28	
Dibromochloromethane	ug/L	ND	5.0	0.54	03/22/23 23:28	
Dibromomethane	ug/L	ND	5.0	4.0	03/22/23 23:28	
Dichlorodifluoromethane	ug/L	ND	5.0	0.57	03/22/23 23:28	
Ethyl methacrylate	ug/L	ND	100	0.63	03/22/23 23:28	
Ethylbenzene	ug/L	ND	5.0	0.34	03/22/23 23:28	
Hexachloro-1,3-butadiene	ug/L	ND	5.0	0.56	03/22/23 23:28	
lodomethane	ug/L	ND	10.0	1.5	03/22/23 23:28	
Isopropylbenzene (Cumene)	ug/L	ND	5.0	0.36	03/22/23 23:28	
Methyl-tert-butyl ether	ug/L	ND	4.0	0.31	03/22/23 23:28	
Methylene Chloride	ug/L	ND	5.0	3.8	03/22/23 23:28	
n-Butylbenzene	ug/L	ND	5.0	0.33	03/22/23 23:28	
n-Hexane	ug/L	ND	5.0	0.47	03/22/23 23:28	
n-Propylbenzene	ug/L	ND	5.0	0.28	03/22/23 23:28	
Naphthalene	ug/L	ND	1.2	1.1	03/22/23 23:28	
o-Isopropyltoluene	ug/L	ND	5.0	0.33	03/22/23 23:28	
sec-Butylbenzene	ug/L	ND	5.0	0.33	03/22/23 23:28	
Styrene	ug/L	ND	5.0	0.35	03/22/23 23:28	
ert-Butylbenzene	ug/L	ND	5.0	0.30	03/22/23 23:28	
Tetrachloroethene	ug/L	ND	5.0	0.50	03/22/23 23:28	
Toluene	ug/L	ND	5.0	0.32	03/22/23 23:28	
rans-1,2-Dichloroethene	ug/L	ND	5.0	0.65	03/22/23 23:28	
rans-1,3-Dichloropropene	ug/L	ND	5.0	0.45	03/22/23 23:28	
rans-1,4-Dichloro-2-butene	ug/L	ND	100	2.2	03/22/23 23:28	
Trichloroethene	ug/L	ND	5.0	0.52	03/22/23 23:28	
Trichlorofluoromethane	ug/L	ND	5.0	0.53	03/22/23 23:28	
Vinyl acetate	ug/L	ND	50.0	1.2	03/22/23 23:28	
/inyl chloride	ug/L	ND	2.0	0.52	03/22/23 23:28	
Xylene (Total)	ug/L	ND	10.0	1.3	03/22/23 23:28	
1-Bromofluorobenzene (S)	%.	99	79-124		03/22/23 23:28	
Dibromofluoromethane (S)	%.	100	82-128		03/22/23 23:28	
Toluene-d8 (S)	%.	92	73-122		03/22/23 23:28	

LABORATORY CONTROL SAMPLE:	3324082					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1-Trichloroethane	ug/L	50	48.7	97	69-125	
1,1,2,2-Tetrachloroethane	ug/L	50	45.5	91	72-123	
1,1-Dichloroethene	ug/L	50	52.7	105	63-138	
1,2,4-Trimethylbenzene	ug/L	50	41.6	83	71-121	
1,2-Dibromoethane (EDB)	ug/L	50	48.0	96	75-123	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50339745

Date: 03/28/2023 12:14 PM

ABORATORY CONTROL SAMPLE:	3324082					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
2-Dichloroethane	ug/L	50	54.3	109	68-126	
2-Dichloropropane	ug/L	50	51.2	102	73-127	
enzene	ug/L	50	48.0	96	76-121	
hlorobenzene	ug/L	50	44.9	90	74-119	
hloroform	ug/L	50	47.9	96	68-123	
s-1,2-Dichloroethene	ug/L	50	48.8	98	73-122	
thylbenzene	ug/L	50	43.8	88	74-122	
propylbenzene (Cumene)	ug/L	50	43.6	87	75-124	
ethyl-tert-butyl ether	ug/L	50	54.0	108	71-125	
·lexane	ug/L	50	49.4	99	60-132	
phthalene	ug/L	50	46.0	92	69-128	
trachloroethene	ug/L	50	43.6	87	74-129	
uene	ug/L	50	42.1	84	70-118	
ans-1,2-Dichloroethene	ug/L	50	48.0	96	69-124	
ichloroethene	ug/L	50	49.3	99	73-125	
nyl chloride	ug/L	50	45.6	91	46-134	
rlene (Total)	ug/L	150	133	88	71-123	
Bromofluorobenzene (S)	%.			99	79-124	
oromofluoromethane (S)	%.			99	82-128	
luene-d8 (S)	%.			93	73-122	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3324083					3324084							
			MS	MSD								
	50	0339974008	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1,1,1-Trichloroethane	ug/L	ND	50	50	57.1	59.7	114	119	60-143	5	20	
1,1,2,2-Tetrachloroethane	ug/L	ND	50	50	51.8	54.6	104	109	64-135	5	20	
1,1-Dichloroethene	ug/L	ND	50	50	60.0	61.1	118	120	55-158	2	20	
1,2,4-Trimethylbenzene	ug/L	ND	50	50	45.5	47.9	91	96	41-140	5	20	
1,2-Dibromoethane (EDB)	ug/L	ND	50	50	56.2	58.3	112	117	68-136	4	20	
1,2-Dichloroethane	ug/L	ND	50	50	61.6	65.4	123	131	61-144	6	20	
1,2-Dichloropropane	ug/L	ND	50	50	59.9	62.5	120	125	67-141	4	20	
Benzene	ug/L	ND	50	50	56.8	59.1	114	118	68-139	4	20	
Chlorobenzene	ug/L	ND	50	50	52.7	53.5	105	107	57-137	2	20	
Chloroform	ug/L	ND	50	50	54.3	56.7	107	112	61-138	4	20	
cis-1,2-Dichloroethene	ug/L	544	50	50	553	545	17	2	58-142	1	20	E,M1
Ethylbenzene	ug/L	ND	50	50	51.0	53.3	102	107	54-141	4	20	
Isopropylbenzene (Cumene)	ug/L	ND	50	50	50.5	53.9	101	108	48-145	7	20	
Methyl-tert-butyl ether	ug/L	ND	50	50	61.7	64.4	123	129	62-143	4	20	
n-Hexane	ug/L	ND	50	50	57.4	61.2	115	122	44-145	6	20	
Naphthalene	ug/L	ND	50	50	53.1	56.2	106	112	56-136	6	20	
Tetrachloroethene	ug/L	ND	50	50	51.5	53.7	103	107	50-149	4	20	
Toluene	ug/L	ND	50	50	49.5	52.4	99	105	59-134	6	20	
trans-1,2-Dichloroethene	ug/L	429	50	50	392	396	-75	-67	57-141	1	20	E,M1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50339745

Date: 03/28/2023 12:14 PM

MATRIX SPIKE & MATRIX SF		3324084										
	_		MS	MSD								
	5	0339974008	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Trichloroethene	ug/L	9.4	50	50	64.3	65.0	110	111	55-147	1	20	
Vinyl chloride	ug/L	218	50	50	223	229	10	23	36-154	3	20	M1
Xylene (Total)	ug/L	ND	150	150	152	159	101	106	50-143	5	20	
4-Bromofluorobenzene (S)	%.						96	98	79-124			
Dibromofluoromethane (S)	%.						100	103	82-128			
Toluene-d8 (S)	%.						91	96	73-122			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50339745

Date: 03/28/2023 12:14 PM

QC Batch: 724540 Analysis Method: EPA 5030/8260
QC Batch Method: EPA 5030/8260 Analysis Description: 8260 MSV

Laboratory: Pace Analytical Services - Indianapolis

Associated Lab Samples: 50339745004, 50339745005, 50339745006

METHOD BLANK: 3324775 Matrix: Water

Associated Lab Samples: 50339745004, 50339745005, 50339745006

,	, ,	Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	ND -	5.0	0.79	03/24/23 03:53	
1,1,1-Trichloroethane	ug/L	ND	5.0	0.83	03/24/23 03:53	
1,1,2,2-Tetrachloroethane	ug/L	ND	5.0	0.83	03/24/23 03:53	
1,1,2-Trichloroethane	ug/L	ND	5.0	0.98	03/24/23 03:53	
1,1-Dichloroethane	ug/L	ND	5.0	0.95	03/24/23 03:53	
1,1-Dichloroethene	ug/L	ND	5.0	0.83	03/24/23 03:53	
1,1-Dichloropropene	ug/L	ND	5.0	1.0	03/24/23 03:53	
1,2,3-Trichlorobenzene	ug/L	ND	5.0	1.4	03/24/23 03:53	
1,2,3-Trichloropropane	ug/L	ND	5.0	0.82	03/24/23 03:53	
1,2,4-Trichlorobenzene	ug/L	ND	5.0	1.2	03/24/23 03:53	
1,2,4-Trimethylbenzene	ug/L	ND	5.0	0.87	03/24/23 03:53	
1,2-Dibromoethane (EDB)	ug/L	ND	5.0	0.68	03/24/23 03:53	
1,2-Dichlorobenzene	ug/L	ND	5.0	1.0	03/24/23 03:53	
1,2-Dichloroethane	ug/L	ND	5.0	0.84	03/24/23 03:53	
1,2-Dichloropropane	ug/L	ND	5.0	0.89	03/24/23 03:53	
1,3,5-Trimethylbenzene	ug/L	ND	5.0	0.80	03/24/23 03:53	
1,3-Dichlorobenzene	ug/L	ND	5.0	0.92	03/24/23 03:53	
1,3-Dichloropropane	ug/L	ND	5.0	1.1	03/24/23 03:53	
1,4-Dichlorobenzene	ug/L	ND	5.0	0.91	03/24/23 03:53	
1-Methylnaphthalene	ug/L	ND	10.0	2.0	03/24/23 03:53	
2,2-Dichloropropane	ug/L	ND	5.0	0.75	03/24/23 03:53	
2-Butanone (MEK)	ug/L	ND	25.0	5.4	03/24/23 03:53	
2-Chlorotoluene	ug/L	ND	5.0	0.95	03/24/23 03:53	
2-Hexanone	ug/L	ND	25.0	8.0	03/24/23 03:53	
2-Methylnaphthalene	ug/L	ND	10.0	1.5	03/24/23 03:53	
4-Chlorotoluene	ug/L	ND	5.0	0.94	03/24/23 03:53	
4-Methyl-2-pentanone (MIBK)	ug/L	ND	25.0	5.5	03/24/23 03:53	
Acetone	ug/L	ND	100	7.6	03/24/23 03:53	
Acrolein	ug/L	ND	50.0	27.1	03/24/23 03:53	
Acrylonitrile	ug/L	ND	100	5.8	03/24/23 03:53	
Benzene	ug/L	ND	5.0	0.86	03/24/23 03:53	
Bromobenzene	ug/L	ND	5.0	0.75	03/24/23 03:53	
Bromochloromethane	ug/L	ND	5.0	1.2	03/24/23 03:53	
Bromodichloromethane	ug/L	ND	5.0	0.70	03/24/23 03:53	
Bromoform	ug/L	ND	5.0	1.0	03/24/23 03:53	
Bromomethane	ug/L	ND	5.0	0.56	03/24/23 03:53	
Carbon disulfide	ug/L	ND	10.0	0.97	03/24/23 03:53	
Carbon tetrachloride	ug/L	ND	5.0	0.76	03/24/23 03:53	
Chlorobenzene	ug/L	ND	5.0	0.90	03/24/23 03:53	
Chloroethane	ug/L	ND	5.0	1.3	03/24/23 03:53	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50339745

Date: 03/28/2023 12:14 PM

METHOD BLANK: 3324775 Matrix: Water

Associated Lab Samples: 50339745004, 50339745005, 50339745006

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Chloroform	ug/L	ND	5.0	0.84	03/24/23 03:53	
Chloromethane	ug/L	ND	5.0	1.4	03/24/23 03:53	
cis-1,2-Dichloroethene	ug/L	ND	5.0	0.91	03/24/23 03:53	
cis-1,3-Dichloropropene	ug/L	ND	5.0	0.67	03/24/23 03:53	
Dibromochloromethane	ug/L	ND	5.0	0.80	03/24/23 03:53	
Dibromomethane	ug/L	ND	5.0	1.0	03/24/23 03:53	
Dichlorodifluoromethane	ug/L	ND	5.0	2.4	03/24/23 03:53	
Ethyl methacrylate	ug/L	ND	100	0.89	03/24/23 03:53	
Ethylbenzene	ug/L	ND	5.0	0.72	03/24/23 03:53	
Hexachloro-1,3-butadiene	ug/L	ND	5.0	1.1	03/24/23 03:53	
lodomethane	ug/L	ND	10.0	0.67	03/24/23 03:53	
Isopropylbenzene (Cumene)	ug/L	ND	5.0	0.75	03/24/23 03:53	
Methyl-tert-butyl ether	ug/L	ND	4.0	0.72	03/24/23 03:53	
Methylene Chloride	ug/L	ND	5.0	3.9	03/24/23 03:53	
n-Butylbenzene	ug/L	ND	5.0	0.97	03/24/23 03:53	
n-Hexane	ug/L	ND	5.0	0.74	03/24/23 03:53	
n-Propylbenzene	ug/L	ND	5.0	0.87	03/24/23 03:53	
Naphthalene	ug/L	ND	1.2	0.98	03/24/23 03:53	
p-Isopropyltoluene	ug/L	ND	5.0	0.90	03/24/23 03:53	
sec-Butylbenzene	ug/L	ND	5.0	0.87	03/24/23 03:53	
Styrene	ug/L	ND	5.0	0.85	03/24/23 03:53	
tert-Butylbenzene	ug/L	ND	5.0	1.0	03/24/23 03:53	
Tetrachloroethene	ug/L	ND	5.0	0.87	03/24/23 03:53	
Toluene	ug/L	ND	5.0	0.88	03/24/23 03:53	
trans-1,2-Dichloroethene	ug/L	ND	5.0	0.93	03/24/23 03:53	
trans-1,3-Dichloropropene	ug/L	ND	5.0	0.82	03/24/23 03:53	
trans-1,4-Dichloro-2-butene	ug/L	ND	100	1.0	03/24/23 03:53	
Trichloroethene	ug/L	ND	5.0	0.97	03/24/23 03:53	
Trichlorofluoromethane	ug/L	ND	5.0	1.0	03/24/23 03:53	
Vinyl acetate	ug/L	ND	50.0	3.0	03/24/23 03:53	
Vinyl chloride	ug/L	ND	2.0	1.5	03/24/23 03:53	
Xylene (Total)	ug/L	ND	10.0	0.77	03/24/23 03:53	
4-Bromofluorobenzene (S)	%.	106	79-124		03/24/23 03:53	
Dibromofluoromethane (S)	%.	107	82-128		03/24/23 03:53	
Toluene-d8 (S)	%.	95	73-122		03/24/23 03:53	

LABORATORY CONTROL SAMPLE:	3324776					
_		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	50	51.5	103	77-125	
1,1,1-Trichloroethane	ug/L	50	47.3	95	69-125	
1,1,2,2-Tetrachloroethane	ug/L	50	48.4	97	72-123	
1,1,2-Trichloroethane	ug/L	50	51.8	104	73-124	
1,1-Dichloroethane	ug/L	50	45.1	90	71-124	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50339745

Date: 03/28/2023 12:14 PM

LABORATORY CONTROL SAMPLE:	3324776					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifier
I,1-Dichloroethene	ug/L	50	47.8	96	63-138	
1,1-Dichloropropene	ug/L	50	51.2	102	80-142	
1,2,3-Trichlorobenzene	ug/L	50	49.5	99	67-134	
1,2,3-Trichloropropane	ug/L	50	48.9	98	75-122	
I,2,4-Trichlorobenzene	ug/L	50	47.0	94	68-132	
,2,4-Trimethylbenzene	ug/L	50	51.3	103	71-121	
,2-Dibromoethane (EDB)	ug/L	50	53.6	107	75-123	
,2-Dichlorobenzene	ug/L	50	47.1	94	76-118	
,2-Dichloroethane	ug/L	50	46.3	93	68-126	
1,2-Dichloropropane	ug/L	50	51.3	103	73-127	
,3,5-Trimethylbenzene	ug/L	50	48.1	96	72-120	
,3-Dichlorobenzene	ug/L	50	46.7	93	75-119	
,3-Dichloropropane	ug/L	50	51.2	102	77-125	
I,4-Dichlorobenzene	ug/L	50	46.3	93	74-118	
-Methylnaphthalene	ug/L	50	55.1	110	51-164	
2,2-Dichloropropane	ug/L	50	45.9	92	52-137	
2-Butanone (MEK)	ug/L	250	238	95	57-130	
2-Chlorotoluene	ug/L	50	48.2	96	69-123	
2-Hexanone	ug/L	250	241	96	57-130	
2-Methylnaphthalene	ug/L	50	56.1	112	57-159	
I-Chlorotoluene	ug/L	50	45.8	92	74-122	
1-Methyl-2-pentanone (MIBK)	ug/L	250	244	98	58-134	
Acetone	ug/L	250	236	95	41-133	
Acrolein	ug/L	1000	694	69	43-124	
Acrylonitrile	ug/L	250	229	92	66-131	
Benzene	ug/L	50	51.3	103	76-121	
Bromobenzene	ug/L	50	48.2	96	67-127	
Bromochloromethane	ug/L	50	45.7	91	65-126	
Bromodichloromethane	ug/L	50	49.2	98	72-125	
Bromoform	ug/L	50	48.6	97	57-134	
Bromomethane	ug/L	50	42.1	84	10-187	
Carbon disulfide	ug/L	50	43.8	88	59-125	
Carbon tetrachloride	ug/L	50	48.8	98	71-134	
Chlorobenzene	ug/L	50	48.5	97	74-119	
Chloroethane	ug/L	50	36.7	73	49-152	
Chloroform	ug/L	50	45.4	91	68-123	
Chloromethane	ug/L	50	37.2	74	33-133	
cis-1,2-Dichloroethene	ug/L	50	47.7	95	73-122	
cis-1,3-Dichloropropene	ug/L	50	53.3	107	69-128	
Dibromochloromethane	ug/L	50	50.7	101	69-127	
Dibromomethane	ug/L	50	46.4	93	74-126	
Dichlorodifluoromethane	ug/L	50	36.7	73	19-136	
Ethyl methacrylate	ug/L	50	51.3J	103	65-127	
Ethylbenzene	ug/L	50	51.3	103	74-122	
Hexachloro-1,3-butadiene	ug/L	50	47.1	94	65-140	
odomethane	ug/L	50	49.1	98	10-181	
sopropylbenzene (Cumene)	ug/L	50	48.8	98	75-124	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50339745

Date: 03/28/2023 12:14 PM

ABORATORY CONTROL SAMPLE:	3324776					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
ethyl-tert-butyl ether	ug/L	50	52.8	106	71-125	
ethylene Chloride	ug/L	50	35.5	71	71-125	
utylbenzene	ug/L	50	46.0	92	68-124	
exane	ug/L	50	53.7	107	60-132	
ropylbenzene	ug/L	50	48.8	98	75-122	
phthalene	ug/L	50	53.1	106	69-128	
sopropyltoluene	ug/L	50	46.9	94	73-125	
-Butylbenzene	ug/L	50	48.2	96	76-125	
ene	ug/L	50	48.3	97	74-126	
Butylbenzene	ug/L	50	47.2	94	69-123	
achloroethene	ug/L	50	49.5	99	74-129	
ene	ug/L	50	49.0	98	70-118	
s-1,2-Dichloroethene	ug/L	50	47.2	94	69-124	
s-1,3-Dichloropropene	ug/L	50	51.0	102	66-125	
s-1,4-Dichloro-2-butene	ug/L	50	46.2J	92	43-155	
hloroethene	ug/L	50	51.6	103	73-125	
nlorofluoromethane	ug/L	50	37.2	74	56-139	
yl acetate	ug/L	200	165	82	46-101	
yl chloride	ug/L	50	39.7	79	46-134	
ene (Total)	ug/L	100	101	101	71-123	
omofluorobenzene (S)	%.			101	79-124	
omofluoromethane (S)	%.			89	82-128	
iene-d8 (S)	%.			99	73-122	

MATRIX SPIKE & MATRIX SP	PIKE DUPLIC	CATE: 3324	777		3324778							
			MS	MSD								
	5	0339953001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1,1,1,2-Tetrachloroethane	ug/L	ND	50	50	58.8	58.8	118	118	64-142	0	20	
1,1,1-Trichloroethane	ug/L	ND	50	50	55.0	53.7	110	107	60-143	2	20	
1,1,2,2-Tetrachloroethane	ug/L	ND	50	50	58.1	58.1	116	116	64-135	0	20	
1,1,2-Trichloroethane	ug/L	ND	50	50	61.0	60.9	122	122	66-137	0	20	
1,1-Dichloroethane	ug/L	ND	50	50	53.9	52.6	108	105	62-144	2	20	
1,1-Dichloroethene	ug/L	ND	50	50	53.1	52.5	106	105	55-158	1	20	
1,1-Dichloropropene	ug/L	ND	50	50	59.4	58.4	119	117	65-164	2	20	
1,2,3-Trichlorobenzene	ug/L	ND	50	50	50.9	51.9	102	104	35-149	2	20	
1,2,3-Trichloropropane	ug/L	ND	50	50	56.9	56.9	114	114	66-135	0	20	
1,2,4-Trichlorobenzene	ug/L	ND	50	50	46.1	46.6	92	93	27-149	1	20	
1,2,4-Trimethylbenzene	ug/L	ND	50	50	50.6	51.2	98	100	41-140	1	20	
1,2-Dibromoethane (EDB)	ug/L	ND	50	50	61.7	62.3	123	125	68-136	1	20	
1,2-Dichlorobenzene	ug/L	ND	50	50	51.0	50.9	102	102	47-140	0	20	
1,2-Dichloroethane	ug/L	ND	50	50	55.7	53.9	111	108	61-144	3	20	
1,2-Dichloropropane	ug/L	ND	50	50	60.4	59.8	121	120	67-141	1	20	
1,3,5-Trimethylbenzene	ug/L	ND	50	50	50.2	50.3	100	101	40-141	0	20	
1,3-Dichlorobenzene	ug/L	ND	50	50	48.8	49.0	98	98	39-142	0	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50339745

Date: 03/28/2023 12:14 PM

MATRIX SPIKE & MATRIX SI	PIKE DUPLIC	CATE: 3324			3324778							
			MS	MSD								
	5	0339953001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qu
1,3-Dichloropropane	ug/L	ND	50	50	59.0	58.7	118	117	67-141	1	20	
1,4-Dichlorobenzene	ug/L	ND	50	50	48.6	48.4	97	97	39-140	0	20	
1-Methylnaphthalene	ug/L	ND	50	50	ND	65.5	-10	121	31-172		20	M1
2,2-Dichloropropane	ug/L	ND	50	50	48.1	47.0	96	94	32-144	2	20	
2-Butanone (MEK)	ug/L	ND	250	250	301	294	120	118	49-149	2	20	
2-Chlorotoluene	ug/L	ND	50	50	50.3	50.0	101	100	37-144	1	20	
2-Hexanone	ug/L	ND	250	250	287	286	112	112	48-147	0	20	
2-Methylnaphthalene	ug/L	ND	50	50	55.8	62.9	102	116	39-163	12	20	
I-Chlorotoluene	ug/L	ND	50	50	48.0	48.6	96	97	34-148	1	20	
I-Methyl-2-pentanone MIBK)	ug/L	ND	250	250	308	308	123	123	50-152	0	20	
Acetone	ug/L	ND	250	250	302	306	121	122	23-157	1	20	
Acrolein	ug/L	ND	1000	1000	869	862	87	86	25-137	1	20	
Acrylonitrile	ug/L	ND	250	250	271	270	108	108	56-149	1	20	
Benzene	ug/L	64.1	50	50	111	109	93	89	68-139	2	20	
Bromobenzene	ug/L	ND	50	50	53.3	53.7	107	107	49-142	1	20	
Bromochloromethane	ug/L	ND	50	50	52.8	51.2	106	102	58-143	3	20	
Bromodichloromethane	ug/L	ND	50	50	59.7	59.6	119	119	65-139	0	20	
Bromoform	ug/L	ND	50	50	55.9	56.2	112	112	51-139	1	20	
Bromomethane	ug/L	ND	50	50	55.4	57.5	111	115	10-189	4	20	
Carbon disulfide	ug/L	ND	50	50	48.6	47.5	97	95	45-143	2	20	
Carbon tetrachloride	ug/L	ND	50	50	55.0	54.2	110	108	61-153	1		
Chlorobenzene	ug/L	ND	50	50	53.1	53.1	106	106	57-137	0	20	
Chloroethane	ug/L	ND	50	50	49.7	47.9	99	96	41-183	4	20	
Chloroform	ug/L	ND	50	50	55.0	53.4	110	107	61-138	3		
Chloromethane	ug/L	ND	50	50	51.9	51.6	104	103	25-150	1	20	
cis-1,2-Dichloroethene	ug/L	ND	50	50	53.1	50.9	106	102	58-142	4		
sis-1,3-Dichloropropene	ug/L	ND	50	50	61.5	60.4	123	121	53-140	2		
Dibromochloromethane	ug/L	ND	50	50	59.0	59.8	118	120	61-139	1	20	
Dibromomethane	ug/L	ND	50	50	55.1	54.4	110	109	69-138	1	20	
Dichlorodifluoromethane	ug/L	ND	50	50	44.6	43.8	89	88	10-150	2		
Ethyl methacrylate	ug/L	ND	50	50	62.5J	63.2J	125	126	57-141	_	20	
Ethylbenzene	ug/L	ND	50	50	54.4	54.9	107	108	54-141	1	20	
Hexachloro-1,3-butadiene	ug/L	ND	50	50	46.9	47.2	94	94	10-173	1	20	
odomethane	ug/L	ND	50	50	64.9	62.3	130	125	10-184	4		
sopropylbenzene Cumene)	ug/L	12.7	50	50	63.7	64.6	102	104	48-145	1	20	
Methyl-tert-butyl ether	ug/L	ND	50	50	62.0	61.6	124	123	62-143	1	20	
Methylene Chloride	ug/L	ND	50	50	36.4	39.9	73	80	59-141	9		
-Butylbenzene	ug/L	ND	50	50	50.0	49.8	96	95	19-150	0		
n-Hexane	ug/L	24.5	50	50	77.8	77.4	107	106	44-145	0		
n-Propylbenzene	ug/L	23.8	50	50	71.5	72.1	95	97	36-150	1	20	
Naphthalene	ug/L	ND	50	50	54.6	56.0	108	111	56-136	3		
o-Isopropyltoluene	ug/L	ND	50	50	49.1	49.7	98	99	28-152	1	20	
sec-Butylbenzene	ug/L	ND	50	50	53.3	53.7	103	104	36-151	1	20	
Styrene	ug/L	ND	50	50	51.8	52.2	104	104	51-146	1		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50339745

Date: 03/28/2023 12:14 PM

MATRIX SPIKE & MATRIX SP	IKE DUPL	LICATE: 3324			3324778							
			MS	MSD								
		50339953001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
tert-Butylbenzene	ug/L	ND	50	50	51.1	57.3	100	113	42-142	11	20	
Tetrachloroethene	ug/L	ND	50	50	54.6	53.6	109	107	50-149	2	20	
Toluene	ug/L	ND	50	50	57.0	57.0	106	106	59-134	0	20	
trans-1,2-Dichloroethene	ug/L	ND	50	50	50.9	50.4	102	101	57-141	1	20	
trans-1,3-Dichloropropene	ug/L	ND	50	50	59.3	59.8	119	120	51-136	1	20	
trans-1,4-Dichloro-2-butene	ug/L	ND	50	50	55J	50.6J	110	101	26-157		20	
Trichloroethene	ug/L	ND	50	50	56.7	57.7	113	115	55-147	2	20	
Trichlorofluoromethane	ug/L	ND	50	50	50.1	48.8	100	98	55-160	3	20	
Vinyl acetate	ug/L	ND	200	200	177	174	89	87	24-109	2	20	
Vinyl chloride	ug/L	ND	50	50	49.3	49.1	99	98	36-154	0	20	
Xylene (Total)	ug/L	12.4	150	150	166	166	103	103	50-143	0	20	
4-Bromofluorobenzene (S)	%.						101	104	79-124			
Dibromofluoromethane (S)	%.						90	90	82-128			
Toluene-d8 (S)	%.						100	102	73-122			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: GE Indy
Pace Project No.: 50339745

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 03/28/2023 12:14 PM

D4 Sample was diluted due to the presence of high levels of target analytes.

E Analyte concentration exceeded the calibration range. The reported result is estimated.

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: GE Indy
Pace Project No.: 50339745

Date: 03/28/2023 12:14 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
50339745001	MW-323-031523	EPA 5030/8260	724400		
50339745002	MW-251-031523	EPA 5030/8260	724400		
50339745003	MW-41-031523	EPA 5030/8260	724400		
50339745004	MW-131-031523	EPA 5030/8260	724540		
50339745005	MW-241-031523	EPA 5030/8260	724540		
50339745006	Trip Blank-031523	EPA 5030/8260	724540		

Pace Analytical www.pacelabs.com

Chase Forman

Required Client Information:

CHAIN-OF-CUSTODY / Analytical Request Do

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must Submitting a sample via this chain of custody constitutes acknowledgment and acceptance of the Pace Terms and Conditions found at https://info.pacel

Invoice Information:

Attention:

Required Project Information:

Chase Forman

Report To:

WO#:50339745

		111
шш		

50339745

DATE Signed:

Section A

Company:

Address: 8805 Governor's Hill Drive Suite 205 Copy To: Company Name: Cincinnati, OH 45249 Address **Regulatory Agency** chase.forman@ramboll.com Purchase Order #: Pace Quote Phone: (740)403-1387 Project Name: Pace Project Manager: heather.patterson@pacelabs.com State / Location GE Indy Requested Due Date: Project #: Pace Profile #: 9761-8 IN Requested Analysis Filtered (Y/N) codes to le Preservatives COLLECTED SAMPLE TEMP AT COLLECTION Drinking Water Water (G=GRAB valid Waste Water Residual Chlorine (Y/N) Product SAMPLE ID Soil/Solid þ START END 6010 Diss. Fe (FF) OL One Character per box. Wipe MATRIX CODE 300.0 Nitrate 353.2 (A-Z, 0-9/, -) TOC 5310 Other Sample lds must be unique SAMPLET Tissue TEM NaOH # OF HC DATE 3 0/1 3 002 2 007 004 9 UUX 006 10 11 ADDITIONAL COMMENTS RELINQUISHED BY / AFFILIATION DATE ACCEPTED BY / AFFILIATION SAMPLE CONDITIONS 3-15-23 3/8/33 1600 Nitrate 48 hour hold time SAMPLER NAME AND SIGNATURE O PRINT Name of SAMPLER:

SIGNATURE of SAMPLER:

Pace

SAMPLE CONDITION UPON RECEIPT FORM

Date/Time and Initials of person examining contents	:3/15	123	16:43 I H				
1. Courier: □ FED EX □ UPS ☑ CLIENT □ PA	CE 🗆 U	ISPS 🗆	OTHER5. Packing Material:	Bubble Wrap			
2. Custody Seal on Cooler/Box Present: Yes	□ No			□ None	Other	Plasti	2 bas
(If yes)Seals Intact: Yes \square No (leave blank	if no seals v	were prese	ent)				
3. Thermometer: 1 2 3 4 5 6 A BCD E F	L.		6. Ice Type: ☑ Wet	☐ Blue ☐ None			
4. Cooler Temperature(s): 33/3.2			7. If temp. is over 6°C or				□ No
(Initial/Corrected) RECORD TEMPS OF ALL COOLERS RECE			w to add more) Cooler tem written out in the comments section below.	np should be above free	zing to 6°C		
	Yes	No		建设设施的	Yes	No	N/A
USDA Regulated Soils? (HI, ID, NY, WA, OR,CA, NM, TX, OK, AR, LA, TN, AL, MS, NC, SC, GA, FL, or Puerto Rico)			All containers needing acid/base preservation CHECKED?: Exceptions: VOA, coliform, LLHg any container with a septum cap or preserved w	, O&G, RAD CHEM, and			
Short Hold Time Analysis (48 hours or less)? Analysis:			HNO3 (<2) H2SO4 (<2) NaOH (>10) NaOH/2 Any non-conformance to pH recommendations will be count form				V
Time 5035A TC placed in Freezer or Short Holds To Lab	Time:		Residual Chlorine Check (SVOC 625 Pest/PCE	3 608)	Present	Absent	N/A
Rush TAT Requested (4 days or less):		\checkmark	Residual Chlorine Check (Total/Amenable/Free	e Cyanide)			//
Custody Signatures Present?	$\sqrt{}$		Headspace Wisconsin Sulfide?	1, 1			
Containers Intact?:			Headspace in VOA Vials (>6mm): See Containter Count form for details		Present	Absept	No VOA Vials Sent
Sample Label (IDs/Dates/Times) Match COC?: Except TCs, which only require sample ID			Trip Blank Present?		1/		
Extra labels on Terracore Vials? (soils only)			Trip Blank Custody Seals?:		/		
COMMENTS:							
			2.				

COC PAGE ____ of ___

Sample Container Count

** Place a RED dot on containers

that are out of conformance **

		MeOH (only) SBS		٧	IALS					AMB	ER G	LASS						Р	LAST	IC					ОТН	HER			Sulfuric Yellow	Sodium Hydroxide Green	Sodium Hydroxide/ ZnAc Black
COC Line Item	WGFU	DI R	Heed Meest	VOA VIAL HS (>6mm)	VG9U	DG9N	VG9T	AGOU	AG1H	AG10	AG2U	AG3S	AG3SF	AG3C	BP1U	BP1N	BP2U	врзи	BP3N	BP3F	BP3S	BP3B	BP3Z	сезн	CG3F	Syringe Kit	Matrix	HNO3	H2SO4 <2	NaOH >10	NaOH/Zn Ac >9
1			3				1	-																			7				
2		_	-	ļ	_																						1				
3			11																							_	H				
4				-											-											_	 4				
5																											1				
6			A																								1				
7																															
-8																															
9																															
10															,																
11				,																											
12																															

Container Codes

	Glas	SS				P	lastic
DG9H	40mL HCl amber voa vial	BG1T	1L Na Thiosulfate clear glass	BP1B	1L NaOH plastic	BP4U	125mL unpreserved plastic
DG9P	40mL TSP amber vial	BG1U	1L unpreserved glass	BP1N	1L HNO3 plastic	BP4N	125mL HNO3 plastic
DG9S	40mL H2SO4 amber vial	BG3H	250mL HCI Clear Glass	BP1S	1L H2SO4 plastic	BP4S	125mL H2SO4 plastic
DG9T	40mL Na Thio amber vial	BG3U	250mL Unpres Clear Glass	BP1U	1L unpreserved plastic		Miscellaneous
DG9U	40mL unpreserved amber vial	AG0U	100mL unpres amber glass	BP1Z	1L NaOH, Zn, Ac		Miscellaneous
VG9H	40mL HCl clear vial	AG1H	1L HCl amber glass	BP2N	500mL HNO3 plastic	Syring	e Kit LL Cr+6 sampling kit
VG9T	40mL Na Thio. clear vial	AG1S	1L H2SO4 amber glass	BP2C	500mL NaOH plastic	ZPLC	Ziploc Bag
VG9U	40mL unpreserved clear vial	AG1T	1L Na Thiosulfate amber glass	BP2S	500mL H2SO4 plastic	R	Terracore Kit
I	40mL w/hexane wipe vial	AG1U	1liter unpres amber glass	BP2U	500mL unpreserved plastic	SP5T	120mL Coliform Sodium Thiosulfate
WGKU	8oz unpreserved clear jar	AG2N	500mL HNO3 amber glass	BP2Z	500mL NaOH, Zn Ac	GN	General Container
WGFU	4oz clear soil jar	AG2S	500mL H2SO4 amber glass	BP3B	250mL NaOH plastic	U	Summa Can (air sample)
JGFU	4oz unpreserved amber wide	AG2U	500mL unpres amber glass	BP3N	250mL HNO3 plastic	WT	Water
CG3H	250mL clear glass HCl	AG3S	250mL H2SO4 amber glass	BP3F	250mL HNO3 plastic-field filtered	SL	Solid Solid
CG3F	250mL clear glass HCl, Field Filter	AG3SF	250mL H2SO4 amb glass -field filtered	BP3U	250mL unpreserved plastic	OL:	Oil
BG1H	1L HCl clear glass	AG3U	250mL unpres amber glass	BP3S	250mL H2SO4 plastic	NAL	Non-aqueous liquid
BG1S	1L H2SO4 clear glass	AG3C	250mL NaOH amber glass	BP3Z	250mL NaOH, ZnAc plastic	WP	Wipe

APPENDIX C-2 APRIL 2023 GROUNDWATER SAMPLING EVENT

May 24, 2023

Chase Forman Ramboll 8805 Governor's Hill Drive Suite 205 Cincinnati, OH 45249

RE: Project: GE Indy

Pace Project No.: 50343061

Dear Chase Forman:

Enclosed are the analytical results for sample(s) received by the laboratory on April 25, 2023. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

- Pace Analytical Gulf Coast
- Pace Analytical Services Indianapolis

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Heather Patterson heather.patterson@pacelabs.com

Heath Pathson

(317)228-3146 Project Manager

Enclosures

cc: Matt Starrett, Ramboll Dana Williams, Ramboll

CERTIFICATIONS

Project: GE Indy
Pace Project No.: 50343061

Pace Analytical Services Indianapolis

7726 Moller Road, Indianapolis, IN 46268

Illinois Accreditation #: 200074

Indiana Drinking Water Laboratory #: C-49-06

Kansas/TNI Certification #: E-10177

Kentucky UST Agency Interest #: 80226 Kentucky WW Laboratory ID #: 98019

Michigan Drinking Water Laboratory #9050

Ohio VAP Certified Laboratory #: CL0065 Oklahoma Laboratory #: 9204

Texas Certification #: T104704355

Wisconsin Laboratory #: 999788130

USDA Foreign Soil Permit #: 525-23-13-23119 USDA Compliance Agreement #: IN-SL-22-001

Pace Analytical Gulf Coast

7979 Innovation Park Drive, Baton Rouge, LA 70820

Arkansas Certification #: 88-0655 DoD ELAP Certification #: 6429-01 Florida Certification #: E87854 Illinois Certification #: 004585 Kansas Certification #: E-10354

Louisiana/LELAP Certification #: 01955 North Carolina Certification #: 618 North Dakota Certification #: R-195 Oklahoma Certification #: 2019-101 South Carolina Certification #: 73006001 Texas Certification #: T104704178-19-11 USDA Soil Permit # P330-19-00209 Virginia Certification #: 460215

Washington Certification #: C929

SAMPLE SUMMARY

Project: GE Indy
Pace Project No.: 50343061

Lab ID	Sample ID	Matrix	Date Collected	Date Received
50343061001	MW-425-042523	Water	04/25/23 10:50	04/25/23 15:10
50343061002	MW-331-042523	Water	04/25/23 11:00	04/25/23 15:10
50343061003	W-9-042523	Water	04/25/23 11:30	04/25/23 15:10
50343061004	MW-251-042523	Water	04/25/23 11:50	04/25/23 15:10
50343061005	AD-100-042523	Water	04/25/23 12:00	04/25/23 15:10
50343061006	W-10-042523	Water	04/25/23 12:05	04/25/23 15:10
50343061007	W-8-042523	Water	04/25/23 12:15	04/25/23 15:10
50343061008	MW-41-042523	Water	04/25/23 12:30	04/25/23 15:10
50343061009	MW-241-042523	Water	04/25/23 12:45	04/25/23 15:10
50343061010	Trip Blank-042523	Water	04/25/23 08:00	04/25/23 15:10

SAMPLE ANALYTE COUNT

Project: GE Indy
Pace Project No.: 50343061

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
50343061001	MW-425-042523	EPA 300.0	ADM	1	PASI-I
		AM20GAX	SAG, SMR	7	GCLA
		EPA 6010	MTM	1	PASI-I
		EPA 5030/8260	TKG	75	PASI-I
		EPA 353.2	ZM	2	PASI-I
		SM 5310C	ATS	1	PASI-I
50343061002	MW-331-042523	EPA 5030/8260	TKG	75	PASI-I
50343061003	W-9-042523	AM20GAX	SMR	7	GCLA
		EPA 5030/8260	TKG	75	PASI-I
50343061004	MW-251-042523	EPA 5030/8260	TKG	75	PASI-I
50343061005	AD-100-042523	EPA 5030/8260	TKG	75	PASI-I
50343061006	W-10-042523	EPA 5030/8260	TKG	75	PASI-I
50343061007	W-8-042523	AM20GAX	SMR	7	GCLA
		EPA 5030/8260	TKG	75	PASI-I
50343061008	MW-41-042523	EPA 5030/8260	TKG	75	PASI-I
50343061009	MW-241-042523	EPA 5030/8260	TKG	75	PASI-I
50343061010	Trip Blank-042523	EPA 5030/8260	TKG	75	PASI-I

GCLA = Pace Analytical Gulf Coast

PASI-I = Pace Analytical Services - Indianapolis

SUMMARY OF DETECTION

Project: GE Indy
Pace Project No.: 50343061

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
50343061001	MW-425-042523					
EPA 300.0	Sulfate	17300	ug/L	250	05/10/23 10:16	
AM20GAX	Methane	840	ug/L	5.0	05/08/23 15:43	
AM20GAX	Ethane	7.3	ug/L	1.0	05/08/23 15:43	
AM20GAX	Ethene	1100	ug/L	1.0	05/17/23 17:27	H1
EPA 6010	Iron, Dissolved	5740	ug/L	100	05/03/23 18:17	
EPA 5030/8260	Chloroethane	131	ug/L	5.0	05/02/23 23:53	
EPA 5030/8260	1,1-Dichloroethane	17.4	ug/L	5.0	05/02/23 23:53	
EPA 5030/8260	cis-1,2-Dichloroethene	87.7	ug/L	5.0	05/02/23 23:53	
EPA 5030/8260	Vinyl chloride	242	ug/L	2.0	05/02/23 23:53	
SM 5310C	Total Organic Carbon	12300	ug/L	4000	05/06/23 06:05	
50343061002	MW-331-042523					
EPA 5030/8260	Chloroethane	56.4	ug/L	5.0	05/03/23 07:11	
EPA 5030/8260	1,1-Dichloroethane	5.4	ug/L	5.0	05/03/23 07:11	
EPA 5030/8260	cis-1,2-Dichloroethene	30.7	ug/L	5.0	05/03/23 07:11	
EPA 5030/8260	Vinyl chloride	379	ug/L	20.0	05/03/23 12:27	
50343061003	W-9-042523					
AM20GAX	Methane	4300	ug/L	5.0	05/08/23 16:09	
AM20GAX	Ethane	53	ug/L	1.0	05/08/23 16:09	
AM20GAX	Ethene	83	ug/L	1.0	05/08/23 16:09	
EPA 5030/8260	Chloroethane	11.8	ug/L	5.0	05/03/23 00:52	
EPA 5030/8260	Vinyl chloride	2.2	ug/L	2.0	05/03/23 00:52	
50343061004	MW-251-042523					
EPA 5030/8260	Chloroethane	732	ug/L	50.0	05/03/23 01:50	
EPA 5030/8260	1,1-Dichloroethane	308	ug/L	50.0	05/03/23 01:50	
EPA 5030/8260	1,2-Dichloroethane	98.8	ug/L	50.0	05/03/23 01:50	
EPA 5030/8260	cis-1,2-Dichloroethene	17300	ug/L	500	05/03/23 02:19	
EPA 5030/8260	trans-1,2-Dichloroethene	233	ug/L	50.0	05/03/23 01:50	
EPA 5030/8260	Vinyl chloride	1770	ug/L	20.0	05/03/23 01:50	
50343061005	AD-100-042523					
EPA 5030/8260	Chloroethane	150	ug/L	5.0	05/03/23 02:48	
EPA 5030/8260	1,1-Dichloroethane	17.1	ug/L	5.0	05/03/23 02:48	
EPA 5030/8260	cis-1,2-Dichloroethene	99.6	ug/L	5.0	05/03/23 02:48	
EPA 5030/8260	Vinyl chloride	279	ug/L	2.0	05/03/23 02:48	
50343061007	W-8-042523					
AM20GAX	Methane	12	ug/L	5.0	05/08/23 16:22	

Project: GE Indy
Pace Project No.: 50343061

Date: 05/24/2023 02:58 PM

Sample: MW-425-042523	Lab ID: 50	343061001	Collected	l: 04/25/23	3 10:50	Received: 04/	25/23 15:10 N	/latrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
800.0 IC Anions 28 Days	Analytical Me	thod: EPA 3	0.00						
•	Pace Analytic	al Services	- Indianapol	is					
Sulfate	17300	ug/L	250	85.0	1		05/10/23 10:1	6 14808-79-8	
Indicator Gases Water LHC	Analytical Me	thod: AM20	GAX						
	Pace Analytic	al Gulf Coas	st						
Methane	840	ug/L	5.0	2.0	1		05/08/23 15:4	3 74-82-8	
Ethane	7.3	ug/L	1.0	0.17	1		05/08/23 15:4	3 74-84-0	
Ethene	1100	ug/L	1.0	0.24	1		05/17/23 17:2	7 74-85-1	H1
n-Propane		ug/L	1.0	0.29	1		05/08/23 15:4	3 74-98-6	
Propylene		ug/L	1.0	0.31	1		05/08/23 15:4	3 115-07-1	
Isobutane		ug/L	2.0	0.065	1		05/08/23 15:4		
n-Butane		ug/L	2.0	0.54	1		05/08/23 15:4		
6010 MET ICP, Dissolved	Analytical Me	thod: EPA 6	010 Prepar	ation Meth	od: EPA	3010			
,010 III21 101, D.0001100	Pace Analytic								
Iron, Dissolved	-	ug/L	100	48.8	1	05/03/23 17:29	05/03/23 18:1	7 7439-89-6	
3260 MSV Indiana	Analytical Me	thod: EPA 5	030/8260						
	Pace Analytic			is					
Acetone	-	ug/L	100	3.9	1		05/02/23 23:5	3 67-64-1	
Acrolein		ug/L	50.0	8.9	1		05/02/23 23:5		
Acrylonitrile		ug/L	100	1.5	1		05/02/23 23:5		
Benzene		-	5.0	0.33	1		05/02/23 23:5		
Bromobenzene		ug/L			1				
		ug/L	5.0	0.67			05/02/23 23:5		
Bromochloromethane		ug/L	5.0	0.35	1		05/02/23 23:5		
Bromodichloromethane		ug/L	5.0	0.55	1		05/02/23 23:5		
Bromoform		ug/L	5.0	0.80	1		05/02/23 23:5		
Bromomethane	ND	ug/L	5.0	2.4	1		05/02/23 23:5		
2-Butanone (MEK)	ND	ug/L	25.0	1.4	1		05/02/23 23:5	3 78-93-3	
n-Butylbenzene	ND	ug/L	5.0	0.35	1		05/02/23 23:5	3 104-51-8	
sec-Butylbenzene	ND	ug/L	5.0	0.30	1		05/02/23 23:5	3 135-98-8	
ert-Butylbenzene	ND	ug/L	5.0	0.33	1		05/02/23 23:5	3 98-06-6	
Carbon disulfide	ND	ug/L	10.0	0.33	1		05/02/23 23:5	3 75-15-0	
Carbon tetrachloride	ND	ug/L	5.0	0.74	1		05/02/23 23:5	3 56-23-5	
Chlorobenzene	ND	ug/L	5.0	0.31	1		05/02/23 23:5	3 108-90-7	
Chloroethane		ug/L	5.0	0.77	1		05/02/23 23:5	3 75-00-3	
Chloroform		ug/L	5.0	0.89	1		05/02/23 23:5		
Chloromethane		ug/L	5.0	0.63	1		05/02/23 23:5		
2-Chlorotoluene		ug/L	5.0	0.33	1		05/02/23 23:5		
4-Chlorotoluene		ug/L	5.0	0.36	1		05/02/23 23:5		
Dibromochloromethane		-	5.0	0.30	1		05/02/23 23:5		
		ug/L							
1,2-Dibromoethane (EDB)		ug/L	5.0	0.41	1		05/02/23 23:5		
Dibromomethane		ug/L	5.0	0.51	1		05/02/23 23:5		
1,2-Dichlorobenzene		ug/L	5.0	0.34	1		05/02/23 23:5		
1,3-Dichlorobenzene		ug/L	5.0	0.40	1		05/02/23 23:5		
1,4-Dichlorobenzene	ND	ug/L	5.0	0.35	1		05/02/23 23:5	3 106-46-7	

Project: GE Indy
Pace Project No.: 50343061

Date: 05/24/2023 02:58 PM

Sample: MW-425-042523	Lab ID:	50343061001	Collected	d: 04/25/23	3 10:50	Received: 04	1/25/23 15:10	Matrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qua
3260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	•	ytical Services		lis					
rans-1,4-Dichloro-2-butene	ND	ug/L	100	0.60	1		05/02/23 23:5	3 110-57-6	
Dichlorodifluoromethane	ND	ug/L	5.0	0.93	1		05/02/23 23:5	3 75-71-8	
1,1-Dichloroethane	17.4	ug/L	5.0	0.35	1		05/02/23 23:5	3 75-34-3	
1,2-Dichloroethane	ND	ug/L	5.0	0.35	1		05/02/23 23:5	3 107-06-2	
1,1-Dichloroethene	ND	ug/L	5.0	0.31	1		05/02/23 23:5		
cis-1,2-Dichloroethene	87.7	ug/L	5.0	0.39	1		05/02/23 23:5		
rans-1,2-Dichloroethene	ND	ug/L	5.0	0.35	1		05/02/23 23:5		
I,2-Dichloropropane	ND	ug/L	5.0	0.36	1		05/02/23 23:5		
I,3-Dichloropropane	ND	ug/L	5.0	0.27	1		05/02/23 23:5		
2,2-Dichloropropane	ND	ug/L	5.0	0.47	1		05/02/23 23:5		
,1-Dichloropropene	ND	ug/L	5.0	0.58	1		05/02/23 23:5		
cis-1,3-Dichloropropene	ND	ug/L	5.0	0.69	1			3 10061-01-5	
rans-1,3-Dichloropropene	ND	ug/L ug/L	5.0	0.68	1			3 10061-02-6	
Ethylbenzene	ND ND	ug/L	5.0	0.32	1		05/02/23 23:5		
Ethyl methacrylate	ND ND	ug/L	100	0.50	1		05/02/23 23:5		
Hexachloro-1,3-butadiene	ND ND	ug/L ug/L	5.0	0.64	1		05/02/23 23:5		
-Hexane	ND ND	-	5.0	4.2	1		05/02/23 23:5		
r-nexane R-Hexanone	ND ND	ug/L	25.0	2.1	1		05/02/23 23:5		
		ug/L			1				
odomethane	ND	ug/L	10.0	0.82	1		05/02/23 23:5		
sopropylbenzene (Cumene)	ND	ug/L	5.0	0.29			05/02/23 23:5		
o-Isopropyltoluene	ND	ug/L	5.0	0.35	1		05/02/23 23:5		
Methylene Chloride	ND	ug/L	5.0	2.8	1		05/02/23 23:5		
I-Methylnaphthalene	ND	ug/L	10.0	1.4	1		05/02/23 23:5		
2-Methylnaphthalene	ND	ug/L	10.0	1.3	1		05/02/23 23:5		
I-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	1.9	1		05/02/23 23:5		
Methyl-tert-butyl ether	ND	ug/L	4.0	0.29	1			3 1634-04-4	
Naphthalene	ND	ug/L	1.2	0.75	1		05/02/23 23:5		
n-Propylbenzene	ND	ug/L	5.0	0.33	1		05/02/23 23:5		
Styrene	ND	ug/L	5.0	0.31	1		05/02/23 23:5		
,1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.73	1		05/02/23 23:5		
,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.22	1		05/02/23 23:5		
Tetrachloroethene	ND	ug/L	5.0	0.25	1		05/02/23 23:5		
Toluene	ND	ug/L	5.0	0.30	1		05/02/23 23:5		
,2,3-Trichlorobenzene	ND	ug/L	5.0	0.41	1		05/02/23 23:5		
,2,4-Trichlorobenzene	ND	ug/L	5.0	0.40	1		05/02/23 23:5		
,1,1-Trichloroethane	ND	ug/L	5.0	0.67	1		05/02/23 23:5		
,1,2-Trichloroethane	ND	ug/L	5.0	0.36	1		05/02/23 23:5		
richloroethene	ND	ug/L	5.0	0.44	1		05/02/23 23:5		
Trichlorofluoromethane	ND	ug/L	5.0	0.43	1		05/02/23 23:5		
,2,3-Trichloropropane	ND	ug/L	5.0	0.42	1		05/02/23 23:5		
1,2,4-Trimethylbenzene	ND	ug/L	5.0	0.34	1		05/02/23 23:5	3 95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.34	1		05/02/23 23:5	3 108-67-8	
/inyl acetate	ND	ug/L	50.0	1.7	1		05/02/23 23:5	3 108-05-4	
/inyl chloride	242	ug/L	2.0	0.62	1		05/02/23 23:5	3 75-01-4	
Kylene (Total)	ND	ug/L	10.0	0.32	1		05/02/23 23:5	3 1330-20-7	

Project: GE Indy
Pace Project No.: 50343061

Date: 05/24/2023 02:58 PM

Sample: MW-425-042523	Lab ID:	50343061001	Collected	d: 04/25/2	3 10:50	Received: 04	/25/23 15:10 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Indiana	Analytical	Method: EPA 5	5030/8260						
	Pace Anal	ytical Services	- Indianapo	lis					
Surrogates									
Dibromofluoromethane (S)	101	%.	82-128		1		05/02/23 23:53	1868-53-7	
4-Bromofluorobenzene (S)	101	%.	79-124		1		05/02/23 23:53	460-00-4	
Toluene-d8 (S)	98	%.	73-122		1		05/02/23 23:53	2037-26-5	
353.2 Nitrogen, NO2/NO3 unpres	Analytical	Method: EPA 3	353.2						
	Pace Anal	ytical Services	- Indianapo	lis					
Nitrogen, NO2 plus NO3	ND	mg/L	0.10	0.011	1		04/25/23 22:57		
Nitrogen, Nitrate	ND	mg/L	0.10	0.011	1		04/25/23 22:57	14797-55-8	
5310C TOC	Analytical	Method: SM 5	310C						
	-	ytical Services		lis					
Total Organic Carbon	12300	ug/L	4000	944	4		05/06/23 06:05	7440-44-0	

Project: GE Indy
Pace Project No.: 50343061

Date: 05/24/2023 02:58 PM

Sample: MW-331-042523	Lab ID:	50343061002	Collected	d: 04/25/23	3 11:00	Received: 04	1/25/23 15:10	Matrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	•	ytical Services		lis					
Acetone	ND	ug/L	100	3.9	1		05/03/23 07:1	1 67-64-1	
Acrolein	ND	ug/L	50.0	8.9	1		05/03/23 07:1	1 107-02-8	
Acrylonitrile	ND	ug/L	100	1.5	1		05/03/23 07:1	1 107-13-1	
Benzene	ND	ug/L	5.0	0.33	1		05/03/23 07:1	1 71-43-2	
Bromobenzene	ND	ug/L	5.0	0.67	1		05/03/23 07:1		
Bromochloromethane	ND	ug/L	5.0	0.35	1		05/03/23 07:1		
Bromodichloromethane	ND	ug/L	5.0	0.55	1		05/03/23 07:1		
Bromoform	ND	ug/L	5.0	0.80	1		05/03/23 07:1		
Bromomethane	ND	ug/L	5.0	2.4	1		05/03/23 07:1		
2-Butanone (MEK)	ND	ug/L	25.0	1.4	1		05/03/23 07:1		
n-Butylbenzene	ND	ug/L	5.0	0.35	1		05/03/23 07:1		
sec-Butylbenzene	ND	ug/L	5.0	0.30	1		05/03/23 07:1		
ert-Butylbenzene	ND	ug/L	5.0	0.33	1		05/03/23 07:1		
Carbon disulfide	ND	ug/L	10.0	0.33	1		05/03/23 07:1		
Carbon tetrachloride	ND ND	ug/L ug/L	5.0	0.33	1		05/03/23 07:1		
Chlorobenzene	ND ND		5.0	0.74	1		05/03/23 07:1		
		ug/L		0.31			05/03/23 07:1		
Chloroethane Chloroform	56.4	ug/L	5.0		1				
	ND	ug/L	5.0	0.89	1		05/03/23 07:1		
Chloromethane	ND	ug/L	5.0	0.63	1		05/03/23 07:1		
2-Chlorotoluene	ND	ug/L	5.0	0.33	1		05/03/23 07:1		
4-Chlorotoluene	ND	ug/L	5.0	0.36	1		05/03/23 07:1		
Dibromochloromethane	ND	ug/L	5.0	0.70	1		05/03/23 07:1		
1,2-Dibromoethane (EDB)	ND	ug/L	5.0	0.41	1		05/03/23 07:1		
Dibromomethane	ND	ug/L	5.0	0.51	1		05/03/23 07:1		
1,2-Dichlorobenzene	ND	ug/L	5.0	0.34	1		05/03/23 07:1		
1,3-Dichlorobenzene	ND	ug/L	5.0	0.40	1		05/03/23 07:1		
1,4-Dichlorobenzene	ND	ug/L	5.0	0.35	1		05/03/23 07:1		
rans-1,4-Dichloro-2-butene	ND	ug/L	100	0.60	1		05/03/23 07:1		
Dichlorodifluoromethane	ND	ug/L	5.0	0.93	1		05/03/23 07:1		
1,1-Dichloroethane	5.4	ug/L	5.0	0.35	1		05/03/23 07:1		
1,2-Dichloroethane	ND	ug/L	5.0	0.35	1		05/03/23 07:1	1 107-06-2	
1,1-Dichloroethene	ND	ug/L	5.0	0.31	1		05/03/23 07:1		
cis-1,2-Dichloroethene	30.7	ug/L	5.0	0.39	1		05/03/23 07:1	1 156-59-2	
rans-1,2-Dichloroethene	ND	ug/L	5.0	0.35	1		05/03/23 07:1	1 156-60-5	
1,2-Dichloropropane	ND	ug/L	5.0	0.36	1		05/03/23 07:1	1 78-87-5	
1,3-Dichloropropane	ND	ug/L	5.0	0.27	1		05/03/23 07:1	1 142-28-9	
2,2-Dichloropropane	ND	ug/L	5.0	0.47	1		05/03/23 07:1	1 594-20-7	
1,1-Dichloropropene	ND	ug/L	5.0	0.58	1		05/03/23 07:1	1 563-58-6	
cis-1,3-Dichloropropene	ND	ug/L	5.0	0.69	1		05/03/23 07:1	1 10061-01-5	
rans-1,3-Dichloropropene	ND	ug/L	5.0	0.68	1		05/03/23 07:1	1 10061-02-6	
Ethylbenzene	ND	ug/L	5.0	0.32	1		05/03/23 07:1		
Ethyl methacrylate	ND	ug/L	100	0.50	1		05/03/23 07:1		
Hexachloro-1,3-butadiene	ND	ug/L	5.0	0.64	1		05/03/23 07:1		
n-Hexane	ND	ug/L	5.0	4.2	1		05/03/23 07:1		
2-Hexanone	ND	ug/L	25.0	2.1	1		05/03/23 07:1		

Project: GE Indy
Pace Project No.: 50343061

Date: 05/24/2023 02:58 PM

Sample: MW-331-042523	Lab ID:	50343061002	Collected	d: 04/25/2	3 11:00	Received: 04	I/25/23 15:10 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Ana	lytical Services	- Indianapo	lis					
lodomethane	ND	ug/L	10.0	0.82	1		05/03/23 07:11	74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	5.0	0.29	1		05/03/23 07:11	98-82-8	
p-Isopropyltoluene	ND	ug/L	5.0	0.35	1		05/03/23 07:11	99-87-6	
Methylene Chloride	ND	ug/L	5.0	2.8	1		05/03/23 07:11	75-09-2	
1-Methylnaphthalene	ND	ug/L	10.0	1.4	1		05/03/23 07:11	90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	1.3	1		05/03/23 07:11	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	1.9	1		05/03/23 07:11	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	4.0	0.29	1		05/03/23 07:11	1634-04-4	
Naphthalene	ND	ug/L	1.2	0.75	1		05/03/23 07:11	91-20-3	
n-Propylbenzene	ND	ug/L	5.0	0.33	1		05/03/23 07:11	103-65-1	
Styrene	ND	ug/L	5.0	0.31	1		05/03/23 07:11	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.73	1		05/03/23 07:11	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.22	1		05/03/23 07:11	79-34-5	
Tetrachloroethene	ND	ug/L	5.0	0.25	1		05/03/23 07:11		
Toluene	ND	ug/L	5.0	0.30	1		05/03/23 07:11	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	0.41	1		05/03/23 07:11	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	5.0	0.40	1		05/03/23 07:11	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	5.0	0.67	1		05/03/23 07:11	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	5.0	0.36	1		05/03/23 07:11	79-00-5	
Trichloroethene	ND	ug/L	5.0	0.44	1		05/03/23 07:11	79-01-6	
Trichlorofluoromethane	ND	ug/L	5.0	0.43	1		05/03/23 07:11		
1,2,3-Trichloropropane	ND	ug/L	5.0	0.42	1		05/03/23 07:11	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/L	5.0	0.34	1		05/03/23 07:11	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.34	1		05/03/23 07:11	108-67-8	
Vinyl acetate	ND	ug/L	50.0	1.7	1		05/03/23 07:11		
Vinyl chloride	379	ug/L	20.0	4.9	10		05/03/23 12:27		
Xylene (Total)	ND	ug/L	10.0	0.32	1		05/03/23 07:11		
Surrogates		- 3 . –			•				
Dibromofluoromethane (S)	102	%.	82-128		1		05/03/23 07:11	1868-53-7	
4-Bromofluorobenzene (S)	100	%.	79-124		1		05/03/23 07:11	460-00-4	
Toluene-d8 (S)	98	%.	73-122		1		05/03/23 07:11	2037-26-5	

Project: GE Indy
Pace Project No.: 50343061

Date: 05/24/2023 02:58 PM

Sample: W-9-042523	Lab ID:	50343061003	Collected	d: 04/25/23	3 11:30	Received: 04	4/25/23 15:10 M	latrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Indicator Gases Water LHC	Analytical	Method: AM20	GAX						
	Pace Ana	lytical Gulf Coa	st						
Methane	4300	ug/L	5.0	2.0	1		05/08/23 16:09	74-82-8	
Ethane	53	ug/L	1.0	0.17	1		05/08/23 16:09		
Ethene	83	ug/L	1.0	0.24	1		05/08/23 16:09		
n-Propane	ND	ug/L	1.0	0.29	1		05/08/23 16:09		
Propylene	ND	ug/L	1.0	0.31	1		05/08/23 16:09		
sobutane	ND	ug/L	2.0	0.065	1		05/08/23 16:09		
n-Butane	ND	ug/L	2.0	0.54	1		05/08/23 16:09		
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Ana	llytical Services	 Indianapo 	lis					
Acetone	ND	ug/L	100	3.9	1		05/03/23 00:52	2 67-64-1	
Acrolein	ND	ug/L	50.0	8.9	1		05/03/23 00:52		
Acrylonitrile	ND	ug/L	100	1.5	1		05/03/23 00:52	2 107-13-1	
Benzene	ND	ug/L	5.0	0.33	1		05/03/23 00:52		
Bromobenzene	ND	ug/L	5.0	0.67	1		05/03/23 00:52		
Bromochloromethane	ND	ug/L	5.0	0.35	1		05/03/23 00:52		
Bromodichloromethane	ND	ug/L	5.0	0.55	1		05/03/23 00:52		
Bromoform	ND	ug/L	5.0	0.80	1		05/03/23 00:52		
Bromomethane	ND	ug/L	5.0	2.4	1		05/03/23 00:52		
2-Butanone (MEK)	ND	ug/L	25.0	1.4	1		05/03/23 00:52		
n-Butylbenzene	ND	ug/L	5.0	0.35	1		05/03/23 00:52		
sec-Butylbenzene	ND	ug/L	5.0	0.30	1		05/03/23 00:52		
ert-Butylbenzene	ND	ug/L	5.0	0.33	1		05/03/23 00:52		
Carbon disulfide	ND ND	ug/L	10.0	0.33	1		05/03/23 00:52		
Carbon tetrachloride	ND ND	ug/L	5.0	0.53	1		05/03/23 00:52		
Chlorobenzene	ND ND	ug/L	5.0	0.74	1		05/03/23 00:52		
Chloroethane	11.8		5.0	0.31	1		05/03/23 00:52		
Chloroform	ND	ug/L	5.0	0.77	1		05/03/23 00:52		
Chloromethane	ND ND	ug/L	5.0	0.69	1		05/03/23 00:52		
2-Chlorotoluene		ug/L							
	ND	ug/L	5.0	0.33	1		05/03/23 00:52		
1-Chlorotoluene	ND	ug/L	5.0	0.36	1		05/03/23 00:52		
Dibromochloromethane	ND	ug/L	5.0	0.70	1		05/03/23 00:52		
I,2-Dibromoethane (EDB)	ND	ug/L	5.0	0.41	1		05/03/23 00:52		
Dibromomethane	ND	ug/L	5.0	0.51	1		05/03/23 00:52		
1,2-Dichlorobenzene	ND	ug/L	5.0	0.34	1		05/03/23 00:52		
I,3-Dichlorobenzene	ND	ug/L	5.0	0.40	1		05/03/23 00:52		
,4-Dichlorobenzene	ND	ug/L	5.0	0.35	1		05/03/23 00:52		
rans-1,4-Dichloro-2-butene	ND	ug/L	100	0.60	1		05/03/23 00:52		
Dichlorodifluoromethane	ND	ug/L	5.0	0.93	1		05/03/23 00:52		
1,1-Dichloroethane	ND	ug/L	5.0	0.35	1		05/03/23 00:52		
1,2-Dichloroethane	ND	ug/L	5.0	0.35	1		05/03/23 00:52		
1,1-Dichloroethene	ND	ug/L	5.0	0.31	1		05/03/23 00:52		
cis-1,2-Dichloroethene	ND	ug/L	5.0	0.39	1		05/03/23 00:52		
trans-1,2-Dichloroethene	ND	ug/L	5.0	0.35	1		05/03/23 00:52	2 156-60-5	
1,2-Dichloropropane	ND	ug/L	5.0	0.36	1		05/03/23 00:52	2 78-87-5	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: GE Indy
Pace Project No.: 50343061

Date: 05/24/2023 02:58 PM

Sample: W-9-042523	Lab ID:	50343061003	Collected	d: 04/25/23	3 11:30	Received: 04	1/25/23 15:10	Matrix: Water	
Doromotoro	Deculto	Lloito	Report	MDI	DE	Dranarad	Analyzad	CACNo	0
Parameters	Results —	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical M	Method: EPA 5	030/8260						
	Pace Analy	rtical Services	- Indianapo	lis					
1,3-Dichloropropane	ND	ug/L	5.0	0.27	1		05/03/23 00:	52 142-28-9	
2,2-Dichloropropane	ND	ug/L	5.0	0.47	1		05/03/23 00:	52 594-20-7	
1,1-Dichloropropene	ND	ug/L	5.0	0.58	1		05/03/23 00:	52 563-58-6	
cis-1,3-Dichloropropene	ND	ug/L	5.0	0.69	1		05/03/23 00:	52 10061-01-5	
trans-1,3-Dichloropropene	ND	ug/L	5.0	0.68	1		05/03/23 00:	52 10061-02-6	
Ethylbenzene	ND	ug/L	5.0	0.32	1		05/03/23 00:	52 100-41-4	
Ethyl methacrylate	ND	ug/L	100	0.50	1		05/03/23 00:	52 97-63-2	
Hexachloro-1,3-butadiene	ND	ug/L	5.0	0.64	1		05/03/23 00:	52 87-68-3	
n-Hexane	ND	ug/L	5.0	4.2	1		05/03/23 00:	52 110-54-3	
2-Hexanone	ND	ug/L	25.0	2.1	1		05/03/23 00:	52 591-78-6	
lodomethane	ND	ug/L	10.0	0.82	1		05/03/23 00:	52 74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	5.0	0.29	1		05/03/23 00:	52 98-82-8	
p-Isopropyltoluene	ND	ug/L	5.0	0.35	1		05/03/23 00:	52 99-87-6	
Methylene Chloride	ND	ug/L	5.0	2.8	1		05/03/23 00:	52 75-09-2	
1-Methylnaphthalene	ND	ug/L	10.0	1.4	1		05/03/23 00:	52 90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	1.3	1		05/03/23 00:	52 91-57-6	
1-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	1.9	1		05/03/23 00:	52 108-10-1	
Methyl-tert-butyl ether	ND	ug/L	4.0	0.29	1			52 1634-04-4	
Naphthalene	ND	ug/L	1.2	0.75	1		05/03/23 00:		
n-Propylbenzene	ND	ug/L	5.0	0.33	1		05/03/23 00:		
Styrene	ND	ug/L	5.0	0.31	1			52 100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.73	1			52 630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.22	1		05/03/23 00:		
Tetrachloroethene	ND	ug/L	5.0	0.25	1			52 127-18-4	
Toluene	ND	ug/L	5.0	0.30	1			52 108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	0.41	1		05/03/23 00:		
1,2,4-Trichlorobenzene	ND	ug/L	5.0	0.40	1		05/03/23 00:		
1,1,1-Trichloroethane	ND	ug/L	5.0	0.67	1		05/03/23 00:		
1,1,2-Trichloroethane	ND	ug/L	5.0	0.36	1		05/03/23 00:		
Trichloroethene	ND	ug/L	5.0	0.44	1		05/03/23 00:		
Trichlorofluoromethane	ND	ug/L	5.0	0.43	1		05/03/23 00:		
I,2,3-Trichloropropane	ND	ug/L	5.0	0.42	1		05/03/23 00:		
1,2,4-Trimethylbenzene	ND	ug/L	5.0	0.34	1		05/03/23 00:		
I,3,5-Trimethylbenzene	ND	ug/L	5.0	0.34	1			52 108-67-8	
/inyl acetate	ND	ug/L	50.0	1.7	1			52 108-05-4	
/inyl chloride	2.2	ug/L	2.0	0.62	1		05/03/23 00:		
Xylene (Total)	ND	ug/L	10.0	0.32	1			52 1330-20-7	
Surrogates	140	√y,∟	10.0	0.02	•		30,00,20 00.	02 1000 20 7	
Dibromofluoromethane (S)	103	%.	82-128		1		05/03/23 00:	52 1868-53-7	
4-Bromofluorobenzene (S)	100	%.	79-124		1			52 460-00-4	
Toluene-d8 (S)	98	%.	73-122		1			52 2037-26-5	

Project: GE Indy
Pace Project No.: 50343061

Date: 05/24/2023 02:58 PM

Sample: MW-251-042523	Lab ID:	50343061004	Collecte	d: 04/25/2	3 11:50	Received: 04	4/25/23 15:10 N	/latrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 50	030/8260						
		lytical Services -		lis					
Acetone	ND	ug/L	1000	38.6	10		05/03/23 01:5	0 67-64-1	
Acrolein	ND	ug/L	500	89.3	10		05/03/23 01:5		
Acrylonitrile	ND	ug/L	1000	15.3	10		05/03/23 01:5		
Benzene	ND	ug/L	50.0	3.3	10		05/03/23 01:5		
Bromobenzene	ND	ug/L	50.0	6.7	10		05/03/23 01:5		
Bromochloromethane	ND	ug/L	50.0	3.5	10		05/03/23 01:5		
Bromodichloromethane	ND	ug/L	50.0	5.5	10		05/03/23 01:5		
Bromoform	ND	ug/L	50.0	8.0	10		05/03/23 01:5		
Bromomethane	ND	ug/L	50.0	24.3	10		05/03/23 01:5		
2-Butanone (MEK)	ND	ug/L	250	13.8	10		05/03/23 01:5		
n-Butylbenzene	ND ND	ug/L	50.0	3.5	10		05/03/23 01:5		
sec-Butylbenzene	ND ND	ug/L ug/L	50.0	3.0	10		05/03/23 01:5		
tert-Butylbenzene	ND ND	ug/L ug/L	50.0	3.3	10		05/03/23 01:5		
Carbon disulfide	ND ND	ug/L	100	3.3	10		05/03/23 01:5		
Carbon distillide Carbon tetrachloride	ND ND	ug/L ug/L	50.0	7.4	10		05/03/23 01:5		
Chlorobenzene	ND ND	ug/L ug/L	50.0	3.1	10		05/03/23 01:5		
Chloroethane	732	ug/L ug/L	50.0	7.7	10		05/03/23 01:5		
Chloroform	ND	ug/L ug/L	50.0	8.9	10		05/03/23 01:5		
Chloromethane	ND ND	-	50.0	6.3	10		05/03/23 01:5		
		ug/L							
2-Chlorotoluene	ND	ug/L	50.0	3.3	10		05/03/23 01:5		
4-Chlorotoluene	ND	ug/L	50.0	3.6	10		05/03/23 01:5		
Dibromochloromethane	ND	ug/L	50.0	7.0	10		05/03/23 01:5		
1,2-Dibromoethane (EDB)	ND	ug/L	50.0	4.1	10		05/03/23 01:5		
Dibromomethane	ND	ug/L	50.0	5.1	10		05/03/23 01:5		
1,2-Dichlorobenzene	ND	ug/L	50.0	3.4	10		05/03/23 01:5		
1,3-Dichlorobenzene	ND	ug/L	50.0	4.0	10		05/03/23 01:5		
1,4-Dichlorobenzene	ND	ug/L	50.0	3.5	10		05/03/23 01:5		
trans-1,4-Dichloro-2-butene	ND	ug/L	1000	6.0	10		05/03/23 01:5		
Dichlorodifluoromethane	ND	ug/L	50.0	9.3	10		05/03/23 01:5		
1,1-Dichloroethane	308	ug/L	50.0	3.5	10		05/03/23 01:5		
1,2-Dichloroethane	98.8	ug/L	50.0	3.5	10		05/03/23 01:5		
1,1-Dichloroethene	ND	ug/L	50.0	3.1	10		05/03/23 01:5		
cis-1,2-Dichloroethene	17300	ug/L	500	38.8	100		05/03/23 02:1		
trans-1,2-Dichloroethene	233	ug/L	50.0	3.5	10		05/03/23 01:5		
1,2-Dichloropropane	ND	ug/L	50.0	3.6	10		05/03/23 01:5		
1,3-Dichloropropane	ND	ug/L	50.0	2.7	10		05/03/23 01:5		
2,2-Dichloropropane	ND	ug/L	50.0	4.7	10		05/03/23 01:5	0 594-20-7	
1,1-Dichloropropene	ND	ug/L	50.0	5.8	10		05/03/23 01:5		
cis-1,3-Dichloropropene	ND	ug/L	50.0	6.9	10		05/03/23 01:5	0 10061-01-5	
rans-1,3-Dichloropropene	ND	ug/L	50.0	6.8	10		05/03/23 01:5	0 10061-02-6	
Ethylbenzene	ND	ug/L	50.0	3.2	10		05/03/23 01:5	0 100-41-4	
Ethyl methacrylate	ND	ug/L	1000	5.0	10		05/03/23 01:5	0 97-63-2	
Hexachloro-1,3-butadiene	ND	ug/L	50.0	6.4	10		05/03/23 01:5	0 87-68-3	
n-Hexane	ND	ug/L	50.0	42.5	10		05/03/23 01:5	0 110-54-3	
2-Hexanone	ND	ug/L	250	20.8	10		05/03/23 01:50	0 591-78-6	

Project: GE Indy
Pace Project No.: 50343061

Date: 05/24/2023 02:58 PM

Sample: MW-251-042523	Lab ID:	50343061004	Collecte	d: 04/25/23	3 11:50	Received: 04	/25/23 15:10 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Ana	lytical Services	- Indianapo	lis					
lodomethane	ND	ug/L	100	8.2	10		05/03/23 01:50	74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	50.0	2.9	10		05/03/23 01:50	98-82-8	
p-Isopropyltoluene	ND	ug/L	50.0	3.5	10		05/03/23 01:50	99-87-6	
Methylene Chloride	ND	ug/L	50.0	27.9	10		05/03/23 01:50	75-09-2	
1-Methylnaphthalene	ND	ug/L	100	14.1	10		05/03/23 01:50	90-12-0	
2-Methylnaphthalene	ND	ug/L	100	13.3	10		05/03/23 01:50	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	250	19.2	10		05/03/23 01:50	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	40.0	2.9	10		05/03/23 01:50	1634-04-4	
Naphthalene	ND	ug/L	12.0	7.5	10		05/03/23 01:50	91-20-3	
n-Propylbenzene	ND	ug/L	50.0	3.3	10		05/03/23 01:50	103-65-1	
Styrene	ND	ug/L	50.0	3.1	10		05/03/23 01:50	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	50.0	7.3	10		05/03/23 01:50	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	50.0	2.2	10		05/03/23 01:50	79-34-5	
Tetrachloroethene	ND	ug/L	50.0	2.5	10		05/03/23 01:50	127-18-4	
Toluene	ND	ug/L	50.0	3.0	10		05/03/23 01:50	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	50.0	4.1	10		05/03/23 01:50	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	50.0	4.0	10		05/03/23 01:50	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	50.0	6.7	10		05/03/23 01:50	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	50.0	3.6	10		05/03/23 01:50	79-00-5	
Trichloroethene	ND	ug/L	50.0	4.4	10		05/03/23 01:50	79-01-6	
Trichlorofluoromethane	ND	ug/L	50.0	4.3	10		05/03/23 01:50	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	50.0	4.2	10		05/03/23 01:50	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/L	50.0	3.4	10		05/03/23 01:50	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	50.0	3.4	10		05/03/23 01:50	108-67-8	
Vinyl acetate	ND	ug/L	500	16.7	10		05/03/23 01:50		
Vinyl chloride	1770	ug/L	20.0	6.2	10		05/03/23 01:50		
Xylene (Total)	ND	ug/L	100	3.2	10		05/03/23 01:50		
Surrogates		3			-			-	
Dibromofluoromethane (S)	102	%.	82-128		10		05/03/23 01:50	1868-53-7	D4
4-Bromofluorobenzene (S)	101	%.	79-124		10		05/03/23 01:50	460-00-4	
Toluene-d8 (S)	97	%.	73-122		10		05/03/23 01:50	2037-26-5	

Project: GE Indy
Pace Project No.: 50343061

Date: 05/24/2023 02:58 PM

Sample: AD-100-042523	Lab ID:	50343061005	Collecte	d: 04/25/23	3 12:00	Received: 04	4/25/23 15:10 N	latrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 50	30/8260						
	•	lytical Services -		lis					
Acetone	ND	ug/L	100	3.9	1		05/03/23 02:48	3 67-64-1	
Acrolein	ND	ug/L	50.0	8.9	1		05/03/23 02:48		
Acrylonitrile	ND	ug/L	100	1.5	1		05/03/23 02:48		
Benzene	ND	ug/L	5.0	0.33	1		05/03/23 02:48		
Bromobenzene	ND	ug/L	5.0	0.67	1		05/03/23 02:48		
Bromochloromethane	ND	ug/L	5.0	0.35	1		05/03/23 02:48		
Bromodichloromethane	ND	ug/L	5.0	0.55	1		05/03/23 02:48		
Bromoform	ND	ug/L	5.0	0.80	1		05/03/23 02:48		
Bromomethane	ND	ug/L	5.0	2.4	1		05/03/23 02:48		
2-Butanone (MEK)	ND	ug/L	25.0	1.4	1		05/03/23 02:48		
n-Butylbenzene	ND ND	ug/L ug/L	5.0	0.35	1		05/03/23 02:48		
sec-Butylbenzene	ND	ug/L ug/L	5.0	0.30	1		05/03/23 02:48		
tert-Butylbenzene	ND ND	ug/L ug/L	5.0	0.33	1		05/03/23 02:48		
Carbon disulfide	ND ND	-		0.33	1		05/03/23 02:48		
		ug/L	10.0						
Carbon tetrachloride	ND	ug/L	5.0	0.74	1		05/03/23 02:48		
Chlorobenzene	ND	ug/L	5.0	0.31	1		05/03/23 02:48		
Chloroethane	150	ug/L	5.0	0.77	1		05/03/23 02:48		
Chloroform	ND	ug/L	5.0	0.89	1		05/03/23 02:48		
Chloromethane	ND	ug/L	5.0	0.63	1		05/03/23 02:48		
2-Chlorotoluene	ND	ug/L	5.0	0.33	1		05/03/23 02:48		
1-Chlorotoluene	ND	ug/L	5.0	0.36	1		05/03/23 02:48		
Dibromochloromethane	ND	ug/L	5.0	0.70	1		05/03/23 02:48		
1,2-Dibromoethane (EDB)	ND	ug/L	5.0	0.41	1		05/03/23 02:48		
Dibromomethane	ND	ug/L	5.0	0.51	1		05/03/23 02:48		
1,2-Dichlorobenzene	ND	ug/L	5.0	0.34	1		05/03/23 02:48		
1,3-Dichlorobenzene	ND	ug/L	5.0	0.40	1		05/03/23 02:48		
1,4-Dichlorobenzene	ND	ug/L	5.0	0.35	1		05/03/23 02:48		
trans-1,4-Dichloro-2-butene	ND	ug/L	100	0.60	1		05/03/23 02:48		
Dichlorodifluoromethane	ND	ug/L	5.0	0.93	1		05/03/23 02:48		
1,1-Dichloroethane	17.1	ug/L	5.0	0.35	1		05/03/23 02:48		
1,2-Dichloroethane	ND	ug/L	5.0	0.35	1		05/03/23 02:48	3 107-06-2	
1,1-Dichloroethene	ND	ug/L	5.0	0.31	1		05/03/23 02:48	3 75-35-4	
cis-1,2-Dichloroethene	99.6	ug/L	5.0	0.39	1		05/03/23 02:48	3 156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	5.0	0.35	1		05/03/23 02:48	3 156-60-5	
1,2-Dichloropropane	ND	ug/L	5.0	0.36	1		05/03/23 02:48	8 78-87-5	
1,3-Dichloropropane	ND	ug/L	5.0	0.27	1		05/03/23 02:48	3 142-28-9	
2,2-Dichloropropane	ND	ug/L	5.0	0.47	1		05/03/23 02:48		
1,1-Dichloropropene	ND	ug/L	5.0	0.58	1		05/03/23 02:48	3 563-58-6	
cis-1,3-Dichloropropene	ND	ug/L	5.0	0.69	1		05/03/23 02:48	3 10061-01-5	
rans-1,3-Dichloropropene	ND	ug/L	5.0	0.68	1		05/03/23 02:48	3 10061-02-6	
Ethylbenzene	ND	ug/L	5.0	0.32	1		05/03/23 02:48	3 100-41-4	
Ethyl methacrylate	ND	ug/L	100	0.50	1		05/03/23 02:48	3 97-63-2	
Hexachloro-1,3-butadiene	ND	ug/L	5.0	0.64	1		05/03/23 02:48		
n-Hexane	ND	ug/L	5.0	4.2	1		05/03/23 02:48	3 110-54-3	
2-Hexanone	ND	ug/L	25.0	2.1	1		05/03/23 02:48		

Project: GE Indy
Pace Project No.: 50343061

Date: 05/24/2023 02:58 PM

Sample: AD-100-042523	Lab ID:	50343061005	Collected	1: 04/25/23	3 12:00	Received: 04	I/25/23 15:10 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF ——	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Ana	lytical Services	- Indianapol	is					
lodomethane	ND	ug/L	10.0	0.82	1		05/03/23 02:48	74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	5.0	0.29	1		05/03/23 02:48	98-82-8	
p-Isopropyltoluene	ND	ug/L	5.0	0.35	1		05/03/23 02:48	99-87-6	
Methylene Chloride	ND	ug/L	5.0	2.8	1		05/03/23 02:48	75-09-2	
1-Methylnaphthalene	ND	ug/L	10.0	1.4	1		05/03/23 02:48	90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	1.3	1		05/03/23 02:48	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	1.9	1		05/03/23 02:48	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	4.0	0.29	1		05/03/23 02:48	1634-04-4	
Naphthalene	ND	ug/L	1.2	0.75	1		05/03/23 02:48	91-20-3	
n-Propylbenzene	ND	ug/L	5.0	0.33	1		05/03/23 02:48	103-65-1	
Styrene	ND	ug/L	5.0	0.31	1		05/03/23 02:48	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.73	1		05/03/23 02:48	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.22	1		05/03/23 02:48	79-34-5	
Tetrachloroethene	ND	ug/L	5.0	0.25	1		05/03/23 02:48	127-18-4	
Toluene	ND	ug/L	5.0	0.30	1		05/03/23 02:48	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	0.41	1		05/03/23 02:48	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	5.0	0.40	1		05/03/23 02:48	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	5.0	0.67	1		05/03/23 02:48	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	5.0	0.36	1		05/03/23 02:48	79-00-5	
Trichloroethene	ND	ug/L	5.0	0.44	1		05/03/23 02:48	79-01-6	
Trichlorofluoromethane	ND	ug/L	5.0	0.43	1		05/03/23 02:48	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	5.0	0.42	1		05/03/23 02:48	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/L	5.0	0.34	1		05/03/23 02:48	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.34	1		05/03/23 02:48	108-67-8	
Vinyl acetate	ND	ug/L	50.0	1.7	1		05/03/23 02:48	108-05-4	
Vinyl chloride	279	ug/L	2.0	0.62	1		05/03/23 02:48	75-01-4	
Xylene (Total)	ND	ug/L	10.0	0.32	1		05/03/23 02:48	1330-20-7	
Surrogates		-							
Dibromofluoromethane (S)	101	%.	82-128		1		05/03/23 02:48	1868-53-7	
4-Bromofluorobenzene (S)	101	%.	79-124		1		05/03/23 02:48	460-00-4	
Toluene-d8 (S)	98	%.	73-122		1		05/03/23 02:48	2037-26-5	

Project: GE Indy
Pace Project No.: 50343061

Date: 05/24/2023 02:58 PM

Sample: W-10-042523	Lab ID:	50343061006	Collected	d: 04/25/23	12:05	Received: 04	1/25/23 15:10 I	Matrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	•	ytical Services		lis					
Acetone	ND	ug/L	100	3.9	1		05/03/23 03:4	7 67-64-1	
Acrolein	ND	ug/L	50.0	8.9	1		05/03/23 03:4	7 107-02-8	
Acrylonitrile	ND	ug/L	100	1.5	1		05/03/23 03:4	7 107-13-1	
Benzene	ND	ug/L	5.0	0.33	1		05/03/23 03:4	71-43-2	
Bromobenzene	ND	ug/L	5.0	0.67	1		05/03/23 03:4	7 108-86-1	
Bromochloromethane	ND	ug/L	5.0	0.35	1		05/03/23 03:4	74-97-5	
Bromodichloromethane	ND	ug/L	5.0	0.55	1		05/03/23 03:4		
Bromoform	ND	ug/L	5.0	0.80	1		05/03/23 03:4		
Bromomethane	ND	ug/L	5.0	2.4	1		05/03/23 03:4		
2-Butanone (MEK)	ND	ug/L	25.0	1.4	1		05/03/23 03:4		
n-Butylbenzene	ND	ug/L	5.0	0.35	1		05/03/23 03:4		
sec-Butylbenzene	ND	ug/L	5.0	0.30	1		05/03/23 03:4		
ert-Butylbenzene	ND	ug/L	5.0	0.33	1		05/03/23 03:4		
Carbon disulfide	ND	ug/L	10.0	0.33	1		05/03/23 03:4		
Carbon tetrachloride	ND	ug/L	5.0	0.74	1		05/03/23 03:4		
Chlorobenzene	ND	ug/L	5.0	0.31	1		05/03/23 03:4		
Chloroethane	ND ND	ug/L ug/L	5.0	0.77	1		05/03/23 03:4		
Chloroform	ND ND	ug/L ug/L	5.0	0.89	1		05/03/23 03:4		
Chloromethane	ND ND	ug/L ug/L	5.0	0.63	1		05/03/23 03:4		
2-Chlorotoluene	ND ND	ug/L ug/L	5.0	0.03	1		05/03/23 03:4		
4-Chlorotoluene	ND ND	ug/L ug/L	5.0	0.36	1		05/03/23 03:4		
Dibromochloromethane	ND ND	ug/L ug/L	5.0	0.70	1		05/03/23 03:4		
1,2-Dibromoethane (EDB)	ND ND	ug/L ug/L	5.0	0.70	1		05/03/23 03:4		
Dibromomethane	ND ND	ug/L ug/L	5.0	0.51	1		05/03/23 03:4		
1,2-Dichlorobenzene	ND ND	ug/L ug/L	5.0	0.34	1		05/03/23 03:4		
1,3-Dichlorobenzene	ND ND	ug/L ug/L	5.0	0.40	1		05/03/23 03:4		
1,4-Dichlorobenzene	ND ND	ug/L ug/L	5.0	0.40	1		05/03/23 03:4		
rans-1,4-Dichloro-2-butene	ND ND	ug/L ug/L	100	0.60	1		05/03/23 03:4		
Dichlorodifluoromethane	ND ND	ug/L ug/L	5.0	0.00	1		05/03/23 03:4		
1,1-Dichloroethane	ND ND	ug/L ug/L	5.0	0.35	1		05/03/23 03:4		
1,2-Dichloroethane	ND ND	ug/L ug/L	5.0	0.35	1		05/03/23 03:4		
1,1-Dichloroethene	ND ND	ug/L ug/L	5.0	0.33	1		05/03/23 03:4		
	ND ND	-	5.0	0.31	1		05/03/23 03:4		
cis-1,2-Dichloroethene		ug/L							
rans-1,2-Dichloroethene 1,2-Dichloropropane	ND ND	ug/L	5.0 5.0	0.35 0.36	1		05/03/23 03:4 05/03/23 03:4		
		ug/L			1				
1,3-Dichloropropane	ND	ug/L	5.0	0.27	1		05/03/23 03:4		
2,2-Dichloropropane	ND	ug/L	5.0	0.47	1		05/03/23 03:4		
1,1-Dichloropropene	ND ND	ug/L	5.0	0.58	1 1		05/03/23 03:4		
cis-1,3-Dichloropropene	ND ND	ug/L	5.0	0.69				7 10061-01-5	
rans-1,3-Dichloropropene	ND	ug/L	5.0	0.68	1			7 10061-02-6	
Ethylbenzene	ND	ug/L	5.0	0.32	1		05/03/23 03:4		
Ethyl methacrylate	ND	ug/L	100	0.50	1		05/03/23 03:4		
Hexachloro-1,3-butadiene	ND	ug/L	5.0	0.64	1		05/03/23 03:4		
n-Hexane	ND	ug/L	5.0	4.2	1		05/03/23 03:4		
2-Hexanone	ND	ug/L	25.0	2.1	1		05/03/23 03:4	7 591-78-6	

Project: GE Indy
Pace Project No.: 50343061

Date: 05/24/2023 02:58 PM

Sample: W-10-042523	Lab ID:	50343061006	Collected	: 04/25/23	3 12:05	Received: 04	I/25/23 15:10 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF ——	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Ana	lytical Services	- Indianapol	is					
lodomethane	ND	ug/L	10.0	0.82	1		05/03/23 03:47	74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	5.0	0.29	1		05/03/23 03:47	98-82-8	
p-Isopropyltoluene	ND	ug/L	5.0	0.35	1		05/03/23 03:47	99-87-6	
Methylene Chloride	ND	ug/L	5.0	2.8	1		05/03/23 03:47	75-09-2	
1-Methylnaphthalene	ND	ug/L	10.0	1.4	1		05/03/23 03:47	90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	1.3	1		05/03/23 03:47	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	1.9	1		05/03/23 03:47	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	4.0	0.29	1		05/03/23 03:47	1634-04-4	
Naphthalene	ND	ug/L	1.2	0.75	1		05/03/23 03:47	91-20-3	
n-Propylbenzene	ND	ug/L	5.0	0.33	1		05/03/23 03:47	103-65-1	
Styrene	ND	ug/L	5.0	0.31	1		05/03/23 03:47	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.73	1		05/03/23 03:47	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.22	1		05/03/23 03:47	79-34-5	
Tetrachloroethene	ND	ug/L	5.0	0.25	1		05/03/23 03:47	127-18-4	
Toluene	ND	ug/L	5.0	0.30	1		05/03/23 03:47	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	0.41	1		05/03/23 03:47	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	5.0	0.40	1		05/03/23 03:47		
1,1,1-Trichloroethane	ND	ug/L	5.0	0.67	1		05/03/23 03:47	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	5.0	0.36	1		05/03/23 03:47	79-00-5	
Trichloroethene	ND	ug/L	5.0	0.44	1		05/03/23 03:47	79-01-6	
Trichlorofluoromethane	ND	ug/L	5.0	0.43	1		05/03/23 03:47	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	5.0	0.42	1		05/03/23 03:47	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/L	5.0	0.34	1		05/03/23 03:47		
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.34	1		05/03/23 03:47		
Vinyl acetate	ND	ug/L	50.0	1.7	1		05/03/23 03:47		
Vinyl chloride	ND	ug/L	2.0	0.62	1		05/03/23 03:47		
Xylene (Total)	ND	ug/L	10.0	0.32	1		05/03/23 03:47		
Surrogates		- 3							
Dibromofluoromethane (S)	102	%.	82-128		1		05/03/23 03:47	1868-53-7	
4-Bromofluorobenzene (S)	99	%.	79-124		1		05/03/23 03:47	460-00-4	
Toluene-d8 (S)	98	%.	73-122		1		05/03/23 03:47	2037-26-5	

Project: GE Indy
Pace Project No.: 50343061

Date: 05/24/2023 02:58 PM

Sample: W-8-042523	Lab ID:	50343061007	Collected	1: 04/25/23	12:15	Received: 04	1/25/23 15:10 N	latrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Indicator Gases Water LHC	Analytical	Method: AM20	GAX						
	Pace Ana	lytical Gulf Coa	st						
Methane	12	ug/L	5.0	2.0	1		05/08/23 16:22	74-82-8	
Ethane	ND	ug/L	1.0	0.17	1		05/08/23 16:22		
Ethene	ND	ug/L	1.0	0.24	1		05/08/23 16:22		
n-Propane	ND	ug/L	1.0	0.29	1		05/08/23 16:22		
Propylene	ND	ug/L	1.0	0.31	1		05/08/23 16:22		
Isobutane	ND	ug/L	2.0	0.065	1		05/08/23 16:22		
n-Butane	ND	ug/L	2.0	0.54	1		05/08/23 16:22		
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Ana	lytical Services	- Indianapoli	is					
Acetone	ND	ug/L	100	3.9	1		05/03/23 18:03	8 67-64-1	
Acrolein	ND	ug/L	50.0	8.9	1		05/03/23 18:03	3 107-02-8	
Acrylonitrile	ND	ug/L	100	1.5	1		05/03/23 18:03	3 107-13-1	
Benzene	ND	ug/L	5.0	0.33	1		05/03/23 18:03	3 71-43-2	
Bromobenzene	ND	ug/L	5.0	0.67	1		05/03/23 18:03		
Bromochloromethane	ND	ug/L	5.0	0.35	1		05/03/23 18:03		
Bromodichloromethane	ND	ug/L	5.0	0.55	1		05/03/23 18:03		
Bromoform	ND	ug/L	5.0	0.80	1		05/03/23 18:03	-	
Bromomethane	ND	ug/L	5.0	2.4	1		05/03/23 18:03		
2-Butanone (MEK)	ND	ug/L	25.0	1.4	1		05/03/23 18:03		
n-Butylbenzene	ND	ug/L	5.0	0.35	1		05/03/23 18:03		
sec-Butylbenzene	ND ND	ug/L	5.0	0.30	1		05/03/23 18:03		
ert-Butylbenzene	ND	ug/L	5.0	0.33	1		05/03/23 18:03		
Carbon disulfide	ND ND	ug/L	10.0	0.33	1		05/03/23 18:03		
Carbon tetrachloride	ND ND	ug/L	5.0	0.33	1		05/03/23 18:03		
Chlorobenzene	ND ND	ug/L	5.0	0.74	1		05/03/23 18:03		
Chloroethane	ND ND		5.0	0.31	1		05/03/23 18:03		
Chloroform	ND ND	ug/L	5.0	0.77	1		05/03/23 18:03		
Chloromethane		ug/L		0.69					
Chlorottoluene	ND	ug/L	5.0		1		05/03/23 18:03 05/03/23 18:03		
	ND	ug/L	5.0	0.33	1				
4-Chlorotoluene	ND	ug/L	5.0	0.36	1		05/03/23 18:03		
Dibromochloromethane	ND	ug/L	5.0	0.70	1		05/03/23 18:03		
I,2-Dibromoethane (EDB)	ND	ug/L	5.0	0.41	1		05/03/23 18:03		
Dibromomethane	ND	ug/L	5.0	0.51	1		05/03/23 18:03		
1,2-Dichlorobenzene	ND	ug/L	5.0	0.34	1		05/03/23 18:03		
1,3-Dichlorobenzene	ND	ug/L	5.0	0.40	1		05/03/23 18:03		
1,4-Dichlorobenzene	ND	ug/L	5.0	0.35	1		05/03/23 18:03		
rans-1,4-Dichloro-2-butene	ND	ug/L	100	0.60	1		05/03/23 18:03		
Dichlorodifluoromethane	ND	ug/L	5.0	0.93	1		05/03/23 18:03		
1,1-Dichloroethane	ND	ug/L	5.0	0.35	1		05/03/23 18:03		
1,2-Dichloroethane	ND	ug/L	5.0	0.35	1		05/03/23 18:03	3 107-06-2	
1,1-Dichloroethene	ND	ug/L	5.0	0.31	1		05/03/23 18:03	3 75-35-4	
cis-1,2-Dichloroethene	ND	ug/L	5.0	0.39	1		05/03/23 18:03	3 156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	5.0	0.35	1		05/03/23 18:03	3 156-60-5	
1,2-Dichloropropane	ND	ug/L	5.0	0.36	1		05/03/23 18:03	3 78-87-5	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: GE Indy
Pace Project No.: 50343061

Date: 05/24/2023 02:58 PM

Sample: W-8-042523	Lab ID:	50343061007	Collecte	d: 04/25/23	3 12:15	Received: 04	1/25/23 15:10	Matrix: Water	
Damaratan	December	11-26-	Report	MDI	DE	Danasasas	A b	040 N	0
Parameters	Results	Units -	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Ana	lytical Services	- Indianapo	olis					
1,3-Dichloropropane	ND	ug/L	5.0	0.27	1		05/03/23 18:0	03 142-28-9	
2,2-Dichloropropane	ND	ug/L	5.0	0.47	1		05/03/23 18:0	03 594-20-7	
1,1-Dichloropropene	ND	ug/L	5.0	0.58	1		05/03/23 18:0	03 563-58-6	
cis-1,3-Dichloropropene	ND	ug/L	5.0	0.69	1		05/03/23 18:0	03 10061-01-5	
rans-1,3-Dichloropropene	ND	ug/L	5.0	0.68	1		05/03/23 18:0	03 10061-02-6	
Ethylbenzene	ND	ug/L	5.0	0.32	1		05/03/23 18:0	03 100-41-4	
Ethyl methacrylate	ND	ug/L	100	0.50	1		05/03/23 18:0	03 97-63-2	
Hexachloro-1,3-butadiene	ND	ug/L	5.0	0.64	1		05/03/23 18:0		
n-Hexane	ND	ug/L	5.0	4.2	1		05/03/23 18:0		
2-Hexanone	ND	ug/L	25.0	2.1	1		05/03/23 18:0		
odomethane	ND	ug/L	10.0	0.82	1		05/03/23 18:0		
sopropylbenzene (Cumene)	ND	ug/L	5.0	0.29	1		05/03/23 18:0		
o-Isopropyltoluene	ND	ug/L	5.0	0.35	1		05/03/23 18:0		
Methylene Chloride	ND	ug/L	5.0	2.8	1		05/03/23 18:0		
-Methylnaphthalene	ND	ug/L	10.0	1.4	1		05/03/23 18:0		
2-Methylnaphthalene	ND	ug/L	10.0	1.3	1		05/03/23 18:0		
1-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	1.9	1		05/03/23 18:0		
Methyl-tert-butyl ether	ND	ug/L	4.0	0.29	1			03 1634-04-4	
Naphthalene	ND	ug/L	1.2	0.75	1		05/03/23 18:0		
n-Propylbenzene	ND	ug/L	5.0	0.73	1		05/03/23 18:0		
Styrene	ND ND	ug/L	5.0	0.33	1		05/03/23 18:0		
1,1,1,2-Tetrachloroethane	ND ND	ug/L	5.0	0.73	1		05/03/23 18:0		
1,1,2,2-Tetrachloroethane	ND ND	ug/L ug/L	5.0	0.73	1		05/03/23 18:0		
Tetrachloroethene	ND ND	-	5.0	0.22	1		05/03/23 18:0		
Foluene	ND ND	ug/L	5.0	0.23	1		05/03/23 18:0		
		ug/L		0.30					
1,2,3-Trichlorobenzene	ND	ug/L	5.0		1		05/03/23 18:0		
1,2,4-Trichlorobenzene	ND	ug/L	5.0	0.40	1		05/03/23 18:0		
1,1,1-Trichloroethane	ND	ug/L	5.0	0.67	1		05/03/23 18:0		
I,1,2-Trichloroethane	ND	ug/L	5.0	0.36	1		05/03/23 18:0		
Frichloroethene	ND	ug/L	5.0	0.44	1		05/03/23 18:0		
Trichlorofluoromethane	ND	ug/L	5.0	0.43	1		05/03/23 18:0		
,2,3-Trichloropropane	ND	ug/L	5.0	0.42	1		05/03/23 18:0		
I,2,4-Trimethylbenzene	ND	ug/L	5.0	0.34	1		05/03/23 18:0		
I,3,5-Trimethylbenzene	ND	ug/L	5.0	0.34	1		05/03/23 18:0		
/inyl acetate	ND	ug/L	50.0	1.7	1		05/03/23 18:0		
/inyl chloride	ND	ug/L	2.0	0.62	1		05/03/23 18:0		
Xylene (Total)	ND	ug/L	10.0	0.32	1		05/03/23 18:0	03 1330-20-7	
Surrogates	4.00	0.4	00.400				05/00/00 10		
Dibromofluoromethane (S)	100	%.	82-128		1			03 1868-53-7	
4-Bromofluorobenzene (S)	99	%.	79-124		1			03 460-00-4	
Toluene-d8 (S)	97	%.	73-122		1		05/03/23 18:0	03 2037-26-5	

Project: GE Indy
Pace Project No.: 50343061

Date: 05/24/2023 02:58 PM

Sample: MW-41-042523	Lab ID:	50343061008	Collected	d: 04/25/23	3 12:30	Received: 04	1/25/23 15:10	Matrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qua
3260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	•	ytical Services		lis					
Acetone	ND	ug/L	100	3.9	1		05/03/23 18:3	32 67-64-1	
Acrolein	ND	ug/L	50.0	8.9	1		05/03/23 18:3		
Acrylonitrile	ND	ug/L	100	1.5	1		05/03/23 18:3		
Benzene	ND	ug/L	5.0	0.33	1		05/03/23 18:3		
Bromobenzene	ND	ug/L	5.0	0.67	1		05/03/23 18:3		
Bromochloromethane	ND	ug/L	5.0	0.35	1		05/03/23 18:3		
Bromodichloromethane	ND	ug/L	5.0	0.55	1		05/03/23 18:3		
Bromoform	ND	ug/L	5.0	0.80	1		05/03/23 18:3		
Bromomethane	ND	ug/L	5.0	2.4	1		05/03/23 18:3		
2-Butanone (MEK)	ND ND	ug/L ug/L	25.0	1.4	1		05/03/23 18:3		
n-Butylbenzene	ND ND	ug/L ug/L	5.0	0.35	1		05/03/23 18:3		
sec-Butylbenzene	ND ND	ug/L ug/L	5.0	0.30	1		05/03/23 18:3		
ert-Butylbenzene	ND ND	ug/L ug/L	5.0	0.30	1		05/03/23 18:3		
Carbon disulfide	ND ND	ug/L ug/L	10.0	0.33	1		05/03/23 18:3		
Carbon tetrachloride	ND ND	ug/L ug/L	5.0	0.55	1		05/03/23 18:3		
Chlorobenzene	ND ND	-	5.0	0.74	1		05/03/23 18:3		
Chloroethane		ug/L		0.31					
Chloroform	ND ND	ug/L	5.0 5.0	0.77	1 1		05/03/23 18:3 05/03/23 18:3		
		ug/L			1				
Chloromethane	ND	ug/L	5.0	0.63	1		05/03/23 18:3		
2-Chlorotoluene	ND	ug/L	5.0	0.33			05/03/23 18:3		
1-Chlorotoluene	ND	ug/L	5.0	0.36	1		05/03/23 18:3		
Dibromochloromethane	ND	ug/L	5.0	0.70	1		05/03/23 18:3		
1,2-Dibromoethane (EDB)	ND	ug/L	5.0	0.41	1		05/03/23 18:3		
Dibromomethane	ND	ug/L	5.0	0.51	1		05/03/23 18:3		
1,2-Dichlorobenzene	ND	ug/L	5.0	0.34	1		05/03/23 18:3		
1,3-Dichlorobenzene	ND	ug/L	5.0	0.40	1		05/03/23 18:3		
1,4-Dichlorobenzene	ND	ug/L	5.0	0.35	1		05/03/23 18:3		
rans-1,4-Dichloro-2-butene	ND	ug/L	100	0.60	1		05/03/23 18:3		
Dichlorodifluoromethane	ND	ug/L	5.0	0.93	1		05/03/23 18:3		
1,1-Dichloroethane	ND	ug/L	5.0	0.35	1		05/03/23 18:3		
I,2-Dichloroethane	ND	ug/L	5.0	0.35	1		05/03/23 18:3		
I,1-Dichloroethene	ND	ug/L	5.0	0.31	1		05/03/23 18:3		
cis-1,2-Dichloroethene	ND	ug/L	5.0	0.39	1		05/03/23 18:3		
rans-1,2-Dichloroethene	ND	ug/L	5.0	0.35	1		05/03/23 18:3		
,2-Dichloropropane	ND	ug/L	5.0	0.36	1		05/03/23 18:3		
,3-Dichloropropane	ND	ug/L	5.0	0.27	1		05/03/23 18:3		
2,2-Dichloropropane	ND	ug/L	5.0	0.47	1		05/03/23 18:3		
,1-Dichloropropene	ND	ug/L	5.0	0.58	1		05/03/23 18:3		
cis-1,3-Dichloropropene	ND	ug/L	5.0	0.69	1			32 10061-01-5	
rans-1,3-Dichloropropene	ND	ug/L	5.0	0.68	1			32 10061-02-6	
Ethylbenzene	ND	ug/L	5.0	0.32	1		05/03/23 18:3	32 100-41-4	
Ethyl methacrylate	ND	ug/L	100	0.50	1		05/03/23 18:3		
Hexachloro-1,3-butadiene	ND	ug/L	5.0	0.64	1		05/03/23 18:3	32 87-68-3	
n-Hexane	ND	ug/L	5.0	4.2	1		05/03/23 18:3	32 110-54-3	
2-Hexanone	ND	ug/L	25.0	2.1	1		05/03/23 18:3	32 591-78-6	

Project: GE Indy
Pace Project No.: 50343061

Date: 05/24/2023 02:58 PM

Sample: MW-41-042523	Lab ID:	50343061008	Collected	1: 04/25/23	3 12:30	Received: 04	/25/23 15:10 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Ana	lytical Services	- Indianapol	is					
lodomethane	ND	ug/L	10.0	0.82	1		05/03/23 18:32	74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	5.0	0.29	1		05/03/23 18:32	98-82-8	
p-Isopropyltoluene	ND	ug/L	5.0	0.35	1		05/03/23 18:32	99-87-6	
Methylene Chloride	ND	ug/L	5.0	2.8	1		05/03/23 18:32	75-09-2	
1-Methylnaphthalene	ND	ug/L	10.0	1.4	1		05/03/23 18:32	90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	1.3	1		05/03/23 18:32	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	1.9	1		05/03/23 18:32	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	4.0	0.29	1		05/03/23 18:32	1634-04-4	
Naphthalene	ND	ug/L	1.2	0.75	1		05/03/23 18:32	91-20-3	
n-Propylbenzene	ND	ug/L	5.0	0.33	1		05/03/23 18:32	103-65-1	
Styrene	ND	ug/L	5.0	0.31	1		05/03/23 18:32	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.73	1		05/03/23 18:32	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.22	1		05/03/23 18:32	79-34-5	
Tetrachloroethene	ND	ug/L	5.0	0.25	1		05/03/23 18:32	127-18-4	
Toluene	ND	ug/L	5.0	0.30	1		05/03/23 18:32	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	0.41	1		05/03/23 18:32	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	5.0	0.40	1		05/03/23 18:32	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	5.0	0.67	1		05/03/23 18:32	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	5.0	0.36	1		05/03/23 18:32	79-00-5	
Trichloroethene	ND	ug/L	5.0	0.44	1		05/03/23 18:32	79-01-6	
Trichlorofluoromethane	ND	ug/L	5.0	0.43	1		05/03/23 18:32	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	5.0	0.42	1		05/03/23 18:32	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/L	5.0	0.34	1		05/03/23 18:32	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.34	1		05/03/23 18:32	108-67-8	
Vinyl acetate	ND	ug/L	50.0	1.7	1		05/03/23 18:32	108-05-4	
Vinyl chloride	ND	ug/L	2.0	0.62	1		05/03/23 18:32	75-01-4	
Xylene (Total)	ND	ug/L	10.0	0.32	1		05/03/23 18:32	1330-20-7	
Surrogates		Ü							
Dibromofluoromethane (S)	100	%.	82-128		1		05/03/23 18:32	1868-53-7	
4-Bromofluorobenzene (S)	101	%.	79-124		1		05/03/23 18:32	460-00-4	
Toluene-d8 (S)	98	%.	73-122		1		05/03/23 18:32	2037-26-5	

Project: GE Indy
Pace Project No.: 5034306

Date: 05/24/2023 02:58 PM

Sample: MW-241-042523	Lab ID:	50343061009	Collected	d: 04/25/23	12:45	Received: 04	1/25/23 15:10 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL .	DF	Prepared	Analyzed	CAS No.	Qua
3260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
		lytical Services		lis					
Acetone	ND	ug/L	100	3.9	1		05/03/23 19:01	67-64-1	
Acrolein	ND	ug/L	50.0	8.9	1		05/03/23 19:01	107-02-8	
Acrylonitrile	ND	ug/L	100	1.5	1		05/03/23 19:01		
Benzene	ND	ug/L	5.0	0.33	1		05/03/23 19:01		
Bromobenzene	ND	ug/L	5.0	0.67	1		05/03/23 19:01		
Bromochloromethane	ND	ug/L	5.0	0.35	1		05/03/23 19:01		
Bromodichloromethane	ND	ug/L	5.0	0.55	1		05/03/23 19:01		
Bromoform	ND ND	ug/L	5.0	0.80	1		05/03/23 19:01		
Bromomethane	ND ND	ug/L	5.0	2.4	1		05/03/23 19:01		
		_			1				
2-Butanone (MEK)	ND ND	ug/L	25.0	1.4	1		05/03/23 19:01		
n-Butylbenzene	ND	ug/L	5.0	0.35			05/03/23 19:01		
sec-Butylbenzene	ND	ug/L	5.0	0.30	1		05/03/23 19:01		
ert-Butylbenzene	ND	ug/L	5.0	0.33	1		05/03/23 19:01		
Carbon disulfide	ND	ug/L	10.0	0.33	1		05/03/23 19:01		
Carbon tetrachloride	ND	ug/L	5.0	0.74	1		05/03/23 19:01		
Chlorobenzene	ND	ug/L	5.0	0.31	1		05/03/23 19:01		
Chloroethane	ND	ug/L	5.0	0.77	1		05/03/23 19:01		
Chloroform	ND	ug/L	5.0	0.89	1		05/03/23 19:01		
Chloromethane	ND	ug/L	5.0	0.63	1		05/03/23 19:01		
2-Chlorotoluene	ND	ug/L	5.0	0.33	1		05/03/23 19:01	95-49-8	
4-Chlorotoluene	ND	ug/L	5.0	0.36	1		05/03/23 19:01	106-43-4	
Dibromochloromethane	ND	ug/L	5.0	0.70	1		05/03/23 19:01	124-48-1	
1,2-Dibromoethane (EDB)	ND	ug/L	5.0	0.41	1		05/03/23 19:01	106-93-4	
Dibromomethane	ND	ug/L	5.0	0.51	1		05/03/23 19:01	74-95-3	
1,2-Dichlorobenzene	ND	ug/L	5.0	0.34	1		05/03/23 19:01	95-50-1	
1,3-Dichlorobenzene	ND	ug/L	5.0	0.40	1		05/03/23 19:01	541-73-1	
1,4-Dichlorobenzene	ND	ug/L	5.0	0.35	1		05/03/23 19:01	106-46-7	
rans-1,4-Dichloro-2-butene	ND	ug/L	100	0.60	1		05/03/23 19:01	110-57-6	
Dichlorodifluoromethane	ND	ug/L	5.0	0.93	1		05/03/23 19:01	75-71-8	
1,1-Dichloroethane	ND	ug/L	5.0	0.35	1		05/03/23 19:01	75-34-3	
1,2-Dichloroethane	ND	ug/L	5.0	0.35	1		05/03/23 19:01	107-06-2	
1.1-Dichloroethene	ND	ug/L	5.0	0.31	1		05/03/23 19:01		
cis-1,2-Dichloroethene	ND	ug/L	5.0	0.39	1		05/03/23 19:01		
rans-1,2-Dichloroethene	ND	ug/L	5.0	0.35	1		05/03/23 19:01		
1,2-Dichloropropane	ND	ug/L	5.0	0.36	1		05/03/23 19:01		
1,3-Dichloropropane	ND	ug/L	5.0	0.27	1		05/03/23 19:01		
2,2-Dichloropropane	ND ND	ug/L	5.0	0.47	1		05/03/23 19:01		
1,1-Dichloropropene	ND ND	ug/L ug/L	5.0	0.58	1		05/03/23 19:01		
	ND ND	ug/L ug/L	5.0	0.58	1		05/03/23 19:01		
cis-1,3-Dichloropropene		_							
trans-1,3-Dichloropropene	ND	ug/L	5.0	0.68	1		05/03/23 19:01		
Ethylbenzene	ND	ug/L	5.0	0.32	1		05/03/23 19:01		
Ethyl methacrylate	ND	ug/L	100	0.50	1		05/03/23 19:01		
Hexachloro-1,3-butadiene	ND	ug/L	5.0	0.64	1		05/03/23 19:01		
n-Hexane	ND	ug/L	5.0	4.2	1		05/03/23 19:01		
2-Hexanone	ND	ug/L	25.0	2.1	1		05/03/23 19:01	591-78-6	

Project: GE Indy
Pace Project No.: 50343061

Date: 05/24/2023 02:58 PM

Sample: MW-241-042523	Lab ID:	50343061009	Collected	d: 04/25/23	3 12:45	Received: 04	/25/23 15:10 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA	5030/8260						
	Pace Anal	ytical Services	s - Indianapo	lis					
lodomethane	ND	ug/L	10.0	0.82	1		05/03/23 19:01	74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	5.0	0.29	1		05/03/23 19:01	98-82-8	
p-Isopropyltoluene	ND	ug/L	5.0	0.35	1		05/03/23 19:01	99-87-6	
Methylene Chloride	ND	ug/L	5.0	2.8	1		05/03/23 19:01	75-09-2	
1-Methylnaphthalene	ND	ug/L	10.0	1.4	1		05/03/23 19:01	90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	1.3	1		05/03/23 19:01	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	1.9	1		05/03/23 19:01	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	4.0	0.29	1		05/03/23 19:01	1634-04-4	
Naphthalene	ND	ug/L	1.2	0.75	1		05/03/23 19:01	91-20-3	
n-Propylbenzene	ND	ug/L	5.0	0.33	1		05/03/23 19:01	103-65-1	
Styrene	ND	ug/L	5.0	0.31	1		05/03/23 19:01	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.73	1		05/03/23 19:01	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.22	1		05/03/23 19:01	79-34-5	
Tetrachloroethene	ND	ug/L	5.0	0.25	1		05/03/23 19:01	127-18-4	
Toluene	ND	ug/L	5.0	0.30	1		05/03/23 19:01	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	0.41	1		05/03/23 19:01	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	5.0	0.40	1		05/03/23 19:01	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	5.0	0.67	1		05/03/23 19:01	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	5.0	0.36	1		05/03/23 19:01	79-00-5	
Trichloroethene	ND	ug/L	5.0	0.44	1		05/03/23 19:01	79-01-6	
Trichlorofluoromethane	ND	ug/L	5.0	0.43	1		05/03/23 19:01	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	5.0	0.42	1		05/03/23 19:01	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/L	5.0	0.34	1		05/03/23 19:01	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.34	1		05/03/23 19:01	108-67-8	
Vinyl acetate	ND	ug/L	50.0	1.7	1		05/03/23 19:01	108-05-4	
Vinyl chloride	ND	ug/L	2.0	0.62	1		05/03/23 19:01	75-01-4	
Xylene (Total)	ND	ug/L	10.0	0.32	1		05/03/23 19:01	1330-20-7	
Surrogates									
Dibromofluoromethane (S)	100	%.	82-128		1		05/03/23 19:01		
4-Bromofluorobenzene (S)	99	%.	79-124		1		05/03/23 19:01	460-00-4	
Toluene-d8 (S)	97	%.	73-122		1		05/03/23 19:01	2037-26-5	

ANALYTICAL RESULTS

Project: GE Indy
Pace Project No.: 50343061

Date: 05/24/2023 02:58 PM

Sample: Trip Blank-042523	Lab ID:	50343061010	Collected:	04/25/23	08:00	Received: 04	1/25/23 15:10 M	latrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Ana	lytical Services	- Indianapolis	s					
Acetone	ND	ug/L	100	3.9	1		05/03/23 23:24	1 67-64-1	
Acrolein	ND	ug/L	50.0	8.9	1		05/03/23 23:24		
Acrylonitrile	ND	ug/L	100	1.5	1		05/03/23 23:24		
Benzene	ND	ug/L	5.0	0.33	1		05/03/23 23:24		
Bromobenzene	ND	ug/L	5.0	0.67	1		05/03/23 23:24		
Bromochloromethane	ND	ug/L	5.0	0.35	1		05/03/23 23:24		
Bromodichloromethane	ND ND	ug/L	5.0	0.55	1		05/03/23 23:24		
Bromoform	ND	ug/L	5.0	0.80	1		05/03/23 23:24		
Bromomethane	ND	ug/L	5.0	2.4	1		05/03/23 23:24		
2-Butanone (MEK)	ND ND	ug/L	25.0	1.4	1		05/03/23 23:24		
n-Butylbenzene	ND ND	ug/L ug/L	5.0	0.35	1		05/03/23 23:24		
sec-Butylbenzene	ND ND	ug/L ug/L	5.0 5.0	0.30	1		05/03/23 23:24		
ert-Butylbenzene	ND ND	ug/L ug/L	5.0	0.33	1		05/03/23 23:24		
Carbon disulfide	ND ND	-	10.0	0.33	1		05/03/23 23:24		
		ug/L		0.33	1				
Carbon tetrachloride	ND	ug/L	5.0				05/03/23 23:24		
Chlorobenzene	ND	ug/L	5.0	0.31	1		05/03/23 23:24		
Chloroethane	ND	ug/L	5.0	0.77	1		05/03/23 23:24		
Chloroform	ND	ug/L	5.0	0.89	1		05/03/23 23:24		
Chloromethane	ND	ug/L	5.0	0.63	1		05/03/23 23:24		
2-Chlorotoluene	ND	ug/L	5.0	0.33	1		05/03/23 23:24		
1-Chlorotoluene	ND	ug/L	5.0	0.36	1		05/03/23 23:24		
Dibromochloromethane	ND	ug/L	5.0	0.70	1		05/03/23 23:24		
I,2-Dibromoethane (EDB)	ND	ug/L	5.0	0.41	1		05/03/23 23:24		
Dibromomethane	ND	ug/L	5.0	0.51	1		05/03/23 23:24		
1,2-Dichlorobenzene	ND	ug/L	5.0	0.34	1		05/03/23 23:24		
1,3-Dichlorobenzene	ND	ug/L	5.0	0.40	1		05/03/23 23:24		
1,4-Dichlorobenzene	ND	ug/L	5.0	0.35	1		05/03/23 23:24		
rans-1,4-Dichloro-2-butene	ND	ug/L	100	0.60	1		05/03/23 23:24		
Dichlorodifluoromethane	ND	ug/L	5.0	0.93	1		05/03/23 23:24		
1,1-Dichloroethane	ND	ug/L	5.0	0.35	1		05/03/23 23:24		
,2-Dichloroethane	ND	ug/L	5.0	0.35	1		05/03/23 23:24		
1,1-Dichloroethene	ND	ug/L	5.0	0.31	1		05/03/23 23:24		
cis-1,2-Dichloroethene	ND	ug/L	5.0	0.39	1		05/03/23 23:24		
rans-1,2-Dichloroethene	ND	ug/L	5.0	0.35	1		05/03/23 23:24	156-60-5	
1,2-Dichloropropane	ND	ug/L	5.0	0.36	1		05/03/23 23:24	78-87-5	
,3-Dichloropropane	ND	ug/L	5.0	0.27	1		05/03/23 23:24	142-28-9	
2,2-Dichloropropane	ND	ug/L	5.0	0.47	1		05/03/23 23:24	1 594-20-7	
,1-Dichloropropene	ND	ug/L	5.0	0.58	1		05/03/23 23:24		
cis-1,3-Dichloropropene	ND	ug/L	5.0	0.69	1		05/03/23 23:24	10061-01-5	
rans-1,3-Dichloropropene	ND	ug/L	5.0	0.68	1		05/03/23 23:24	10061-02-6	
Ethylbenzene	ND	ug/L	5.0	0.32	1		05/03/23 23:24	100-41-4	
Ethyl methacrylate	ND	ug/L	100	0.50	1		05/03/23 23:24	97-63-2	
Hexachloro-1,3-butadiene	ND	ug/L	5.0	0.64	1		05/03/23 23:24	87-68-3	
n-Hexane	ND	ug/L	5.0	4.2	1		05/03/23 23:24	110-54-3	
2-Hexanone	ND	ug/L	25.0	2.1	1		05/03/23 23:24		

ANALYTICAL RESULTS

Project: GE Indy
Pace Project No.: 50343061

Date: 05/24/2023 02:58 PM

Sample: Trip Blank-042523	Lab ID:	50343061010	Collected:	04/25/23	3 08:00	Received: 04	/25/23 15:10 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Ana	lytical Services	- Indianapolis	5					
lodomethane	ND	ug/L	10.0	0.82	1		05/03/23 23:24	74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	5.0	0.29	1		05/03/23 23:24		
p-Isopropyltoluene	ND	ug/L	5.0	0.35	1		05/03/23 23:24		
Methylene Chloride	ND	ug/L	5.0	2.8	1		05/03/23 23:24	75-09-2	
1-Methylnaphthalene	ND	ug/L	10.0	1.4	1		05/03/23 23:24	90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	1.3	1		05/03/23 23:24	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	1.9	1		05/03/23 23:24	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	4.0	0.29	1		05/03/23 23:24	1634-04-4	
Naphthalene	ND	ug/L	1.2	0.75	1		05/03/23 23:24	91-20-3	
n-Propylbenzene	ND	ug/L	5.0	0.33	1		05/03/23 23:24	103-65-1	
Styrene	ND	ug/L	5.0	0.31	1		05/03/23 23:24	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.73	1		05/03/23 23:24	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.22	1		05/03/23 23:24	79-34-5	
Tetrachloroethene	ND	ug/L	5.0	0.25	1		05/03/23 23:24	127-18-4	
Toluene	ND	ug/L	5.0	0.30	1		05/03/23 23:24	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	0.41	1		05/03/23 23:24	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	5.0	0.40	1		05/03/23 23:24	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	5.0	0.67	1		05/03/23 23:24		
1,1,2-Trichloroethane	ND	ug/L	5.0	0.36	1		05/03/23 23:24	79-00-5	
Trichloroethene	ND	ug/L	5.0	0.44	1		05/03/23 23:24	79-01-6	
Trichlorofluoromethane	ND	ug/L	5.0	0.43	1		05/03/23 23:24		
1,2,3-Trichloropropane	ND	ug/L	5.0	0.42	1		05/03/23 23:24	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/L	5.0	0.34	1		05/03/23 23:24	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.34	1		05/03/23 23:24		
Vinyl acetate	ND	ug/L	50.0	1.7	1		05/03/23 23:24		
Vinyl chloride	ND	ug/L	2.0	0.62	1		05/03/23 23:24		
Xylene (Total)	ND	ug/L	10.0	0.32	1		05/03/23 23:24		
Surrogates		- 3-							
Dibromofluoromethane (S)	101	%.	82-128		1		05/03/23 23:24	1868-53-7	
4-Bromofluorobenzene (S)	100	%.	79-124		1		05/03/23 23:24	460-00-4	
Toluene-d8 (S)	97	%.	73-122		1		05/03/23 23:24	2037-26-5	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:

Parameter

Date: 05/24/2023 02:58 PM

Sulfate

QUALITY CONTROL DATA

Project: GE Indy Pace Project No.: 50343061 QC Batch: 730253 Analysis Method: EPA 300.0 QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions Laboratory: Pace Analytical Services - Indianapolis Associated Lab Samples: 50343061001 METHOD BLANK: Matrix: Water Associated Lab Samples: 50343061001 Blank Reporting MDL Parameter Units Result Limit Analyzed Qualifiers Sulfate ND 250 85.0 04/30/23 08:14 ug/L LABORATORY CONTROL SAMPLE: 3351255 Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Sulfate 5000 4640 93 90-110 ug/L MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3351256 3351257 MSD MS 50342584001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Result **RPD** RPD Result Conc. Conc. % Rec % Rec Limits Qual Sulfate ug/L 20700 50000 50000 64400 67100 87 93 80-120 15

3351259

MSD

Result

4250

MS

% Rec

88

MSD

% Rec

85

% Rec

Limits

80-120

Max

RPD

15

Qual

RPD

3

MS

Result

4380

3351258

ND

50343012001

Result

Units

ug/L

MS

Spike

Conc.

5000

MSD

Spike

Conc.

5000

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50343061

Date: 05/24/2023 02:58 PM

QC Batch: 765427 Analysis Method: AM20GAX

QC Batch Method: AM20GAX Analysis Description: Indicator Gases Water LHC

Laboratory: Pace Analytical Gulf Coast

Associated Lab Samples: 50343061001, 50343061003, 50343061007

METHOD BLANK: 2481509 Matrix: Water

Associated Lab Samples: 50343061001, 50343061003, 50343061007

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Methane	ug/L	ND ND	5.0	2.0	05/08/23 15:30	
Ethane	ug/L	ND	1.0	0.17	05/08/23 15:30	
Ethene	ug/L	ND	1.0	0.24	05/08/23 15:30	
n-Propane	ug/L	ND	1.0	0.29	05/08/23 15:30	
Propylene	ug/L	ND	1.0	0.31	05/08/23 15:30	
Isobutane	ug/L	ND	2.0	0.065	05/08/23 15:30	
n-Butane	ug/L	ND	2.0	0.54	05/08/23 15:30	

LABORATORY CONTROL SAMPLE &	LCSD: 2481510		24	81511						
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
Methane	ug/L	750	690	600	92	81	70-130	13	20	
Ethane	ug/L	38	43	43	113	114	70-130	1	20	
Ethene	ug/L	35	40	40	113	113	70-130	0	20	
n-Propane	ug/L	56	60	60	108	109	70-130	0	20	
Propylene	ug/L	53	51	51	96	96	70-130	0	20	
Isobutane	ug/L	73	76	77	104	105	70-130	0	20	
n-Butane	ug/L	73	73	72	100	98	70-130	2	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50343061

QC Batch: 766040

QC Batch Method:

AM20GAX

Analysis Method:

AM20GAX

Analysis Description:

Indicator Gases Water LHC

Laboratory:

Pace Analytical Gulf Coast

Associated Lab Samples: 50343061001

METHOD BLANK: 2484950

Date: 05/24/2023 02:58 PM

Matrix: Water

Associated Lab Samples: 50343061001

Blank Reporting

Parameter Units Result Limit MDL Analyzed Qualifiers

Ethene ug/L ND 1.0 0.24 05/17/23 14:44

LABORATORY CONTROL SAMPLE & LCSD: 2484951 2484952 LCSD Spike LCS LCS LCSD % Rec Max Parameter Conc. % Rec % Rec RPD RPD Qualifiers Units Result Result Limits Ethene ug/L 120 110 110 70-130 4

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

GE Indy

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:

Parameter

Date: 05/24/2023 02:58 PM

Iron, Dissolved

Project:

QUALITY CONTROL DATA

Pace Project No.: 50343061 QC Batch: 731465 Analysis Method: EPA 6010 QC Batch Method: EPA 3010 Analysis Description: 6010 MET Dissolved Laboratory: Pace Analytical Services - Indianapolis Associated Lab Samples: 50343061001 METHOD BLANK: Matrix: Water Associated Lab Samples: 50343061001 Blank Reporting MDL Qualifiers Parameter Units Result Limit Analyzed Iron, Dissolved ND 100 48.8 05/03/23 18:30 ug/L LABORATORY CONTROL SAMPLE: 3356641 Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Iron, Dissolved ug/L 10000 9790 98 80-120

MSD

Spike

Conc.

10000

3356643

MSD

Result

10700

MS

% Rec

105

MSD

% Rec

106

% Rec

Limits

75-125

Max

RPD

20

Qual

RPD

2

MS

Result

10500

3356642

50343127001

Result

<0.10

mg/L

Units

ug/L

MS

Spike

Conc.

10000

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50343061

Date: 05/24/2023 02:58 PM

QC Batch: 731038 Analysis Method: EPA 5030/8260
QC Batch Method: EPA 5030/8260 Analysis Description: 8260 MSV

Laboratory: Pace Analytical Services - Indianapolis

Associated Lab Samples: 50343061001, 50343061002, 50343061003, 50343061004, 50343061005, 50343061006

METHOD BLANK: 3354977 Matrix: Water

Associated Lab Samples: 50343061001, 50343061002, 50343061003, 50343061004, 50343061005, 50343061006

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	ND ND	5.0	0.73	05/02/23 22:55	
1,1,1-Trichloroethane	ug/L	ND	5.0	0.67	05/02/23 22:55	
1,1,2,2-Tetrachloroethane	ug/L	ND	5.0	0.22	05/02/23 22:55	
1,1,2-Trichloroethane	ug/L	ND	5.0	0.36	05/02/23 22:55	
1,1-Dichloroethane	ug/L	ND	5.0	0.35	05/02/23 22:55	
1,1-Dichloroethene	ug/L	ND	5.0	0.31	05/02/23 22:55	
1,1-Dichloropropene	ug/L	ND	5.0	0.58	05/02/23 22:55	
1,2,3-Trichlorobenzene	ug/L	ND	5.0	0.41	05/02/23 22:55	
1,2,3-Trichloropropane	ug/L	ND	5.0	0.42	05/02/23 22:55	
1,2,4-Trichlorobenzene	ug/L	ND	5.0	0.40	05/02/23 22:55	
1,2,4-Trimethylbenzene	ug/L	ND	5.0	0.34	05/02/23 22:55	
1,2-Dibromoethane (EDB)	ug/L	ND	5.0	0.41	05/02/23 22:55	
1,2-Dichlorobenzene	ug/L	ND	5.0	0.34	05/02/23 22:55	
1,2-Dichloroethane	ug/L	ND	5.0	0.35	05/02/23 22:55	
1,2-Dichloropropane	ug/L	ND	5.0	0.36	05/02/23 22:55	
1,3,5-Trimethylbenzene	ug/L	ND	5.0	0.34	05/02/23 22:55	
1,3-Dichlorobenzene	ug/L	ND	5.0	0.40	05/02/23 22:55	
1,3-Dichloropropane	ug/L	ND	5.0	0.27	05/02/23 22:55	
1,4-Dichlorobenzene	ug/L	ND	5.0	0.35	05/02/23 22:55	
1-Methylnaphthalene	ug/L	ND	10.0	1.4	05/02/23 22:55	
2,2-Dichloropropane	ug/L	ND	5.0	0.47	05/02/23 22:55	
2-Butanone (MEK)	ug/L	ND	25.0	1.4	05/02/23 22:55	
2-Chlorotoluene	ug/L	ND	5.0	0.33	05/02/23 22:55	
2-Hexanone	ug/L	ND	25.0	2.1	05/02/23 22:55	
2-Methylnaphthalene	ug/L	ND	10.0	1.3	05/02/23 22:55	
4-Chlorotoluene	ug/L	ND	5.0	0.36	05/02/23 22:55	
4-Methyl-2-pentanone (MIBK)	ug/L	ND	25.0	1.9	05/02/23 22:55	
Acetone	ug/L	ND	100	3.9	05/02/23 22:55	
Acrolein	ug/L	ND	50.0	8.9	05/02/23 22:55	
Acrylonitrile	ug/L	ND	100	1.5	05/02/23 22:55	
Benzene	ug/L	ND	5.0	0.33	05/02/23 22:55	
Bromobenzene	ug/L	ND	5.0	0.67	05/02/23 22:55	
Bromochloromethane	ug/L	ND	5.0	0.35	05/02/23 22:55	
Bromodichloromethane	ug/L	ND	5.0	0.55	05/02/23 22:55	
Bromoform	ug/L	ND	5.0	0.80	05/02/23 22:55	
Bromomethane	ug/L	ND	5.0	2.4	05/02/23 22:55	
Carbon disulfide	ug/L	ND	10.0	0.33	05/02/23 22:55	
Carbon tetrachloride	ug/L	ND	5.0	0.74	05/02/23 22:55	
Chlorobenzene	ug/L	ND	5.0	0.31	05/02/23 22:55	
Chloroethane	ug/L	ND	5.0	0.77	05/02/23 22:55	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50343061

Date: 05/24/2023 02:58 PM

METHOD BLANK: 3354977 Matrix: Water

Associated Lab Samples: 50343061001, 50343061002, 50343061003, 50343061004, 50343061005, 50343061006

Chloroform ug/L ND 5.0 0.89 05/02/23 22:55	alifiers
· · · · · · · · · · · · · · · · · · ·	
Chloromethane ug/L ND 5.0 0.63 05/02/23 22:55	
cis-1,2-Dichloroethene ug/L ND 5.0 0.39 05/02/23 22:55	
cis-1,3-Dichloropropene ug/L ND 5.0 0.69 05/02/23 22:55	
Dibromochloromethane ug/L ND 5.0 0.70 05/02/23 22:55	
Dibromomethane ug/L ND 5.0 0.51 05/02/23 22:55	
Dichlorodifluoromethane ug/L ND 5.0 0.93 05/02/23 22:55	
Ethyl methacrylate ug/L ND 100 0.50 05/02/23 22:55	
Ethylbenzene ug/L ND 5.0 0.32 05/02/23 22:55	
Hexachloro-1,3-butadiene ug/L ND 5.0 0.64 05/02/23 22:55	
lodomethane ug/L ND 10.0 0.82 05/02/23 22:55	
Isopropylbenzene (Cumene) ug/L ND 5.0 0.29 05/02/23 22:55	
Methyl-tert-butyl ether ug/L ND 4.0 0.29 05/02/23 22:55	
Methylene Chloride ug/L ND 5.0 2.8 05/02/23 22:55	
n-Butylbenzene ug/L ND 5.0 0.35 05/02/23 22:55	
n-Hexane ug/L ND 5.0 4.2 05/02/23 22:55	
n-Propylbenzene ug/L ND 5.0 0.33 05/02/23 22:55	
Naphthalene ug/L ND 1.2 0.75 05/02/23 22:55	
p-Isopropyltoluene ug/L ND 5.0 0.35 05/02/23 22:55	
sec-Butylbenzene ug/L ND 5.0 0.30 05/02/23 22:55	
Styrene ug/L ND 5.0 0.31 05/02/23 22:55	
tert-Butylbenzene ug/L ND 5.0 0.33 05/02/23 22:55	
Tetrachloroethene ug/L ND 5.0 0.25 05/02/23 22:55	
Toluene ug/L ND 5.0 0.30 05/02/23 22:55	
trans-1,2-Dichloroethene ug/L ND 5.0 0.35 05/02/23 22:55	
trans-1,3-Dichloropropene ug/L ND 5.0 0.68 05/02/23 22:55	
trans-1,4-Dichloro-2-butene ug/L ND 100 0.60 05/02/23 22:55	
Trichloroethene ug/L ND 5.0 0.44 05/02/23 22:55	
Trichlorofluoromethane ug/L ND 5.0 0.43 05/02/23 22:55	
Vinyl acetate ug/L ND 50.0 1.7 05/02/23 22:55	
Vinyl chloride ug/L ND 2.0 0.62 05/02/23 22:55	
Xylene (Total) ug/L ND 10.0 0.32 05/02/23 22:55	
4-Bromofluorobenzene (S) %. 98 79-124 05/02/23 22:55	
Dibromofluoromethane (S) %. 101 82-128 05/02/23 22:55	
Toluene-d8 (S) %. 96 73-122 05/02/23 22:55	

LABORATORY CONTROL SAMPLE:	3354978					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	50	56.4	113	81-130	
1,1,1-Trichloroethane	ug/L	50	56.5	113	76-127	
1,1,2,2-Tetrachloroethane	ug/L	50	53.8	108	70-126	
1,1,2-Trichloroethane	ug/L	50	56.4	113	79-124	
1,1-Dichloroethane	ug/L	50	57.0	114	76-123	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50343061

Date: 05/24/2023 02:58 PM

_ABORATORY CONTROL SAMPLE:	3354978					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1-Dichloroethene	ug/L	50	54.9	110	73-133	
1,1-Dichloropropene	ug/L	50	58.1	116	78-144	
1,2,3-Trichlorobenzene	ug/L	50	52.1	104	72-138	
1,2,3-Trichloropropane	ug/L	50	51.7	103	75-121	
,2,4-Trichlorobenzene	ug/L	50	51.2	102	71-138	
,2,4-Trimethylbenzene	ug/L	50	51.6	103	70-127	
,2-Dibromoethane (EDB)	ug/L	50	55.8	112	80-126	
,2-Dichlorobenzene	ug/L	50	52.3	105	79-123	
,2-Dichloroethane	ug/L	50	53.5	107	70-124	
,2-Dichloropropane	ug/L	50	56.6	113	74-128	
,3,5-Trimethylbenzene	ug/L	50	51.8	104	71-124	
,3-Dichlorobenzene	ug/L	50	51.0	102	77-124	
,3-Dichloropropane	ug/L	50	55.1	110	77-126	
,4-Dichlorobenzene	ug/L	50	50.6	101	77-120	
-Methylnaphthalene	ug/L	50	55.8	112	49-175	
,2-Dichloropropane	ug/L	50	46.1	92	65-136	
-Butanone (MEK)	ug/L	250	270	108	59-134	
-Chlorotoluene	ug/L	50	51.6	103	74-121	
-Hexanone	ug/L	250	261	105	63-134	
-Methylnaphthalene	ug/L	50	55.2	110	52-170	
-Chlorotoluene	ug/L	50	51.7	103	78-123	
-Methyl-2-pentanone (MIBK)	ug/L	250	281	112	67-133	
cetone	ug/L	250	275	110	32-133	
crolein	ug/L	1000	1020	102	35-166	
crylonitrile	ug/L	250	291	116	69-137	
Benzene	ug/L	50	54.4	109	74-124	
Bromobenzene	ug/L	50	52.6	105	76-122	
romochloromethane	ug/L	50	55.3	111	66-127	
Bromodichloromethane	ug/L	50	60.9	122	80-126	
Bromoform	ug/L	50	47.4	95	75-128	
Bromomethane	ug/L	50	23.9	48	10-183	
Carbon disulfide	ug/L	50	52.1	104	68-123	
Carbon tetrachloride	ug/L	50	56.8	114	78-132	
Chlorobenzene	ug/L	50	52.7	105	77-121	
Chloroethane	ug/L	50	54.7	109	43-140	
Chloroform	ug/L	50	55.6	111	75-118	
Chloromethane	ug/L	50	59.9	120	45-130	
is-1,2-Dichloroethene	ug/L	50	55.7	111	76-125	
is-1,3-Dichloropropene	ug/L	50	58.7	117	76-132	
ibromochloromethane	ug/L	50	58.0	116	79-130	
Dibromomethane	ug/L	50	55.6	111	79-124	
Dichlorodifluoromethane	ug/L	50	26.9	54	10-124	
thyl methacrylate	ug/L	50	58.8J	118	73-137	
thylbenzene	ug/L	50	53.9	108	74-125	
lexachloro-1,3-butadiene	ug/L	50	50.2	100	66-141	
odomethane	ug/L	50	18.0	36	10-160	
sopropylbenzene (Cumene)	ug/L	50	52.9	106	75-126	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50343061

Date: 05/24/2023 02:58 PM

ABORATORY CONTROL SAMPLE:	3354978					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
ethyl-tert-butyl ether	ug/L	50	56.5	113	74-129	
ethylene Chloride	ug/L	50	47.0	94	77-126	
utylbenzene	ug/L	50	52.1	104	72-131	
exane	ug/L	50	50.2	100	58-131	
ropylbenzene	ug/L	50	52.6	105	76-127	
ohthalene	ug/L	50	52.3	105	70-132	
sopropyltoluene	ug/L	50	52.1	104	76-126	
c-Butylbenzene	ug/L	50	52.6	105	76-129	
ene	ug/L	50	54.2	108	81-129	
-Butylbenzene	ug/L	50	50.9	102	76-129	
rachloroethene	ug/L	50	51.8	104	73-132	
ene	ug/L	50	53.0	106	72-119	
s-1,2-Dichloroethene	ug/L	50	55.7	111	74-125	
s-1,3-Dichloropropene	ug/L	50	57.6	115	75-132	
s-1,4-Dichloro-2-butene	ug/L	50	54J	108	66-152	
hloroethene	ug/L	50	54.9	110	75-127	
hlorofluoromethane	ug/L	50	61.8	124	64-136	
yl acetate	ug/L	200	277	139	62-159	
yl chloride	ug/L	50	52.4	105	48-133	
ene (Total)	ug/L	150	158	105	73-123	
romofluorobenzene (S)	%.			101	79-124	
omofluoromethane (S)	%.			102	82-128	
uene-d8 (S)	%.			100	73-122	

MATRIX SPIKE SAMPLE:	3354980						
		50343061002	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	ND	50	61.8	124	60-150	
1,1,1-Trichloroethane	ug/L	ND	50	64.5	129	63-138	
1,1,2,2-Tetrachloroethane	ug/L	ND	50	59.4	119	58-146	
1,1,2-Trichloroethane	ug/L	ND	50	62.9	126	63-142	
1,1-Dichloroethane	ug/L	5.4	50	69.4	128	64-138	
1,1-Dichloroethene	ug/L	ND	50	60.0	118	65-139	
1,1-Dichloropropene	ug/L	ND	50	63.5	127	68-155	
1,2,3-Trichlorobenzene	ug/L	ND	50	52.6	105	32-141	
1,2,3-Trichloropropane	ug/L	ND	50	57.7	115	54-144	
1,2,4-Trichlorobenzene	ug/L	ND	50	51.5	103	31-140	
1,2,4-Trimethylbenzene	ug/L	ND	50	55.9	112	34-144	
1,2-Dibromoethane (EDB)	ug/L	ND	50	61.3	123	64-139	
1,2-Dichlorobenzene	ug/L	ND	50	55.9	112	50-136	
1,2-Dichloroethane	ug/L	ND	50	59.3	119	55-146	
1,2-Dichloropropane	ug/L	ND	50	62.8	126	66-134	
1,3,5-Trimethylbenzene	ug/L	ND	50	55.5	111	29-151	
1,3-Dichlorobenzene	ug/L	ND	50	53.6	107	47-133	
1,3-Dichloropropane	ug/L	ND	50	60.9	122	61-144	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: GE Indy
Pace Project No.: 50343061

Date: 05/24/2023 02:58 PM

MATRIX SPIKE SAMPLE:	3354980						
Doressetes	l late	50343061002	Spike	MS	MS % Rec	% Rec	Qualifiers
Parameter	Units	Result	Conc.	Result		Limits	Qualifiers
1,4-Dichlorobenzene	ug/L	ND	50	53.1	106	50-131	
1-Methylnaphthalene	ug/L	ND	50	54.9	110	20-176	
2,2-Dichloropropane	ug/L	ND	50	44.0	88	33-146	
2-Butanone (MEK)	ug/L	ND	250	306	122	45-155	
2-Chlorotoluene	ug/L	ND	50	56.0	112	43-142	
2-Hexanone	ug/L	ND	250	296	118	48-157	
2-Methylnaphthalene	ug/L	ND	50	53.4	107	21-175	
4-Chlorotoluene	ug/L	ND	50	55.4	111	47-137	
1-Methyl-2-pentanone (MIBK)	ug/L	ND	250	320	128	53-156	
Acetone	ug/L	ND	250	316	120	16-162	
Acrolein	ug/L	ND	1000	907	91	39-184	
Acrylonitrile	ug/L	ND	250	318	127	58-140	
Benzene	ug/L	ND	50	60.9	122	65-137	
Bromobenzene	ug/L	ND	50	57.0	114	56-137	
Bromochloromethane	ug/L	ND	50	61.7	123	56-139	
Bromodichloromethane	ug/L	ND	50	67.3	135	61-149	
Bromoform	ug/L	ND	50	53.0	106	51-138	
Bromomethane	ug/L	ND	50	11.9	24	10-169	
Carbon disulfide	ug/L	ND	50 50	50.4	101	55-126	
Carbon tetrachloride	ug/L	ND	50	63.5	127	65-156	
Chlorobenzene	-	ND	50 50	58.3	117	54-135	
Chloroethane	ug/L	56.4	50 50	112	111	46-142	
Chloroform	ug/L	ND	50 50	62.6	125		
	ug/L	ND ND				64-133	
Chloromethane	ug/L	30.7	50	57.9	116	30-139	
cis-1,2-Dichloroethene	ug/L	ND	50	92.2	123	59-141	
cis-1,3-Dichloropropene	ug/L		50	62.7	125	57-141	
Dibromochloromethane	ug/L	ND	50	64.9	130	59-147	
Dibromomethane	ug/L	ND	50	61.9	124	64-142	
Dichlorodifluoromethane	ug/L	ND	50	15.4	31	10-144	
Ethyl methacrylate	ug/L	ND	50	64.6J	129	58-147	
Ethylbenzene	ug/L	ND	50	59.0	118	50-143	
Hexachloro-1,3-butadiene	ug/L	ND	50	49.5	99	16-155	
odomethane	ug/L	ND	50	16.2	32	10-154	
sopropylbenzene (Cumene)	ug/L	ND	50	57.7	115	36-151	
Methyl-tert-butyl ether	ug/L	ND	50	61.7	123	66-138	
Methylene Chloride	ug/L	ND	50	51.0	102	53-126	
n-Butylbenzene	ug/L	ND	50	52.9	106	31-142	
n-Hexane	ug/L	ND	50	46.0	92	53-129	
-Propylbenzene	ug/L	ND	50	57.1	114	39-145	
laphthalene	ug/L	ND	50	54.2	108	51-135	
-lsopropyltoluene	ug/L	ND	50	54.2	108	38-145	
sec-Butylbenzene	ug/L	ND	50	55.6	111	33-153	
Styrene	ug/L	ND	50	59.2	118	57-141	
ert-Butylbenzene	ug/L	ND	50	55.5	111	45-145	
Tetrachloroethene	ug/L	ND	50	56.8	114	43-149	
Toluene	ug/L	ND	50	59.4	119	57-137	
rans-1,2-Dichloroethene	ug/L	ND	50	61.6	118	63-133	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50343061

Date: 05/24/2023 02:58 PM

MATRIX SPIKE SAMPLE:	3354980						
		50343061002	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
trans-1,3-Dichloropropene	ug/L	ND	50	61.5	123	56-140	
trans-1,4-Dichloro-2-butene	ug/L	ND	50	56.5J	113	36-169	
Trichloroethene	ug/L	ND	50	62.5	121	52-145	
Trichlorofluoromethane	ug/L	ND	50	64.3	129	52-144	
Vinyl acetate	ug/L	ND	200	220	110	27-179	
Vinyl chloride	ug/L	379	50	306	-145	43-139 E	
Xylene (Total)	ug/L	ND	150	175	116	52-137	
4-Bromofluorobenzene (S)	%.				101	79-124	
Dibromofluoromethane (S)	%.				102	82-128	
Toluene-d8 (S)	%.				100	73-122	

SAMPLE DUPLICATE: 3354979						
		50343061003	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	ND ND	ND		20	
1,1,1-Trichloroethane	ug/L	ND	ND		20	
1,1,2,2-Tetrachloroethane	ug/L	ND	ND		20	
1,1,2-Trichloroethane	ug/L	ND	ND		20	
1,1-Dichloroethane	ug/L	ND	ND		20	
1,1-Dichloroethene	ug/L	ND	ND		20	
1,1-Dichloropropene	ug/L	ND	ND		20	
1,2,3-Trichlorobenzene	ug/L	ND	ND		20	
1,2,3-Trichloropropane	ug/L	ND	ND		20	
1,2,4-Trichlorobenzene	ug/L	ND	ND		20	
1,2,4-Trimethylbenzene	ug/L	ND	ND		20	
1,2-Dibromoethane (EDB)	ug/L	ND	ND		20	
1,2-Dichlorobenzene	ug/L	ND	ND		20	
1,2-Dichloroethane	ug/L	ND	ND		20	
1,2-Dichloropropane	ug/L	ND	ND		20	
1,3,5-Trimethylbenzene	ug/L	ND	ND		20	
1,3-Dichlorobenzene	ug/L	ND	ND		20	
1,3-Dichloropropane	ug/L	ND	ND		20	
1,4-Dichlorobenzene	ug/L	ND	ND		20	
1-Methylnaphthalene	ug/L	ND	ND		20	
2,2-Dichloropropane	ug/L	ND	ND		20	
2-Butanone (MEK)	ug/L	ND	ND		20	
2-Chlorotoluene	ug/L	ND	ND		20	
2-Hexanone	ug/L	ND	ND		20	
2-Methylnaphthalene	ug/L	ND	ND		20	
4-Chlorotoluene	ug/L	ND	ND		20	
4-Methyl-2-pentanone (MIBK)	ug/L	ND	ND		20	
Acetone	ug/L	ND	21.1J		20	
Acrolein	ug/L	ND	ND		20	
Acrylonitrile	ug/L	ND	ND		20	
Benzene	ug/L	ND	ND		20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: GE Indy
Pace Project No.: 50343061

Date: 05/24/2023 02:58 PM

SAMPLE DUPLICATE: 3354979		50343061003	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Bromobenzene	ug/L		ND		20	
Bromochloromethane	ug/L	ND	ND		20	
Bromodichloromethane	ug/L	ND	ND		20	
Bromoform	ug/L	ND	ND		20	
Bromomethane	ug/L	ND	ND		20	
Carbon disulfide	ug/L	ND	ND		20	
Carbon tetrachloride	ug/L	ND	ND		20	
Chlorobenzene	ug/L	ND	ND		20	
Chloroethane	ug/L	11.8	11.4	4	20	
Chloroform	ug/L	ND	ND		20	
Chloromethane	ug/L	ND	ND		20	
cis-1,2-Dichloroethene	ug/L	ND	ND		20	
cis-1,3-Dichloropropene	ug/L	ND	ND		20	
Dibromochloromethane	ug/L	ND	ND		20	
Dibromomethane	ug/L	ND	ND		20	
Dichlorodifluoromethane	ug/L	ND	ND		20	
Ethyl methacrylate	ug/L	ND	ND		20	
Ethylbenzene	ug/L	ND	ND		20	
Hexachloro-1,3-butadiene	ug/L	ND	ND		20	
odomethane	ug/L	ND	ND		20	
sopropylbenzene (Cumene)	ug/L	ND	ND		20	
Methyl-tert-butyl ether	ug/L	ND	ND		20	
Methylene Chloride	ug/L	ND	ND		20	
n-Butylbenzene	ug/L	ND	ND		20	
n-Hexane	ug/L	ND	ND		20	
n-Propylbenzene	ug/L	ND	ND		20	
Naphthalene	ug/L	ND	ND		20	
o-Isopropyltoluene	ug/L	ND	ND		20	
sec-Butylbenzene	ug/L	ND	ND		20	
Styrene	ug/L	ND	ND		20	
ert-Butylbenzene	ug/L	ND	ND		20	
Tetrachloroethene	ug/L	ND	ND		20	
Toluene	ug/L	ND	ND		20	
rans-1,2-Dichloroethene	ug/L	ND	ND		20	
trans-1,3-Dichloropropene	ug/L	ND	ND		20	
trans-1,4-Dichloro-2-butene	ug/L	ND	ND		20	
Trichloroethene	ug/L	ND	ND		20	
Trichlorofluoromethane	ug/L	ND	ND		20	
Vinyl acetate	ug/L	ND	ND		20	
Vinyl chloride	ug/L	2.2	2.1	4	20	
Xylene (Total)	ug/L	ND	ND		20	
4-Bromofluorobenzene (S)	%.	100	101			
Dibromofluoromethane (S)	%.	103	102			
Toluene-d8 (S)	%.	98	98			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50343061

Date: 05/24/2023 02:58 PM

QC Batch: 731291 Analysis Method: EPA 5030/8260
QC Batch Method: EPA 5030/8260 Analysis Description: 8260 MSV

Laboratory: Pace Analytical Services - Indianapolis

Associated Lab Samples: 50343061007, 50343061008, 50343061009

METHOD BLANK: 3356043 Matrix: Water

Associated Lab Samples: 50343061007, 50343061008, 50343061009

	, , , , , , , , , , , , , , , , , , , ,	Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L		5.0	0.73	05/03/23 10:45	
1,1,1-Trichloroethane	ug/L	ND	5.0	0.67	05/03/23 10:45	
1,1,2,2-Tetrachloroethane	ug/L	ND	5.0	0.22	05/03/23 10:45	
1,1,2-Trichloroethane	ug/L	ND	5.0	0.36	05/03/23 10:45	
1,1-Dichloroethane	ug/L	ND	5.0	0.35	05/03/23 10:45	
1,1-Dichloroethene	ug/L	ND	5.0	0.31	05/03/23 10:45	
1,1-Dichloropropene	ug/L	ND	5.0	0.58	05/03/23 10:45	
1,2,3-Trichlorobenzene	ug/L	ND	5.0	0.41	05/03/23 10:45	
1,2,3-Trichloropropane	ug/L	ND	5.0	0.42	05/03/23 10:45	
1,2,4-Trichlorobenzene	ug/L	ND	5.0	0.40	05/03/23 10:45	
1,2,4-Trimethylbenzene	ug/L	ND	5.0	0.34	05/03/23 10:45	
1,2-Dibromoethane (EDB)	ug/L	ND	5.0	0.41	05/03/23 10:45	
1,2-Dichlorobenzene	ug/L	ND	5.0	0.34	05/03/23 10:45	
1,2-Dichloroethane	ug/L	ND	5.0	0.35	05/03/23 10:45	
1,2-Dichloropropane	ug/L	ND	5.0	0.36	05/03/23 10:45	
1,3,5-Trimethylbenzene	ug/L	ND	5.0	0.34	05/03/23 10:45	
1,3-Dichlorobenzene	ug/L	ND	5.0	0.40	05/03/23 10:45	
1,3-Dichloropropane	ug/L	ND	5.0	0.27	05/03/23 10:45	
1,4-Dichlorobenzene	ug/L	ND	5.0	0.35	05/03/23 10:45	
1-Methylnaphthalene	ug/L	ND	10.0	1.4	05/03/23 10:45	
2,2-Dichloropropane	ug/L	ND	5.0	0.47	05/03/23 10:45	
2-Butanone (MEK)	ug/L	ND	25.0	1.4	05/03/23 10:45	
2-Chlorotoluene	ug/L	ND	5.0	0.33	05/03/23 10:45	
2-Hexanone	ug/L	ND	25.0	2.1	05/03/23 10:45	
2-Methylnaphthalene	ug/L	ND	10.0	1.3	05/03/23 10:45	
4-Chlorotoluene	ug/L	ND	5.0	0.36	05/03/23 10:45	
4-Methyl-2-pentanone (MIBK)	ug/L	ND	25.0	1.9	05/03/23 10:45	
Acetone	ug/L	ND	100	3.9	05/03/23 10:45	
Acrolein	ug/L	ND	50.0	8.9	05/03/23 10:45	
Acrylonitrile	ug/L	ND	100	1.5	05/03/23 10:45	
Benzene	ug/L	ND	5.0	0.33	05/03/23 10:45	
Bromobenzene	ug/L	ND	5.0	0.67	05/03/23 10:45	
Bromochloromethane	ug/L	ND	5.0	0.35	05/03/23 10:45	
Bromodichloromethane	ug/L	ND	5.0	0.55	05/03/23 10:45	
Bromoform	ug/L	ND	5.0	0.80	05/03/23 10:45	
Bromomethane	ug/L	ND	5.0	2.4	05/03/23 10:45	
Carbon disulfide	ug/L	ND	10.0	0.33	05/03/23 10:45	
Carbon tetrachloride	ug/L	ND	5.0	0.74	05/03/23 10:45	
Chlorobenzene	ug/L	ND	5.0	0.31	05/03/23 10:45	
Chloroethane	ug/L	ND	5.0	0.77	05/03/23 10:45	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50343061

Date: 05/24/2023 02:58 PM

METHOD BLANK: 3356043 Matrix: Water

Associated Lab Samples: 50343061007, 50343061008, 50343061009

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Chloroform	ug/L	ND	5.0	0.89	05/03/23 10:45	·
Chloromethane	ug/L	ND	5.0	0.63	05/03/23 10:45	
cis-1,2-Dichloroethene	ug/L	ND	5.0	0.39	05/03/23 10:45	
cis-1,3-Dichloropropene	ug/L	ND	5.0	0.69	05/03/23 10:45	
Dibromochloromethane	ug/L	ND	5.0	0.70	05/03/23 10:45	
Dibromomethane	ug/L	ND	5.0	0.51	05/03/23 10:45	
Dichlorodifluoromethane	ug/L	ND	5.0	0.93	05/03/23 10:45	
Ethyl methacrylate	ug/L	ND	100	0.50	05/03/23 10:45	
Ethylbenzene	ug/L	ND	5.0	0.32	05/03/23 10:45	
Hexachloro-1,3-butadiene	ug/L	ND	5.0	0.64	05/03/23 10:45	
Iodomethane	ug/L	ND	10.0	0.82	05/03/23 10:45	
Isopropylbenzene (Cumene)	ug/L	ND	5.0	0.29	05/03/23 10:45	
Methyl-tert-butyl ether	ug/L	ND	4.0	0.29	05/03/23 10:45	
Methylene Chloride	ug/L	ND	5.0	2.8	05/03/23 10:45	
n-Butylbenzene	ug/L	ND	5.0	0.35	05/03/23 10:45	
n-Hexane	ug/L	ND	5.0	4.2	05/03/23 10:45	
n-Propylbenzene	ug/L	ND	5.0	0.33	05/03/23 10:45	
Naphthalene	ug/L	ND	1.2	0.75	05/03/23 10:45	
p-Isopropyltoluene	ug/L	ND	5.0	0.35	05/03/23 10:45	
sec-Butylbenzene	ug/L	ND	5.0	0.30	05/03/23 10:45	
Styrene	ug/L	ND	5.0	0.31	05/03/23 10:45	
tert-Butylbenzene	ug/L	ND	5.0	0.33	05/03/23 10:45	
Tetrachloroethene	ug/L	ND	5.0	0.25	05/03/23 10:45	
Toluene	ug/L	ND	5.0	0.30	05/03/23 10:45	
trans-1,2-Dichloroethene	ug/L	ND	5.0	0.35	05/03/23 10:45	
trans-1,3-Dichloropropene	ug/L	ND	5.0	0.68	05/03/23 10:45	
trans-1,4-Dichloro-2-butene	ug/L	ND	100	0.60	05/03/23 10:45	
Trichloroethene	ug/L	ND	5.0	0.44	05/03/23 10:45	
Trichlorofluoromethane	ug/L	ND	5.0	0.43	05/03/23 10:45	
Vinyl acetate	ug/L	ND	50.0	1.7	05/03/23 10:45	
Vinyl chloride	ug/L	ND	2.0	0.62	05/03/23 10:45	
Xylene (Total)	ug/L	ND	10.0	0.32	05/03/23 10:45	
4-Bromofluorobenzene (S)	%.	100	79-124		05/03/23 10:45	
Dibromofluoromethane (S)	%.	101	82-128		05/03/23 10:45	1d
Toluene-d8 (S)	%.	98	73-122		05/03/23 10:45	

LABORATORY CONTROL SAMPLE:	3356044					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	50	55.3	111	81-130	
1,1,1-Trichloroethane	ug/L	50	54.9	110	76-127	
1,1,2,2-Tetrachloroethane	ug/L	50	52.8	106	70-126	
1,1,2-Trichloroethane	ug/L	50	55.3	111	79-124	
1.1-Dichloroethane	ua/l	50	53.8	108	76-123	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50343061

Date: 05/24/2023 02:58 PM

LABORATORY CONTROL SAMPLE:	3356044					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1-Dichloroethene	ug/L	50	52.3	105	73-133	
1,1-Dichloropropene	ug/L	50	57.4	115	78-144	
1,2,3-Trichlorobenzene	ug/L	50	50.1	100	72-138	
1,2,3-Trichloropropane	ug/L	50	52.0	104	75-121	
,2,4-Trichlorobenzene	ug/L	50	50.8	102	71-138	
,2,4-Trimethylbenzene	ug/L	50	51.9	104	70-127	
,2-Dibromoethane (EDB)	ug/L	50	54.4	109	80-126	
,2-Dichlorobenzene	ug/L	50	50.8	102	79-123	
,2-Dichloroethane	ug/L	50	51.9	104	70-124	
,2-Dichloropropane	ug/L	50	55.2	110	74-128	
,3,5-Trimethylbenzene	ug/L	50	51.3	103	71-124	
,3-Dichlorobenzene	ug/L	50	50.6	101	77-124	
,3-Dichloropropane	ug/L	50	54.7	109	77-126	
,4-Dichlorobenzene	ug/L	50	50.1	100	77-120	
-Methylnaphthalene	ug/L	50	53.0	106	49-175	
,2-Dichloropropane	ug/L	50	58.9	118	65-136	
-Butanone (MEK)	ug/L	250	284	114	59-134	
-Chlorotoluene	ug/L	50	51.4	103	74-121	
-Hexanone	ug/L	250	264	105	63-134	
-Methylnaphthalene	ug/L	50	52.9	106	52-170	
-Chlorotoluene	ug/L	50	51.2	102	78-123	
-Methyl-2-pentanone (MIBK)	ug/L	250	282	113	67-133	
cetone	ug/L	250	272	109	32-133	
crolein	ug/L	1000	1030	103	35-166	
crylonitrile	ug/L	250	290	116	69-137	
enzene	ug/L	50	53.0	106	74-124	
romobenzene	ug/L	50	51.7	103	76-122	
Gromochloromethane	ug/L	50	54.1	108	66-127	
Bromodichloromethane	ug/L	50	58.9	118	80-126	
Bromoform	ug/L	50 50	47.6	95	75-128	
Bromomethane	ug/L	50	17.6	35	10-183	
Carbon disulfide	ug/L	50 50	48.1	96	68-123	
Carbon tetrachloride	ug/L	50	55.1	110	78-132	
Chlorobenzene	_	50	52.4	105	76-132 77-121	
Chloroethane	ug/L ug/L	50	52. 4 51.1	103	43-140	
Chloroform	ug/L	50	54.3	109	75-118	
Chloromethane		50 50	50.1	109	45-130	
	ug/L		54.1		76-125	
is-1,2-Dichloroethene	ug/L	50 50		108		
is-1,3-Dichloropropene iibromochloromethane	ug/L	50 50	60.2 57.4	120 115	76-132 79-130	
Dibromocnioromethane	ug/L			115 100		
	ug/L	50 50	54.4	109	79-124 10-124	
Dichlorodifluoromethane	ug/L	50 50	19.3	39	10-124	
thyl methacrylate	ug/L	50 50	58.3J	117	73-137	
Ethylbenzene	ug/L	50	52.8	106	74-125	
lexachloro-1,3-butadiene	ug/L	50	51.6	103	66-141	
odomethane	ug/L	50	15.8	32	10-160	
sopropylbenzene (Cumene)	ug/L	50	52.9	106	75-126	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50343061

Date: 05/24/2023 02:58 PM

LABORATORY CONTROL SAMPLE:	3356044					
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Methyl-tert-butyl ether	ug/L		55.0	110	74-129	
Methylene Chloride	ug/L	50	45.1	90	77-126	
n-Butylbenzene	ug/L	50	53.8	108	72-131	
n-Hexane	ug/L	50	52.1	104	58-131	
n-Propylbenzene	ug/L	50	53.9	108	76-127	
Naphthalene	ug/L	50	50.4	101	70-132	
p-Isopropyltoluene	ug/L	50	52.2	104	76-126	
sec-Butylbenzene	ug/L	50	53.3	107	76-129	
Styrene	ug/L	50	53.4	107	81-129	
tert-Butylbenzene	ug/L	50	51.2	102	76-129	
Tetrachloroethene	ug/L	50	52.8	106	73-132	
Toluene	ug/L	50	52.5	105	72-119	
trans-1,2-Dichloroethene	ug/L	50	54.0	108	74-125	
trans-1,3-Dichloropropene	ug/L	50	59.5	119	75-132	
trans-1,4-Dichloro-2-butene	ug/L	50	59.7J	119	66-152	
Trichloroethene	ug/L	50	53.9	108	75-127	
Trichlorofluoromethane	ug/L	50	56.5	113	64-136	
Vinyl acetate	ug/L	200	276	138	62-159	
Vinyl chloride	ug/L	50	46.3	93	48-133	
Xylene (Total)	ug/L	150	158	105	73-123	
4-Bromofluorobenzene (S)	%.			102	79-124	
Dibromofluoromethane (S)	%.			103	82-128	
Toluene-d8 (S)	%.			101	73-122	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50343061

Date: 05/24/2023 02:58 PM

QC Batch: 731360 Analysis Method: EPA 5030/8260
QC Batch Method: EPA 5030/8260 Analysis Description: 8260 MSV

Laboratory: Pace Analytical Services - Indianapolis

Associated Lab Samples: 50343061010

METHOD BLANK: 3356253 Matrix: Water

Associated Lab Samples: 50343061010

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	ND ND	5.0	0.73	05/03/23 22:55	
1,1,1-Trichloroethane	ug/L	ND	5.0	0.67	05/03/23 22:55	
1,1,2,2-Tetrachloroethane	ug/L	ND	5.0	0.22	05/03/23 22:55	
1,1,2-Trichloroethane	ug/L	ND	5.0	0.36	05/03/23 22:55	
1,1-Dichloroethane	ug/L	ND	5.0	0.35	05/03/23 22:55	
1,1-Dichloroethene	ug/L	ND	5.0	0.31	05/03/23 22:55	
1,1-Dichloropropene	ug/L	ND	5.0	0.58	05/03/23 22:55	
1,2,3-Trichlorobenzene	ug/L	ND	5.0	0.41	05/03/23 22:55	
1,2,3-Trichloropropane	ug/L	ND	5.0	0.42	05/03/23 22:55	
1,2,4-Trichlorobenzene	ug/L	ND	5.0	0.40	05/03/23 22:55	
1,2,4-Trimethylbenzene	ug/L	ND	5.0	0.34	05/03/23 22:55	
1,2-Dibromoethane (EDB)	ug/L	ND	5.0	0.41	05/03/23 22:55	
1,2-Dichlorobenzene	ug/L	ND	5.0	0.34	05/03/23 22:55	
1,2-Dichloroethane	ug/L	ND	5.0	0.35	05/03/23 22:55	
1,2-Dichloropropane	ug/L	ND	5.0	0.36	05/03/23 22:55	
1,3,5-Trimethylbenzene	ug/L	ND	5.0	0.34	05/03/23 22:55	
1,3-Dichlorobenzene	ug/L	ND	5.0	0.40	05/03/23 22:55	
1,3-Dichloropropane	ug/L	ND	5.0	0.27	05/03/23 22:55	
1,4-Dichlorobenzene	ug/L	ND	5.0	0.35	05/03/23 22:55	
1-Methylnaphthalene	ug/L	ND	10.0	1.4	05/03/23 22:55	
2,2-Dichloropropane	ug/L	ND	5.0	0.47	05/03/23 22:55	
2-Butanone (MEK)	ug/L	ND	25.0	1.4	05/03/23 22:55	
2-Chlorotoluene	ug/L	ND	5.0	0.33	05/03/23 22:55	
2-Hexanone	ug/L	ND	25.0	2.1	05/03/23 22:55	
2-Methylnaphthalene	ug/L	ND	10.0	1.3	05/03/23 22:55	
4-Chlorotoluene	ug/L	ND	5.0	0.36	05/03/23 22:55	
4-Methyl-2-pentanone (MIBK)	ug/L	ND	25.0	1.9	05/03/23 22:55	
Acetone	ug/L	ND	100	3.9	05/03/23 22:55	
Acrolein	ug/L	ND	50.0	8.9	05/03/23 22:55	
Acrylonitrile	ug/L	ND	100	1.5	05/03/23 22:55	
Benzene	ug/L	ND	5.0	0.33	05/03/23 22:55	
Bromobenzene	ug/L	ND	5.0	0.67	05/03/23 22:55	
Bromochloromethane	ug/L	ND	5.0	0.35	05/03/23 22:55	
Bromodichloromethane	ug/L	ND	5.0	0.55	05/03/23 22:55	
Bromoform	ug/L	ND	5.0	0.80	05/03/23 22:55	
Bromomethane	ug/L	ND	5.0	2.4	05/03/23 22:55	
Carbon disulfide	ug/L	ND	10.0	0.33	05/03/23 22:55	
Carbon tetrachloride	ug/L	ND	5.0	0.74	05/03/23 22:55	
Chlorobenzene	ug/L	ND	5.0	0.31	05/03/23 22:55	
Chloroethane	ug/L	ND	5.0	0.77	05/03/23 22:55	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50343061

Date: 05/24/2023 02:58 PM

METHOD BLANK: 3356253 Matrix: Water

Associated Lab Samples: 50343061010

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Chloroform	ug/L	ND	5.0	0.89	05/03/23 22:55	
Chloromethane	ug/L	ND	5.0	0.63	05/03/23 22:55	
cis-1,2-Dichloroethene	ug/L	ND	5.0	0.39	05/03/23 22:55	
cis-1,3-Dichloropropene	ug/L	ND	5.0	0.69	05/03/23 22:55	
Dibromochloromethane	ug/L	ND	5.0	0.70	05/03/23 22:55	
Dibromomethane	ug/L	ND	5.0	0.51	05/03/23 22:55	
Dichlorodifluoromethane	ug/L	ND	5.0	0.93	05/03/23 22:55	
Ethyl methacrylate	ug/L	ND	100	0.50	05/03/23 22:55	
Ethylbenzene	ug/L	ND	5.0	0.32	05/03/23 22:55	
Hexachloro-1,3-butadiene	ug/L	ND	5.0	0.64	05/03/23 22:55	
Iodomethane	ug/L	ND	10.0	0.82	05/03/23 22:55	
Isopropylbenzene (Cumene)	ug/L	ND	5.0	0.29	05/03/23 22:55	
Methyl-tert-butyl ether	ug/L	ND	4.0	0.29	05/03/23 22:55	
Methylene Chloride	ug/L	ND	5.0	2.8	05/03/23 22:55	
n-Butylbenzene	ug/L	ND	5.0	0.35	05/03/23 22:55	
n-Hexane	ug/L	ND	5.0	4.2	05/03/23 22:55	
n-Propylbenzene	ug/L	ND	5.0	0.33	05/03/23 22:55	
Naphthalene	ug/L	ND	1.2	0.75	05/03/23 22:55	
p-Isopropyltoluene	ug/L	ND	5.0	0.35	05/03/23 22:55	
sec-Butylbenzene	ug/L	ND	5.0	0.30	05/03/23 22:55	
Styrene	ug/L	ND	5.0	0.31	05/03/23 22:55	
tert-Butylbenzene	ug/L	ND	5.0	0.33	05/03/23 22:55	
Tetrachloroethene	ug/L	ND	5.0	0.25	05/03/23 22:55	
Toluene	ug/L	ND	5.0	0.30	05/03/23 22:55	
trans-1,2-Dichloroethene	ug/L	ND	5.0	0.35	05/03/23 22:55	
trans-1,3-Dichloropropene	ug/L	ND	5.0	0.68	05/03/23 22:55	
trans-1,4-Dichloro-2-butene	ug/L	ND	100	0.60	05/03/23 22:55	
Trichloroethene	ug/L	ND	5.0	0.44	05/03/23 22:55	
Trichlorofluoromethane	ug/L	ND	5.0	0.43	05/03/23 22:55	
Vinyl acetate	ug/L	ND	50.0	1.7	05/03/23 22:55	
Vinyl chloride	ug/L	ND	2.0	0.62	05/03/23 22:55	
Xylene (Total)	ug/L	ND	10.0	0.32	05/03/23 22:55	
4-Bromofluorobenzene (S)	%.	101	79-124		05/03/23 22:55	
Dibromofluoromethane (S)	%.	101	82-128		05/03/23 22:55	1d
Toluene-d8 (S)	%.	97	73-122		05/03/23 22:55	

LABORATORY CONTROL SAMPLE:	3356254					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	50	54.3	109	81-130	
1,1,1-Trichloroethane	ug/L	50	55.3	111	76-127	
1,1,2,2-Tetrachloroethane	ug/L	50	54.6	109	70-126	
1,1,2-Trichloroethane	ug/L	50	55.4	111	79-124	
1.1-Dichloroethane	ua/l	50	55.6	111	76-123	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50343061

Date: 05/24/2023 02:58 PM

LABORATORY CONTROL SAMPLE:	3356254					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifier
1,1-Dichloroethene	ug/L		51.5	103	73-133	
1,1-Dichloropropene	ug/L	50	57.0	114	78-144	
1,2,3-Trichlorobenzene	ug/L	50	50.8	102	72-138	
1,2,3-Trichloropropane	ug/L	50	52.8	106	75-121	
1,2,4-Trichlorobenzene	ug/L	50	50.2	100	71-138	
I,2,4-Trimethylbenzene	ug/L	50	52.1	104	70-127	
,2-Dibromoethane (EDB)	ug/L	50	54.5	109	80-126	
,2-Dichlorobenzene	ug/L	50	51.1	102	79-123	
,2-Dichloroethane	ug/L	50	52.7	105	70-124	
,2-Dichloropropane	ug/L	50	55.5	111	74-128	
,3,5-Trimethylbenzene	ug/L	50	50.7	101	71-124	
,3-Dichlorobenzene	ug/L	50	50.3	101	77-124	
,3-Dichloropropane	ug/L	50	53.5	107	77-126	
I,4-Dichlorobenzene	ug/L	50	49.8	100	77-120	
-Methylnaphthalene	ug/L	50	54.4	109	49-175	
2,2-Dichloropropane	ug/L	50	44.0	88	65-136	
2-Butanone (MEK)	ug/L	250	284	114	59-134	
2-Chlorotoluene	ug/L	50	52.1	104	74-121	
2-Hexanone	ug/L	250	263	105	63-134	
-Methylnaphthalene	ug/L	50	52.8	106	52-170	
-Chlorotoluene	ug/L	50	51.4	103	78-123	
-Methyl-2-pentanone (MIBK)	ug/L	250	281	113	67-133	
Acetone	ug/L	250	270	108	32-133	
Acrolein	ug/L	1000	1020	102	35-166	
Acrylonitrile	ug/L	250	293	117	69-137	
Benzene	ug/L	50	53.1	106	74-124	
Bromobenzene	ug/L	50	51.4	103	76-122	
Bromochloromethane	ug/L	50	54.3	109	66-127	
Bromodichloromethane	ug/L	50	59.6	119	80-126	
Bromoform	ug/L	50	48.3	97	75-128	
Bromomethane	ug/L	50	20.9	42	10-183	
Carbon disulfide	ug/L	50	46.3	93	68-123	
Carbon tetrachloride	ug/L	50	55.0	110	78-132	
Chlorobenzene	ug/L	50	51.0	102	77-121	
Chloroethane	ug/L	50	49.8	100	43-140	
Chloroform	ug/L	50	54.5	109	75-118	
Chloromethane	ug/L	50	49.3	99	45-130	
sis-1,2-Dichloroethene	ug/L	50	54.2	108	76-125	
is-1,3-Dichloropropene	ug/L	50	57.0	114	76-132	
Dibromochloromethane	ug/L	50	57.6	115	79-130	
Dibromomethane	ug/L	50	55.2	110	79-124	
Dichlorodifluoromethane	ug/L	50	17.5	35	10-124	
Ethyl methacrylate	ug/L	50	58.7J	117	73-137	
Ethylbenzene	ug/L	50	52.2	104	74-125	
Hexachloro-1,3-butadiene	ug/L	50	49.1	98	66-141	
odomethane	ug/L	50	13.0	26	10-160	
sopropylbenzene (Cumene)	ug/L	50	51.9	104	75-126	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50343061

Date: 05/24/2023 02:58 PM

LABORATORY CONTROL SAMPLE:	3356254					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Methyl-tert-butyl ether	ug/L	50	56.2	112	74-129	
Methylene Chloride	ug/L	50	45.4	91	77-126	
n-Butylbenzene	ug/L	50	51.9	104	72-131	
n-Hexane	ug/L	50	45.1	90	58-131	
n-Propylbenzene	ug/L	50	52.0	104	76-127	
Naphthalene	ug/L	50	51.1	102	70-132	
p-Isopropyltoluene	ug/L	50	51.4	103	76-126	
sec-Butylbenzene	ug/L	50	52.2	104	76-129	
Styrene	ug/L	50	52.3	105	81-129	
tert-Butylbenzene	ug/L	50	51.6	103	76-129	
Tetrachloroethene	ug/L	50	50.5	101	73-132	
Toluene	ug/L	50	51.1	102	72-119	
trans-1,2-Dichloroethene	ug/L	50	53.3	107	74-125	
trans-1,3-Dichloropropene	ug/L	50	56.5	113	75-132	
trans-1,4-Dichloro-2-butene	ug/L	50	52.9J	106	66-152	
Trichloroethene	ug/L	50	53.7	107	75-127	
Trichlorofluoromethane	ug/L	50	55.9	112	64-136	
Vinyl acetate	ug/L	200	279	139	62-159	
Vinyl chloride	ug/L	50	45.5	91	48-133	
Xylene (Total)	ug/L	150	154	103	73-123	
4-Bromofluorobenzene (S)	%.			100	79-124	
Dibromofluoromethane (S)	%.			102	82-128	
Toluene-d8 (S)	%.			98	73-122	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50343061

QC Batch: 729837

QC Batch Method: EPA 353.2

Date: 05/24/2023 02:58 PM

Analysis Method: EPA 353.2

Analysis Description: 353.2 Nitrate + Nitrite, Unpres.

Pace Analytical Services - Indianapolis

Associated Lab Samples: 50343061001

METHOD BLANK: 3349512 Matrix: Water

Associated Lab Samples: 50343061001

ples: 50343061001

Blank Reporting Limit MDL Qualifiers Parameter Units Result Analyzed Nitrogen, Nitrate mg/L ND 0.10 0.011 04/25/23 22:11 Nitrogen, NO2 plus NO3 mg/L ND 0.10 0.011 04/25/23 22:11

Laboratory:

LABORATORY CONTROL SAMPLE: 3349513

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Nitrogen, Nitrate 0.94 94 90-110 mg/L 1 mg/L Nitrogen, NO2 plus NO3 2 1.9 97 90-110

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3349514 3349515 MS MSD 50343102001 Spike Spike MS MSD MS MSD % Rec Max RPD Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** Qual Nitrogen, Nitrate mg/L 1.7 1 1 2.6 2.6 91 90-110 0 20 Nitrogen, NO2 plus NO3 1.7 2 2 3.7 3.6 99 98 90-110 20 mg/L 0

3349516 MATRIX SPIKE SAMPLE: 50343102002 MS MS Spike % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers 1.5 2.4 90-110 Nitrogen, Nitrate mg/L 1 96 1.5 Nitrogen, NO2 plus NO3 2 3.5 103 90-110 mg/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50343061

QC Batch: 731673

QC Batch Method: SM 5310C

Analysis Method: SM 5310C

Analysis Description:

5310C Total Organic Carbon

Laboratory:

Pace Analytical Services - Indianapolis

Associated Lab Samples: 50343061001

METHOD BLANK: 3357782

Date: 05/24/2023 02:58 PM

Matrix: Water

Associated Lab Samples: 50343061001

Blank Reporting

ParameterUnitsResultLimitMDLAnalyzedQualifiersTotal Organic Carbonug/LND100023605/06/23 03:29

LABORATORY CONTROL SAMPLE: 3357783

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units **Total Organic Carbon** ug/L 10000 10000 100 90-110

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3357784

MS MSD

50343595002 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Conc. Conc. Result Result % Rec % Rec **RPD** RPD Qual Result Limits **Total Organic Carbon** ND 10000 10700 10900 20 ug/L 10000 98 100 80-120 2

3357785

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: GE Indy
Pace Project No.: 50343061

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

WORKORDER QUALIFIERS

WO: 50343061

[1] In the RSK-175 analysis sample 22304261301 was analyzed outside holding time.

ANALYTE QUALIFIERS

Date: 05/24/2023 02:58 PM

1d A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

D4 Sample was diluted due to the presence of high levels of target analytes.

E Analyte concentration exceeded the calibration range. The reported result is estimated.

H1 Analysis was conducted outside of the recognized method holding time.

METHOD CROSS REFERENCE TABLE

Project: GE Indy
Pace Project No.: 50343061

Parameter	Matrix	Analytical Method	Preparation Method
6010 MET ICP, Dissolved	Water	SW-846 6010B	SW-846 3010A

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: GE Indy
Pace Project No.: 50343061

Date: 05/24/2023 02:58 PM

Lab ID Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
50343061001 MW-425-042523	EPA 300.0	730253		
50343061001 MW-425-042523	AM20GAX	765427		
50343061001 MW-425-042523	AM20GAX	766040		
50343061003 W-9-042523	AM20GAX	765427		
50343061007 W-8-042523	AM20GAX	765427		
50343061001 MW-425-042523	EPA 3010	731465	EPA 6010	731469
50343061001 MW-425-042523	EPA 5030/8260	731038		
50343061002 MW-331-042523	EPA 5030/8260	731038		
50343061003 W-9-042523	EPA 5030/8260	731038		
50343061004 MW-251-042523	EPA 5030/8260	731038		
50343061005 AD-100-042523	EPA 5030/8260	731038		
50343061006 W-10-042523	EPA 5030/8260	731038		
50343061007 W-8-042523	EPA 5030/8260	731291		
50343061008 MW-41-042523	EPA 5030/8260	731291		
50343061009 MW-241-042523	EPA 5030/8260	731291		
50343061010 Trip Blank-042523	EPA 5030/8260	731360		
50343061001 MW-425-042523	EPA 353.2	729837		
50343061001 MW-425-042523	SM 5310C	731673		

Pace Analytical*	
WWW.PACELABS.COM	

Chase Forman

(740)403-1387

chase.forman@ramboll.com

SAMPLE ID

One Character per box.

(A-Z, 0-9/, -)

Sample Ids must be unique

8805 Governor's Hill Drive Suite 205

Fax

Required Client Information:

Cincinnati, OH 45249

Requested Due Date:

Section A

Company Address:

Email:

Phone:

ITEM

Submitting a sample via this cha

Copy To:

Project #:

MATRIX

Water

Oil

Wipe

Other

Product

Soil/Solid

Drinking Water

Waste Water

Purchase Order #:

Project Name:

CODE

DW

ww

OT

W0#:50343061

COLLECTED

END

TIME

DATE

START

TIME

GE Indy

codes to left)

MATRIX CODE SAMPLE TYPE

(G=GRAB (

DY / Analytical Request Document

GAL DOCUMENT. All relevant fields must be completed accurately.

		matic		d Co	nditi	ions	four	nd at	http	s://i	nfo.p	ace	labs	.com	n/hu	bfs/p	as-st	anda	Page		df.
	ar	ne:	_		_							_	-								
SS:																			Re	egula	tory Agency
	ote:																				
		Mana	ager:		hea	athe	r.pa	tter	son	@pa	acel	abs	.cor	n,						State	/ Location
ro	file #	t:	976	1-8																	IN
										R	equ	este	i An	alysi	s Fil	terec	(Y/N)			
		Pre	ser	vati	ves			N/A													
П			301	Vali	V C S				_	3,4		_	_	_		-	$\overline{}$	+	+	1	T T
Oripreserved	H2SO4	HNO3	HCI	NaOH	Na2S203	Methanol	Other	Analyses Test	VOC by 8260	Dissolved Gases by AM20GA	YOC 5310	Sulfate 300.0	Nitrate 353.2	6010 Diss. Fe (FF)						Residual Chlorine (Y/N)	
,	1	1	5						Ź	V	X	V	X	X				十	\top	T	001
L	L	-	2	-	-	-	-	١,	Θ		-	1	-	1	-	-	\vdash	+	+	1	01
			3						X											1	002
									V	X										1	acr
-	-		52		-	\vdash	-		K	1			-	_	\vdash		\vdash	+	+	1	Del
			_						\triangle	_	_	L_	_		_	_		\perp	_	1	004
			3						X												05
			3						V						Г					1	000
-	_		_	-		-	-		À	1		_	-	-	-	-	\vdash	+	+	1	07
			5	_	·	_	_				_			_	_	-	\vdash	1	-	1	0
			3						X												008
			3						X	1										1	dos
-			3						X									+	+	1	011)
_	-		7	-		-	_		4	7	-		-		-	-	\vdash	+	+	1	- (0
									L		_				_			_	_	1	

10 10 P WILLIAM - OT L50		V									
ADDITIONAL COMMENTS	RELINQUIS	ED BY AFFILIATION	DATE	TIME	ACCEPTED BY AFFILIATION	DATE	TIME		SAMPLE C	CONDITIONS	
Nitrate 48 hour hold time	mart?	Hawff	4-25-2	1516	the l	4/25/23	1510	7-1	×	15	7
		SAMPLER NAM	E AND SIGNAT		Ll Stinet			J u	uo pe	>	S

SIGNATURE of SAMPLER:

Addre

Pace

Pace I

Pace I

F-IN-Q-290-rev.22, 22Apr2022

SAMPLE CONDITION UPON RECEIPT FORM

Date/Time and Initials of person examining contents	· M	2	4/25/23 1540	_			
1. Courier: ☐ FED EX ☐ UPS ☐ CLIENT ☐ PAC	E 🗆 l	JSPS 🗆	OTHER5. Packing Material:	☐ Bubble Wrap	Bubble	Bags	
2. Custody Seal on Cooler/Box Present:	□ No			□ None	☐ Other		
(If yes)Seals Intact: \Box Yes \Box No (leave blank	if no seals	were prese	ent)				
3. Thermometer: 1 2 3 4 5 6 AB C D E F			6. Ice Type: Wet	☐ Blue ☐ None			
4. Cooler Temperature(s): 23/7-1 (Initial/Corrected) RECORD TEMPS OF ALL COOLERS RECEI	VED (use Co	omments belo	7. If temp. is over 6°C or to cooler temp.	under 0°C, was the PM up should be above free			□ No
All c	liscrepand	ies will be	written out in the comments section below.				
	Yes	No			Yes	No	N/A
USDA Regulated Soils? (HI, ID, NY, WA, OR,CA, NM, TX, OK, AR, LA, TN, AL, MS, NC, SC, GA, FL, or Puerto Rico)			All containers needing acid/base preservation of CHECKED?: Exceptions: VOA, coliform, LLHg any container with a septum cap or preserved we Circle:	, O&G, RAD CHEM, and			
Short Hold Time Analysis (48 hours or less)? Analysis:	/		HN03 (<2) H2S04 (<2) NaOH (>10) NaOH/2 Any non-conformance to pH recommendations will be count form			*	
Time 5035A TC placed in Freezer or Short Holds To Lab	Time:	10	Residual Chlorine Check (SVOC 625 Pest/PCE	3 608)	Present	Absent	N/A
Rush TAT Requested (4 days or less):			Residual Chlorine Check (Total/Amenable/Free	e Cyanide)			
Custody Signatures Present?	_		Headspace Wisconsin Sulfide?				
Containers Intact?:			Headspace in VOA Vials (>6mm): See Containter Count form for details		<u>Present</u>	Absent	No VOA Vials Sent
Sample Label (IDs/Dates/Times) Match COC?: Except TCs, which only require sample ID	/		Trip Blank Present?		_		
Extra labels on Terracore Vials? (soils only)			Trip Blank Custody Seals?:		1		
COMMENTS:							
	-						
							· · · · · · · · · · · · · · · · · · ·

that are out of conformance **

		MeOH (only)	1																										Nitric	Sulfuric	Sodium Hydroxide	Sodium Hydroxide/ ZnAc
		SBS DI		V	IALS					AMB	ER G	LASS						Р	LAST	IC					OTH	HER			Red	Yellow	Green	Black
COC Line Item	WGFU	R	PG9H	VOA VIAL HS (>6mm)	VG9U	DG9N	VG9T	AGOU	AG1H	AG1U	AG2U	AG3S	AG3SF	AG3C	BP1U	BP1N	BP2U	BP3U	BP3N	BP3F	BP3S	BP3B	BP3Z	ССЗН	CG3F	Syringe Kit	7,	Matrix	HNO3 <2	H2SO4 <2	NaOH >10	NaOH/Zn Ac >9
1			5									1						1		(4	~	~		
2			3															,										1				
3			5																									\perp				
4			3																									\perp				
5			3																									\perp				
6			3																									\perp				
7			5										, "															\perp				
8			3										· .																			
9			3																													
10			3																									4				
11									-		-																					
12																																

Container Codes

Coman	lei Codes							
	Glas	SS				F	Plast	tic
DG9H	40mL HCl amber voa vial	BG1T	1L Na Thiosulfate clear glass	BP1B	1L NaOH plastic	BP4	U 125mL	unpreserved plastic
DG9P	40mL TSP amber vial	BG1U	1L unpreserved glass	BP1N	1L HNO3 plastic	BP4	N 125mL	_ HNO3 plastic
DG9S	40mL H2SO4 amber vial	BG3H	250mL HCl Clear Glass	BP1S	1L H2SO4 plastic	BP4	s 125ml	_ H2SO4 plastic
DG9T	40mL Na Thio amber vial	BG3U	250mL Unpres Clear Glass	BP1U	1L unpreserved plastic			Miscellaneous
DG9U	40mL unpreserved amber vial	AG0U	100mL unpres amber glass	BP1Z	1L NaOH, Zn, Ac			Miscellaneous
VG9H	40mL HCl clear vial	AG1H	1L HCl amber glass	BP2N	500mL HNO3 plastic	Syrin	nge Kit L	LL Cr+6 sampling kit
VG9T	40mL Na Thio. clear vial	AG1S	1L H2SO4 amber glass	BP2C	500mL NaOH plastic	ZPL	Ziploc	Bag
VG9U	40mL unpreserved clear vial	AG1T	1L Na Thiosulfate amber glass	BP2S	500mL H2SO4 plastic	R	Terrac	core Kit
I	40mL w/hexane wipe vial	AG1U	1liter unpres amber glass	BP2U	500mL unpreserved plastic	SP5	T 120ml	Coliform Sodium Thiosulfate
WGKU	8oz unpreserved clear jar	AG2N	500mL HNO3 amber glass	BP2Z	500mL NaOH, Zn Ac	GN	Gener	al Container
WGFU	4oz clear soil jar	AG2S	500mL H2SO4 amber glass	BP3B	250mL NaOH plastic	U	Summ	na Can (air sample)
JGFU	4oz unpreserved amber wide	AG2U	500mL unpres amber glass	BP3N	250mL HNO3 plastic	WT	Water	
CG3H	250mL clear glass HCI	AG3S	250mL H2SO4 amber glass	BP3F	250mL HNO3 plastic-field filtered	SL	Solid S	Solid
CG3F	250mL clear glass HCl, Field Filter	AG3SF	250mL H2SO4 amb glass -field filtered	BP3U	250mL unpreserved plastic	OL:	Oil	
BG1H	1L HCl clear glass	AG3U	250mL unpres amber glass	BP3S	250mL H2SO4 plastic	NA	Non-a	queous liquid
BG1S	1L H2SO4 clear glass	AG3C	250mL NaOH amber glass	BP3Z	250mL NaOH, ZnAc plastic	WF	Wipe	

APPENDIX C-3
JULY/SEPTEMBER 2023 GROUNDWATER SAMPLING EVENT

August 01, 2023

Chase Forman Ramboll 8805 Governor's Hill Drive Suite 205 Cincinnati, OH 45249

RE: Project: GE Indy

Pace Project No.: 50349526

Dear Chase Forman:

Enclosed are the analytical results for sample(s) received by the laboratory on July 18, 2023. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

- Pace Analytical Gulf Coast
- Pace Analytical Services Indianapolis

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Heather Patterson heather.patterson@pacelabs.com (317)228-3146

Heath Pathson

Project Manager

Enclosures

cc: Mr. Tyler Carter, Ramboll Environ Matt Starrett, Ramboll

Dana Williams, Ramboll

CERTIFICATIONS

Project: GE Indy
Pace Project No.: 50349526

Pace Analytical Services Indianapolis

7726 Moller Road, Indianapolis, IN 46268

Illinois Accreditation #: 200074

Indiana Drinking Water Laboratory #: C-49-06

Kansas/TNI Certification #: E-10177 Kentucky UST Agency Interest #: 80226 Kentucky WW Laboratory ID #: 98019

Michigan Drinking Water Laboratory #9050

Pace Analytical Gulf Coast

7979 Innovation Park Drive, Baton Rouge, LA 70820

Arkansas Certification #: 88-0655 DoD ELAP Certification #: 6429-01 Florida Certification #: E87854 Illinois Certification #: 004585 Kansas Certification #: E-10354 Louisiana/LELAP Certification #: 01955 North Carolina Certification #: 618 Ohio VAP Certified Laboratory #: CL0065

Oklahoma Laboratory #: 9204 Texas Certification #: T104704355 Wisconsin Laboratory #: 999788130

USDA Foreign Soil Permit #: 525-23-13-23119 USDA Compliance Agreement #: IN-SL-22-001

North Dakota Certification #: R-195 Oklahoma Certification #: 2019-101 South Carolina Certification #: 73006001 Texas Certification #: T104704178-19-11 USDA Soil Permit # P330-19-00209 Virginia Certification #: 460215 Washington Certification #: C929

SAMPLE SUMMARY

Project: GE Indy
Pace Project No.: 50349526

Lab ID	Sample ID	Matrix	Date Collected	Date Received
50349526001	MW-425-071723	Water	07/17/23 12:10	07/18/23 12:10
50349526002	MW-413S-071723	Water	07/17/23 14:25	07/18/23 12:10
50349526003	MW-410S-071723	Water	07/17/23 15:35	07/18/23 12:10
50349526004	MW-410D-071723	Water	07/17/23 16:35	07/18/23 12:10
50349526005	AD-100-071723	Water	07/17/23 12:00	07/18/23 12:10
50349526006	Trip Blank-071723	Water	07/17/23 08:00	07/18/23 12:10
50349526007	MW-411S-071823	Water	07/18/23 10:25	07/18/23 12:10

SAMPLE ANALYTE COUNT

Project: GE Indy
Pace Project No.: 50349526

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
50349526001	MW-425-071723	EPA 300.0	KBB	1	PASI-I
		AM20GAX	LMB	7	GCLA
		EPA 6010	JPK	1	PASI-I
		EPA 5030/8260	KLP	75	PASI-I
		EPA 353.2	DAW	2	PASI-I
		SM 5310C	ATS	1	PASI-I
50349526002	MW-413S-071723	EPA 300.0	KBB	1	PASI-I
		AM20GAX	LMB	7	GCLA
		EPA 6010	JPK	1	PASI-I
		EPA 5030/8260	KLP	75	PASI-I
		EPA 353.2	DAW	2	PASI-I
		SM 5310C	ATS	1	PASI-I
50349526003	MW-410S-071723	EPA 300.0	KBB	1	PASI-I
		AM20GAX	LMB	7	GCLA
		EPA 6010	JPK	1	PASI-I
		EPA 5030/8260	KLP	75	PASI-I
		EPA 353.2	DAW	2	PASI-I
		SM 5310C	ATS	1	PASI-I
50349526004	MW-410D-071723	EPA 300.0	KBB	1	PASI-I
		AM20GAX	LMB	7	GCLA
		EPA 6010	JPK	1	PASI-I
		EPA 5030/8260	KLP	75	PASI-I
		EPA 353.2	DAW	2	PASI-I
		SM 5310C	ATS	1	PASI-I
50349526005	AD-100-071723	EPA 5030/8260	KLP	75	PASI-I
50349526006	Trip Blank-071723	EPA 5030/8260	KLP	75	PASI-I
50349526007	MW-411S-071823	EPA 300.0	KBB	1	PASI-I
		AM20GAX	LMB	7	GCLA
		EPA 6010	JPK	1	PASI-I
		EPA 5030/8260	KLP	75	PASI-I
		EPA 353.2	DAW	2	PASI-I
		SM 5310C	ATS	1	PASI-I

GCLA = Pace Analytical Gulf Coast

PASI-I = Pace Analytical Services - Indianapolis

SUMMARY OF DETECTION

Project: GE Indy
Pace Project No.: 50349526

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
50349526001	MW-425-071723					
EPA 300.0	Sulfate	4440	ug/L	250	07/22/23 07:50	
AM20GAX	Methane	20000	ug/L	500	07/26/23 09:15	
AM20GAX	Ethene	4500	ug/L	100	07/26/23 09:15	
EPA 6010	Iron, Dissolved	10900	ug/L	100	07/25/23 04:18	
EPA 5030/8260	Chloroethane	274	ug/L	5.0	07/20/23 23:11	M1
EPA 5030/8260	1,1-Dichloroethane	15.5	ug/L	5.0	07/20/23 23:11	
EPA 5030/8260	Vinyl chloride	3.2	ug/L	2.0	07/20/23 23:11	
SM 5310C	Total Organic Carbon	38200	ug/L	4000	07/19/23 22:54	
0349526002	MW-413S-071723					
EPA 300.0	Sulfate	12200	ug/L	250	07/22/23 08:42	
AM20GAX	Methane	10000	ug/L	5.0	07/26/23 09:29	
AM20GAX	Ethane	36	ug/L	1.0	07/26/23 09:29	
AM20GAX	Ethene	140	ug/L	1.0	07/26/23 09:29	
EPA 6010	Iron, Dissolved	9290	ug/L	100	07/25/23 04:20	
EPA 5030/8260	Chloroethane	931	ug/L	50.0	07/20/23 16:24	
EPA 5030/8260	1,1-Dichloroethane	18.2	ug/L	5.0	07/20/23 15:49	
EPA 5030/8260	cis-1,2-Dichloroethene	49.6	ug/L	5.0	07/20/23 15:49	
EPA 5030/8260	Vinyl chloride	168	ug/L	2.0	07/20/23 15:49	
SM 5310C	Total Organic Carbon	62800	ug/L	8000	07/20/23 14:13	
0349526003	MW-410S-071723					
EPA 300.0	Sulfate	294	ug/L	250	07/22/23 10:08	
AM20GAX	Methane	9200	ug/L	5.0	07/26/23 09:44	
AM20GAX	Ethane	34	ug/L	1.0	07/26/23 09:44	
AM20GAX	Ethene	96	ug/L	1.0	07/26/23 09:44	
EPA 6010	Iron, Dissolved	16400	ug/L	100	07/25/23 04:23	
EPA 5030/8260	Chloroethane	5210	ug/L	500	07/21/23 15:46	
EPA 5030/8260	1,1-Dichloroethane	12.9	ug/L	5.0	07/20/23 16:58	
EPA 5030/8260	trans-1,2-Dichloroethene	15.0	ug/L	5.0	07/20/23 16:58	
SM 5310C	Total Organic Carbon	11300	ug/L	4000	07/19/23 23:16	
60349526004	MW-410D-071723					
EPA 300.0	Sulfate	5230	ug/L	250	07/22/23 11:00	
AM20GAX	Methane	8800	ug/L	5.0	07/26/23 09:57	
AM20GAX	Ethane	44	ug/L	1.0	07/26/23 09:57	
AM20GAX	Ethene	290	ug/L	1.0	07/26/23 09:57	
EPA 6010	Iron, Dissolved	13100	ug/L		07/25/23 04:25	
EPA 5030/8260	Chloroethane	6130	ug/L		07/21/23 16:20	
EPA 5030/8260	1,1-Dichloroethane	736	ug/L	50.0	07/20/23 18:40	
EPA 5030/8260	cis-1,2-Dichloroethene	762	ug/L	50.0	07/20/23 18:40	
EPA 5030/8260	trans-1,2-Dichloroethene	30.0	ug/L	5.0	07/20/23 18:06	
EPA 5030/8260	1,1,1-Trichloroethane	6.6	ug/L	5.0	07/20/23 18:06	
EPA 5030/8260	Vinyl chloride	269	ug/L ug/L	2.0		
SM 5310C	Total Organic Carbon	12600	ug/L ug/L	4000	07/19/23 23:26	
50349526005	AD-100-071723		J			
EPA 5030/8260	Chloroethane	4800	ug/L	500	07/21/23 16:54	
EPA 5030/8260	1,1-Dichloroethane	13.8	ug/L		07/20/23 19:14	
_1 /3 3030/0200	i, i-Dichiologulane	13.0	ug/L	3.0	01/20/23 13.14	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

SUMMARY OF DETECTION

Project: GE Indy
Pace Project No.: 50349526

Lab Sample ID Method	Client Sample ID Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
 50349526005	AD-100-071723					
EPA 5030/8260	trans-1,2-Dichloroethene	15.2	ug/L	5.0	07/20/23 19:14	
50349526007	MW-411S-071823					
EPA 300.0	Sulfate	3930	ug/L	250	07/22/23 11:52	
AM20GAX	Methane	7300	ug/L	10	07/26/23 10:10	
AM20GAX	Ethane	4.9	ug/L	2.0	07/26/23 10:10	
AM20GAX	Ethene	360	ug/L	2.0	07/26/23 10:10	
EPA 6010	Iron, Dissolved	58600	ug/L	100	07/25/23 04:27	
EPA 5030/8260	Chloroethane	28000	ug/L	2500	07/20/23 20:56	
EPA 5030/8260	Vinyl chloride	478	ug/L	100	07/20/23 20:22	
SM 5310C	Total Organic Carbon	442000	ug/L	32000	07/20/23 14:47	

Project: GE Indy
Pace Project No.: 50349526

Date: 08/01/2023 12:11 PM

Sample: MW-425-071723	Lab ID:	50349526001	Collecte	d: 07/17/2	3 12:10	Received: 07/	18/23 12:10 Ma	atrix: Water	
			Report					0.0	
Parameters	Results -	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	0.00						
	Pace Ana	lytical Services	- Indianapo	lis					
Sulfate	4440	ug/L	250	190	1		07/22/23 07:50	14808-79-8	
Indicator Gases Water LHC	Analytical	Method: AM200	GAX						
	Pace Ana	lytical Gulf Coas	st						
Methane	20000	ug/L	500	200	100		07/26/23 09:15	74-82-8	
Ethane	ND	ug/L	100	17	100		07/26/23 09:15	74-84-0	
Ethene	4500	ug/L	100	24	100		07/26/23 09:15	74-85-1	
n-Propane	ND	ug/L	100	29	100		07/26/23 09:15	74-98-6	
Propylene	ND	ug/L	100	31	100		07/26/23 09:15	115-07-1	
Isobutane	ND	ug/L	200	6.5	100		07/26/23 09:15		
n-Butane	ND	ug/L	200	54	100		07/26/23 09:15		
6010 MET ICP, Dissolved	Analytical	Method: EPA 6	010 Prepa	ration Meth	od: FPA	A 3010			
, 2.000	•	lytical Services	•						
Iron, Dissolved	10900	ug/L	100	28.6	1	07/25/23 03:34	07/25/23 04:18	7439-89-6	
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	•	lytical Services		lis					
Acetone	ND	ug/L	100	8.9	1		07/20/23 23:11	67-64-1	
Acrolein	ND	ug/L	50.0	12.7	1		07/20/23 23:11		
Acrylonitrile	ND	ug/L	100	2.2	1		07/20/23 23:11		
Benzene	ND	ug/L	5.0	0.39	1		07/20/23 23:11		
Bromobenzene	ND	ug/L	5.0	0.50	1		07/20/23 23:11		
Bromochloromethane	ND	ug/L	5.0	0.43	1		07/20/23 23:11		
Bromodichloromethane	ND	ug/L	5.0	0.57	1		07/20/23 23:11		
Bromoform	ND	ug/L	5.0	0.73	1		07/20/23 23:11		
Bromomethane	ND	ug/L	5.0	0.73	1		07/20/23 23:11		
2-Butanone (MEK)	ND ND	ug/L ug/L	25.0	4.7	1		07/20/23 23:11		
, ,		-		0.38					
n-Butylbenzene	ND	ug/L	5.0		1		07/20/23 23:11 07/20/23 23:11		
sec-Butylbenzene	ND	ug/L	5.0	0.32	1				
tert-Butylbenzene	ND	ug/L	5.0	0.35	1		07/20/23 23:11		
Carbon disulfide	ND	ug/L	10.0	0.83	1		07/20/23 23:11		
Carbon tetrachloride	ND	ug/L	5.0	0.40	1		07/20/23 23:11		
Chlorobenzene	ND	ug/L	5.0	0.36	1		07/20/23 23:11		
Chloroethane	274	ug/L	5.0	0.55	1		07/20/23 23:11		M1
Chloroform	ND	ug/L	5.0	0.44	1		07/20/23 23:11	67-66-3	
Chloromethane	ND	ug/L	5.0	0.50	1		07/20/23 23:11		
2-Chlorotoluene	ND	ug/L	5.0	0.38	1		07/20/23 23:11	95-49-8	
4-Chlorotoluene	ND	ug/L	5.0	0.40	1		07/20/23 23:11	106-43-4	
Dibromochloromethane	ND	ug/L	5.0	0.56	1		07/20/23 23:11	124-48-1	
1,2-Dibromoethane (EDB)	ND	ug/L	5.0	0.55	1		07/20/23 23:11	106-93-4	
Dibromomethane	ND	ug/L	5.0	0.76	1		07/20/23 23:11		
1,2-Dichlorobenzene	ND	ug/L	5.0	0.45	1		07/20/23 23:11		
1,3-Dichlorobenzene	ND	ug/L	5.0	0.39	1		07/20/23 23:11		
1,4-Dichlorobenzene	ND	ug/L	5.0	0.43	1		07/20/23 23:11		

Project: GE Indy
Pace Project No.: 50349526

Date: 08/01/2023 12:11 PM

Sample: MW-425-071723	Lab ID:	50349526001	Collected	d: 07/17/23	3 12:10	Received: 07	7/18/23 12:10 I	Matrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
3260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	•	ytical Services		lis					
rans-1,4-Dichloro-2-butene	ND	ug/L	100	0.72	1		07/20/23 23:1	1 110-57-6	
Dichlorodifluoromethane	ND	ug/L	5.0	0.60	1		07/20/23 23:1		
1,1-Dichloroethane	15.5	ug/L	5.0	0.46	1		07/20/23 23:1		
I,2-Dichloroethane	ND	ug/L	5.0	0.54	1		07/20/23 23:1		
1,1-Dichloroethene	ND	ug/L	5.0	0.46	1		07/20/23 23:1		
cis-1,2-Dichloroethene	ND	ug/L	5.0	0.53	1		07/20/23 23:1		
rans-1,2-Dichloroethene	ND	ug/L	5.0	0.35	1		07/20/23 23:1		
,2-Dichloropropane	ND	ug/L	5.0	0.71	1		07/20/23 23:1		
I,3-Dichloropropane	ND	ug/L	5.0	0.49	1		07/20/23 23:1		
2,2-Dichloropropane	ND	ug/L	5.0	0.43	1		07/20/23 23:1		
,1-Dichloropropene	ND	ug/L ug/L	5.0	0.64	1		07/20/23 23:1		
cis-1,3-Dichloropropene	ND ND	ug/L ug/L	5.0	0.50	1		07/20/23 23:1		
	ND ND	-	5.0	0.50	1		07/20/23 23.1		
rans-1,3-Dichloropropene		ug/L			1		07/20/23 23.1		
Ethylbenzene	ND	ug/L	5.0	0.35					
Ethyl methacrylate	ND	ug/L	100	0.64	1		07/20/23 23:1		
lexachloro-1,3-butadiene	ND	ug/L	5.0	0.46	1		07/20/23 23:1		
i-Hexane	ND	ug/L	5.0	0.46	1		07/20/23 23:1		
2-Hexanone	ND	ug/L	25.0	3.0	1		07/20/23 23:1		
odomethane	ND	ug/L	10.0	0.31	1		07/20/23 23:1		
sopropylbenzene (Cumene)	ND	ug/L	5.0	0.34	1		07/20/23 23:1		
-Isopropyltoluene	ND	ug/L	5.0	0.36	1		07/20/23 23:1		
Methylene Chloride	ND	ug/L	5.0	2.2	1		07/20/23 23:1		
-Methylnaphthalene	ND	ug/L	10.0	0.61	1		07/20/23 23:1		
2-Methylnaphthalene	ND	ug/L	10.0	0.44	1		07/20/23 23:1		
I-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	2.5	1		07/20/23 23:1	1 108-10-1	
Methyl-tert-butyl ether	ND	ug/L	4.0	0.48	1		07/20/23 23:1	1 1634-04-4	
Naphthalene	ND	ug/L	1.2	0.42	1		07/20/23 23:1	1 91-20-3	
n-Propylbenzene	ND	ug/L	5.0	0.34	1		07/20/23 23:1	1 103-65-1	
Styrene	ND	ug/L	5.0	0.40	1		07/20/23 23:1	1 100-42-5	
,1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.50	1		07/20/23 23:1	1 630-20-6	
,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.52	1		07/20/23 23:1	1 79-34-5	
Tetrachloroethene	ND	ug/L	5.0	0.32	1		07/20/23 23:1	1 127-18-4	
Toluene	ND	ug/L	5.0	0.34	1		07/20/23 23:1	1 108-88-3	
,2,3-Trichlorobenzene	ND	ug/L	5.0	0.38	1		07/20/23 23:1	1 87-61-6	
,2,4-Trichlorobenzene	ND	ug/L	5.0	0.45	1		07/20/23 23:1		
,1,1-Trichloroethane	ND	ug/L	5.0	0.47	1		07/20/23 23:1	1 71-55-6	
,1,2-Trichloroethane	ND	ug/L	5.0	0.78	1		07/20/23 23:1	1 79-00-5	
richloroethene	ND	ug/L	5.0	0.70	1		07/20/23 23:1		
Trichlorofluoromethane	ND	ug/L	5.0	0.62	1		07/20/23 23:1		
1,2,3-Trichloropropane	ND	ug/L	5.0	0.82	1		07/20/23 23:1		
,2,4-Trimethylbenzene	ND	ug/L	5.0	0.35	1		07/20/23 23:1		
,3,5-Trimethylbenzene	ND	ug/L	5.0	0.30	1		07/20/23 23:1		
/inyl acetate	ND ND	ug/L	50.0	0.96	1		07/20/23 23:1		
/inyl chloride	3.2	ug/L ug/L	2.0	0.59	1		07/20/23 23:1		
Xylene (Total)	ND	ug/L ug/L	10.0	0.35	1		07/20/23 23.1		

Project: GE Indy
Pace Project No.: 50349526

Date: 08/01/2023 12:11 PM

Sample: MW-425-071723	Lab ID:	50349526001	Collected	d: 07/17/2	3 12:10	Received: 07	/18/23 12:10 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qual
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Anal	ytical Services	- Indianapo	is					
Surrogates									
Dibromofluoromethane (S)	101	%.	82-128		1		07/20/23 23:11	1868-53-7	
4-Bromofluorobenzene (S)	106	%.	79-124		1		07/20/23 23:11	460-00-4	
Toluene-d8 (S)	96	%.	73-122		1		07/20/23 23:11	2037-26-5	
353.2 Nitrogen, NO2/NO3 unpres	Analytical	Method: EPA 3	53.2						
	Pace Anal	ytical Services	- Indianapo	is					
Nitrogen, NO2 plus NO3	ND	mg/L	0.10	0.011	1		07/19/23 00:15		
Nitrogen, Nitrate	ND	mg/L	0.10	0.011	1		07/19/23 00:15	14797-55-8	
5310C TOC	Analytical	Method: SM 53	310C						
	-	ytical Services		is					
Total Organic Carbon	38200	ug/L	4000	944	4		07/19/23 22:54	7440-44-0	

Project: GE Indy
Pace Project No.: 50349526

Date: 08/01/2023 12:11 PM

Sample: MW-413S-071723	Lab ID: 50	349526002	Collected	d: 07/17/23	3 14:25	Received: 07/	18/23 12:10 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
300.0 IC Anions 28 Days	Analytical Me	thod: EPA 30	0.00						
·	Pace Analytic	al Services -	Indianapo	lis					
Sulfate	12200	ug/L	250	190	1		07/22/23 08:42	14808-79-8	
Indicator Gases Water LHC	Analytical Me	thod: AM200	SAX						
	Pace Analytic	al Gulf Coas	t						
Methane	10000	ug/L	5.0	2.0	1		07/26/23 09:29	74-82-8	
Ethane	36	ug/L	1.0	0.17	1		07/26/23 09:29	74-84-0	
Ethene	140	ug/L	1.0	0.24	1		07/26/23 09:29	74-85-1	
n-Propane	ND	ug/L	1.0	0.29	1		07/26/23 09:29	74-98-6	
Propylene		ug/L	1.0	0.31	1		07/26/23 09:29	115-07-1	
Isobutane		ug/L	2.0	0.065	1		07/26/23 09:29		
n-Butane		ug/L	2.0	0.54	1		07/26/23 09:29		
6010 MET ICP, Dissolved	Analytical Me	thod: FPA 60	010 Prepar	ation Meth	nd: FPA	3010			
00 10 III 21 101 , 210001100	Pace Analytic		•						
Iron, Dissolved	9290	ug/L	100	28.6	1	07/25/23 03:34	07/25/23 04:20	7439-89-6	
8260 MSV Indiana	Analytical Me	thod: EPA 50	030/8260						
ozoo mor malana	Pace Analytic			lis					
Acetone	ND	ug/L	100	8.9	1		07/20/23 15:49	67-64-1	
Acrolein		ug/L	50.0	12.7	1		07/20/23 15:49	107-02-8	
Acrylonitrile		ug/L	100	2.2	1		07/20/23 15:49		
Benzene		ug/L	5.0	0.39	1		07/20/23 15:49		
Bromobenzene		ug/L	5.0	0.50	1		07/20/23 15:49		
Bromochloromethane		ug/L	5.0	0.43	1		07/20/23 15:49		
				0.43					
Bromodichloromethane		ug/L	5.0		1		07/20/23 15:49		
Bromoform		ug/L	5.0	0.73	1		07/20/23 15:49		
Bromomethane		ug/L	5.0	0.57	1		07/20/23 15:49		
2-Butanone (MEK)		ug/L	25.0	4.7	1		07/20/23 15:49		
n-Butylbenzene		ug/L	5.0	0.38	1		07/20/23 15:49		
sec-Butylbenzene	ND	ug/L	5.0	0.32	1		07/20/23 15:49	135-98-8	
tert-Butylbenzene	ND	ug/L	5.0	0.35	1		07/20/23 15:49	98-06-6	
Carbon disulfide	ND	ug/L	10.0	0.83	1		07/20/23 15:49	75-15-0	
Carbon tetrachloride	ND	ug/L	5.0	0.40	1		07/20/23 15:49	56-23-5	
Chlorobenzene	ND	ug/L	5.0	0.36	1		07/20/23 15:49	108-90-7	
Chloroethane		ug/L	50.0	5.5	10		07/20/23 16:24	75-00-3	
Chloroform		ug/L	5.0	0.44	1		07/20/23 15:49		
Chloromethane		ug/L	5.0	0.50	1		07/20/23 15:49		
2-Chlorotoluene		ug/L	5.0	0.38	1		07/20/23 15:49		
4-Chlorotoluene		ug/L ug/L	5.0	0.30	1		07/20/23 15:49		
4-Chlorotolderie Dibromochloromethane		-							
		ug/L	5.0	0.56	1		07/20/23 15:49		
1,2-Dibromoethane (EDB)		ug/L	5.0	0.55	1		07/20/23 15:49		
Dibromomethane		ug/L	5.0	0.76	1		07/20/23 15:49		
1,2-Dichlorobenzene		ug/L	5.0	0.45	1		07/20/23 15:49		
1,3-Dichlorobenzene	ND	ug/L	5.0	0.39	1		07/20/23 15:49	541-73-1	
1,4-Dichlorobenzene	ND	ug/L	5.0	0.43	1		07/20/23 15:49	400 40 7	

Project: GE Indy
Pace Project No.: 5034952

Date: 08/01/2023 12:11 PM

Sample: MW-413S-071723	Lab ID:	50349526002	Collected	: 07/17/23	14:25	Received: 07	7/18/23 12:10 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Ana	lytical Services	- Indianapoli	S					
trans-1,4-Dichloro-2-butene	ND	ug/L	100	0.72	1		07/20/23 15:49	110-57-6	
Dichlorodifluoromethane	ND	ug/L	5.0	0.60	1		07/20/23 15:49		
1,1-Dichloroethane	18.2	ug/L	5.0	0.46	1		07/20/23 15:49		
1,2-Dichloroethane	ND	ug/L	5.0	0.54	1		07/20/23 15:49		
1,1-Dichloroethene	ND	ug/L	5.0	0.46	1		07/20/23 15:49		
cis-1,2-Dichloroethene	49.6	ug/L	5.0	0.53	1		07/20/23 15:49		
rans-1,2-Dichloroethene	ND	ug/L	5.0	0.35	1		07/20/23 15:49		
1,2-Dichloropropane	ND	ug/L	5.0	0.71	1		07/20/23 15:49		
1,3-Dichloropropane	ND	ug/L	5.0	0.49	1		07/20/23 15:49		
2,2-Dichloropropane	ND	ug/L	5.0	0.62	1		07/20/23 15:49		
1,1-Dichloropropene	ND	ug/L	5.0	0.64	1		07/20/23 15:49		
cis-1,3-Dichloropropene	ND	ug/L	5.0	0.50	1		07/20/23 15:49		
rans-1,3-Dichloropropene	ND	ug/L	5.0	0.51	1		07/20/23 15:49		
Ethylbenzene	ND	ug/L	5.0	0.35	1		07/20/23 15:49		
Ethyl methacrylate	ND	ug/L	100	0.64	1		07/20/23 15:49		
Hexachloro-1,3-butadiene	ND	ug/L	5.0	0.46	1		07/20/23 15:49		
n-Hexane	ND	ug/L	5.0	0.46	1		07/20/23 15:49		
2-Hexanone	ND	ug/L	25.0	3.0	1		07/20/23 15:49		
odomethane	ND	ug/L	10.0	0.31	1		07/20/23 15:49		
sopropylbenzene (Cumene)	ND	ug/L	5.0	0.34	1		07/20/23 15:49		
o-Isopropyltoluene	ND	ug/L	5.0	0.36	1		07/20/23 15:49		
Methylene Chloride	ND	ug/L	5.0	2.2	1		07/20/23 15:49		
1-Methylnaphthalene	ND	ug/L	10.0	0.61	1		07/20/23 15:49		
2-Methylnaphthalene	ND	ug/L	10.0	0.44	1		07/20/23 15:49		
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	2.5	1		07/20/23 15:49		
Methyl-tert-butyl ether	ND	ug/L	4.0	0.48	1		07/20/23 15:49		
Naphthalene	ND	ug/L	1.2	0.42	1		07/20/23 15:49		
n-Propylbenzene	ND	ug/L	5.0	0.34	1		07/20/23 15:49		
Styrene	ND	ug/L	5.0	0.40	1		07/20/23 15:49		
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.50	1		07/20/23 15:49		
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.52	1		07/20/23 15:49		
Tetrachloroethene	ND	ug/L	5.0	0.32	1		07/20/23 15:49		
Toluene	ND	ug/L	5.0	0.34	1		07/20/23 15:49		
1,2,3-Trichlorobenzene	ND	ug/L	5.0	0.38	1		07/20/23 15:49	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	5.0	0.45	1		07/20/23 15:49		
I,1,1-Trichloroethane	ND	ug/L	5.0	0.47	1		07/20/23 15:49	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	5.0	0.78	1		07/20/23 15:49		
Frichloroethene	ND	ug/L	5.0	0.70	1		07/20/23 15:49		
Frichlorofluoromethane	ND	ug/L	5.0	0.62	1		07/20/23 15:49		
1,2,3-Trichloropropane	ND	ug/L	5.0	0.82	1		07/20/23 15:49		
1,2,4-Trimethylbenzene	ND	ug/L	5.0	0.35	1		07/20/23 15:49		
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.30	1		07/20/23 15:49		
Vinyl acetate	ND	ug/L	50.0	0.96	1		07/20/23 15:49		
Vinyl chloride	168	ug/L	2.0	0.59	1		07/20/23 15:49		
Xylene (Total)	ND	ug/L	10.0	0.35	1		07/20/23 15:49		

Project: GE Indy
Pace Project No.: 50349526

Date: 08/01/2023 12:11 PM

Sample: MW-413S-071723	Lab ID:	50349526002	Collected	d: 07/17/2	3 14:25	Received: 07	/18/23 12:10 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qual
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Anal	ytical Services	- Indianapo	is					
Surrogates									
Dibromofluoromethane (S)	105	%.	82-128		1		07/20/23 15:49	1868-53-7	
4-Bromofluorobenzene (S)	106	%.	79-124		1		07/20/23 15:49	460-00-4	
Toluene-d8 (S)	96	%.	73-122		1		07/20/23 15:49	2037-26-5	
353.2 Nitrogen, NO2/NO3 unpres	Analytical	Method: EPA 3	53.2						
	Pace Anal	ytical Services	- Indianapo	is					
Nitrogen, NO2 plus NO3	ND	mg/L	0.10	0.011	1		07/19/23 00:19		
Nitrogen, Nitrate	ND	mg/L	0.10	0.011	1		07/19/23 00:19	14797-55-8	
5310C TOC	Analytical	Method: SM 53	310C						
	-	ytical Services		is					
Total Organic Carbon	62800	ug/L	8000	1890	8		07/20/23 14:13	7440-44-0	

Project: GE Indy
Pace Project No.: 50349526

Date: 08/01/2023 12:11 PM

Sample: MW-410S-071723	Lab ID: 5	0349526003	Collected	d: 07/17/2	3 15:35	Received: 07/	18/23 12:10 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
300.0 IC Anions 28 Days	Analytical M	lethod: EPA 30	0.00						
·	Pace Analyt	tical Services -	Indianapo	lis					
Sulfate	294	ug/L	250	190	1		07/22/23 10:08	14808-79-8	
Indicator Gases Water LHC	Analytical M	lethod: AM200	SAX						
	Pace Analyt	tical Gulf Coas	t						
Methane	9200	ug/L	5.0	2.0	1		07/26/23 09:44	74-82-8	
Ethane	34	ug/L	1.0	0.17	1		07/26/23 09:44	74-84-0	
Ethene	96	ug/L	1.0	0.24	1		07/26/23 09:44	74-85-1	
n-Propane	ND	ug/L	1.0	0.29	1		07/26/23 09:44	74-98-6	
Propylene	ND	ug/L	1.0	0.31	1		07/26/23 09:44		
Isobutane	ND	ug/L	2.0	0.065	1		07/26/23 09:44		
n-Butane	ND ND	ug/L ug/L	2.0	0.003	1		07/26/23 09:44		
6010 MET ICP, Dissolved	Analytical M	lethod: EPA 60	110 Prepa	ration Meth	od: EDA	3010			
oo to MET ICF, Dissolved	•	tical Services -			ou. Li A	3010			
Iron, Dissolved	16400	ug/L	100	28.6	1	07/25/23 03:34	07/25/23 04:23	7439-89-6	
•		· ·		20.0		01/20/20 00:04	01/20/20 04.20	1400 00 0	
8260 MSV Indiana	•	lethod: EPA 50							
	Pace Analyt	tical Services -	Indianapo	lis					
Acetone	ND	ug/L	100	8.9	1		07/20/23 16:58	67-64-1	
Acrolein	ND	ug/L	50.0	12.7	1		07/20/23 16:58		
Acrylonitrile	ND	ug/L	100	2.2	1		07/20/23 16:58		
Benzene	ND	ug/L ug/L	5.0	0.39	1		07/20/23 16:58		
		•							
Bromobenzene	ND	ug/L	5.0	0.50	1		07/20/23 16:58		
Bromochloromethane	ND	ug/L	5.0	0.43	1		07/20/23 16:58		
Bromodichloromethane	ND	ug/L	5.0	0.57	1		07/20/23 16:58		
Bromoform	ND	ug/L	5.0	0.73	1		07/20/23 16:58	75-25-2	
Bromomethane	ND	ug/L	5.0	0.57	1		07/20/23 16:58	74-83-9	
2-Butanone (MEK)	ND	ug/L	25.0	4.7	1		07/20/23 16:58	78-93-3	
n-Butylbenzene	ND	ug/L	5.0	0.38	1		07/20/23 16:58	104-51-8	
sec-Butylbenzene	ND	ug/L	5.0	0.32	1		07/20/23 16:58	135-98-8	
tert-Butylbenzene	ND	ug/L	5.0	0.35	1		07/20/23 16:58	98-06-6	
Carbon disulfide	ND	ug/L	10.0	0.83	1		07/20/23 16:58		
Carbon tetrachloride	ND	ug/L	5.0	0.40	1		07/20/23 16:58		
Chlorobenzene	ND	ug/L	5.0	0.36	1		07/20/23 16:58		
		-							
Chloroethane	5210	ug/L	500	49.6	100		07/21/23 15:46		
Chloroform	ND	ug/L	5.0	0.44	1		07/20/23 16:58		
Chloromethane	ND	ug/L	5.0	0.50	1		07/20/23 16:58		
2-Chlorotoluene	ND	ug/L	5.0	0.38	1		07/20/23 16:58		
4-Chlorotoluene	ND	ug/L	5.0	0.40	1		07/20/23 16:58	106-43-4	
Dibromochloromethane	ND	ug/L	5.0	0.56	1		07/20/23 16:58	124-48-1	
1,2-Dibromoethane (EDB)	ND	ug/L	5.0	0.55	1		07/20/23 16:58	106-93-4	
Dibromomethane	ND	ug/L	5.0	0.76	1		07/20/23 16:58	74-95-3	
1.2-Dichlorobenzene	ND	ug/L	5.0	0.45	1		07/20/23 16:58		
1,3-Dichlorobenzene	ND	ug/L	5.0	0.39	1		07/20/23 16:58		

Project: GE Indy
Pace Project No.: 50349526

Date: 08/01/2023 12:11 PM

Sample: MW-410S-071723	Lab ID:	50349526003	Collected:	07/17/23	15:35	Received: 07	7/18/23 12:10 N	latrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytica	l Method: EPA 5	030/8260						
	Pace Ana	alytical Services	- Indianapolis	S					
trans-1,4-Dichloro-2-butene	ND	ug/L	100	0.72	1		07/20/23 16:58	110-57-6	
Dichlorodifluoromethane	ND	ug/L	5.0	0.60	1		07/20/23 16:58		
1,1-Dichloroethane	12.9	ug/L	5.0	0.46	1		07/20/23 16:58		
,2-Dichloroethane	ND	ug/L	5.0	0.54	1		07/20/23 16:58		
1,1-Dichloroethene	ND	ug/L	5.0	0.46	1		07/20/23 16:58		
sis-1,2-Dichloroethene	ND	ug/L	5.0	0.53	1		07/20/23 16:58		
rans-1,2-Dichloroethene	15.0	ug/L	5.0	0.35	1		07/20/23 16:58		
,2-Dichloropropane	ND	ug/L	5.0	0.71	1		07/20/23 16:58		
1,3-Dichloropropane	ND	ug/L	5.0	0.49	1		07/20/23 16:58		
2,2-Dichloropropane	ND ND	ug/L ug/L	5.0	0.49	1		07/20/23 16:58		
1,1-Dichloropropene	ND ND	ug/L ug/L	5.0	0.64	1		07/20/23 16:58		
cis-1,3-Dichloropropene	ND ND	ug/L	5.0	0.50	1		07/20/23 16:58		
rans-1,3-Dichloropropene	ND ND	ug/L ug/L	5.0	0.50	1		07/20/23 16:58		
Ethylbenzene	ND ND	ug/L	5.0	0.35	1		07/20/23 16:58		
Ethyl methacrylate	ND ND	-	100	0.55	1		07/20/23 16:58		
Hexachloro-1,3-butadiene		ug/L			1				
,	ND	ug/L	5.0 5.0	0.46 0.46	1		07/20/23 16:58		
n-Hexane 2-Hexanone	ND	ug/L					07/20/23 16:58 07/20/23 16:58		
	ND	ug/L	25.0	3.0	1				
odomethane	ND	ug/L	10.0	0.31	1		07/20/23 16:58		
sopropylbenzene (Cumene)	ND	ug/L	5.0	0.34	1		07/20/23 16:58		
o-Isopropyltoluene	ND	ug/L	5.0	0.36	1		07/20/23 16:58		
Methylene Chloride	ND	ug/L	5.0	2.2	1		07/20/23 16:58		
I-Methylnaphthalene	ND	ug/L	10.0	0.61	1		07/20/23 16:58		
2-Methylnaphthalene	ND	ug/L	10.0	0.44	1		07/20/23 16:58		
I-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	2.5	1		07/20/23 16:58		
Methyl-tert-butyl ether	ND	ug/L	4.0	0.48	1		07/20/23 16:58		
Naphthalene	ND	ug/L	1.2	0.42	1		07/20/23 16:58		
n-Propylbenzene	ND	ug/L	5.0	0.34	1		07/20/23 16:58		
Styrene	ND	ug/L	5.0	0.40	1		07/20/23 16:58		
,1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.50	1		07/20/23 16:58		
,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.52	1		07/20/23 16:58		
Tetrachloroethene	ND	ug/L	5.0	0.32	1		07/20/23 16:58		
Toluene	ND	ug/L	5.0	0.34	1		07/20/23 16:58		
,2,3-Trichlorobenzene	ND	ug/L	5.0	0.38	1		07/20/23 16:58		
,2,4-Trichlorobenzene	ND	ug/L	5.0	0.45	1		07/20/23 16:58		
,1,1-Trichloroethane	ND	ug/L	5.0	0.47	1		07/20/23 16:58		
,1,2-Trichloroethane	ND	ug/L	5.0	0.78	1		07/20/23 16:58		
richloroethene	ND	ug/L	5.0	0.70	1		07/20/23 16:58		
Trichlorofluoromethane	ND	ug/L	5.0	0.62	1		07/20/23 16:58		
,2,3-Trichloropropane	ND	ug/L	5.0	0.82	1		07/20/23 16:58		
,2,4-Trimethylbenzene	ND	ug/L	5.0	0.35	1		07/20/23 16:58		
,3,5-Trimethylbenzene	ND	ug/L	5.0	0.30	1		07/20/23 16:58		
/inyl acetate	ND	ug/L	50.0	0.96	1		07/20/23 16:58		
/inyl chloride	ND	ug/L	2.0	0.59	1		07/20/23 16:58		
(ylene (Total)	ND	ug/L	10.0	0.35	1		07/20/23 16:58	1330-20-7	

Project: GE Indy
Pace Project No.: 50349526

Date: 08/01/2023 12:11 PM

Sample: MW-410S-071723	Lab ID:	50349526003	Collected	d: 07/17/2	3 15:35	Received: 07	/18/23 12:10 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Anal	ytical Services	- Indianapo	lis					
Surrogates									
Dibromofluoromethane (S)	103	%.	82-128		1		07/20/23 16:58	1868-53-7	
4-Bromofluorobenzene (S)	107	%.	79-124		1		07/20/23 16:58	460-00-4	
Toluene-d8 (S)	98	%.	73-122		1		07/20/23 16:58	2037-26-5	
353.2 Nitrogen, NO2/NO3 unpres	Analytical	Method: EPA 3	53.2						
	Pace Anal	ytical Services	- Indianapo	lis					
Nitrogen, NO2 plus NO3	ND	mg/L	0.10	0.011	1		07/19/23 00:21		
Nitrogen, Nitrate	ND	mg/L	0.10	0.011	1		07/19/23 00:21	14797-55-8	
5310C TOC	Analytical	Method: SM 53	310C						
	-	ytical Services		lis					
Total Organic Carbon	11300	ug/L	4000	944	4		07/19/23 23:16	7440-44-0	

Project: GE Indy
Pace Project No.: 50349526

Date: 08/01/2023 12:11 PM

Sample: MW-410D-071723	Lab ID: 5	0349526004	Collected	d: 07/17/2	3 16:35	Received: 07/	18/23 12:10 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
300.0 IC Anions 28 Days	Analytical M	lethod: EPA 30	0.00						
	Pace Analyt	tical Services -	Indianapo	lis					
Sulfate	5230	ug/L	250	190	1		07/22/23 11:00	14808-79-8	
Indicator Gases Water LHC	Analytical M	lethod: AM200	SAX						
	Pace Analyt	tical Gulf Coas	it .						
Methane	8800	ug/L	5.0	2.0	1		07/26/23 09:57	74-82-8	
Ethane	44	ug/L	1.0	0.17	1		07/26/23 09:57	74-84-0	
Ethene	290	ug/L	1.0	0.24	1		07/26/23 09:57	74-85-1	
n-Propane	ND	ug/L	1.0	0.29	1		07/26/23 09:57	74-98-6	
Propylene	ND	ug/L	1.0	0.31	1		07/26/23 09:57	115-07-1	
Isobutane	ND	ug/L	2.0	0.065	1		07/26/23 09:57		
n-Butane	ND	ug/L	2.0	0.54	1		07/26/23 09:57		
6010 MET ICP, Dissolved	Analytical M	1ethod: EPA 60	010 Prepa	ration Meth	od: EPA	3010			
,	•	tical Services -	•						
Iron, Dissolved	13100	ug/L	100	28.6	1	07/25/23 03:34	07/25/23 04:25	7439-89-6	
8260 MSV Indiana	Analytical M	1ethod: EPA 50	030/8260						
	Pace Analyt	tical Services -	Indianapo	lis					
Acetone	ND	ug/L	100	8.9	1		07/20/23 18:06	67-64-1	
Acrolein	ND	ug/L	50.0	12.7	1		07/20/23 18:06	107-02-8	
Acrylonitrile	ND	ug/L	100	2.2	1		07/20/23 18:06	107-13-1	
Benzene	ND	ug/L	5.0	0.39	1		07/20/23 18:06		
Bromobenzene	ND	ug/L	5.0	0.50	1		07/20/23 18:06		
Bromochloromethane	ND	ug/L	5.0	0.43	1		07/20/23 18:06		
Bromodichloromethane	ND ND	ug/L ug/L	5.0	0.43	1		07/20/23 18:06		
					1				
Bromoform	ND	ug/L	5.0	0.73			07/20/23 18:06		
Bromomethane	ND	ug/L	5.0	0.57	1		07/20/23 18:06		
2-Butanone (MEK)	ND	ug/L	25.0	4.7	1		07/20/23 18:06		
n-Butylbenzene	ND	ug/L	5.0	0.38	1		07/20/23 18:06		
sec-Butylbenzene	ND	ug/L	5.0	0.32	1		07/20/23 18:06		
tert-Butylbenzene	ND	ug/L	5.0	0.35	1		07/20/23 18:06		
Carbon disulfide	ND	ug/L	10.0	0.83	1		07/20/23 18:06	75-15-0	
Carbon tetrachloride	ND	ug/L	5.0	0.40	1		07/20/23 18:06	56-23-5	
Chlorobenzene	ND	ug/L	5.0	0.36	1		07/20/23 18:06	108-90-7	
Chloroethane	6130	ug/L	500	49.6	100		07/21/23 16:20	75-00-3	
Chloroform	ND	ug/L	5.0	0.44	1		07/20/23 18:06	67-66-3	
Chloromethane	ND	ug/L	5.0	0.50	1		07/20/23 18:06	74-87-3	
2-Chlorotoluene	ND	ug/L	5.0	0.38	1		07/20/23 18:06		
4-Chlorotoluene	ND	ug/L	5.0	0.40	1		07/20/23 18:06		
Dibromochloromethane	ND	ug/L	5.0	0.56	1		07/20/23 18:06		
1,2-Dibromoethane (EDB)	ND	ug/L ug/L	5.0	0.55	1		07/20/23 18:06		
Dibromomethane	ND ND	ug/L ug/L	5.0	0.33	1		07/20/23 18:06		
1.2-Dichlorobenzene		•			1				
,	ND	ug/L	5.0	0.45			07/20/23 18:06		
1,3-Dichlorobenzene	ND	ug/L	5.0	0.39	1		07/20/23 18:06		
1,4-Dichlorobenzene	ND	ug/L	5.0	0.43	1		07/20/23 18:06	106-46-7	

Project: GE Indy
Pace Project No.: 50349526

Date: 08/01/2023 12:11 PM

Sample: MW-410D-071723	Lab ID:	50349526004	Collecte	d: 07/17/23	3 16:35	Received: 07	7/18/23 12:10 I	Matrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
3260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	•	ytical Services		lis					
rans-1,4-Dichloro-2-butene	ND	ug/L	100	0.72	1		07/20/23 18:0	6 110-57-6	
Dichlorodifluoromethane	ND	ug/L	5.0	0.60	1		07/20/23 18:0	6 75-71-8	
1,1-Dichloroethane	736	ug/L	50.0	4.6	10		07/20/23 18:4	0 75-34-3	
1,2-Dichloroethane	ND	ug/L	5.0	0.54	1		07/20/23 18:0	6 107-06-2	
1,1-Dichloroethene	ND	ug/L	5.0	0.46	1		07/20/23 18:0	6 75-35-4	
cis-1,2-Dichloroethene	762	ug/L	50.0	5.3	10		07/20/23 18:4	0 156-59-2	
rans-1,2-Dichloroethene	30.0	ug/L	5.0	0.35	1		07/20/23 18:0	6 156-60-5	
,2-Dichloropropane	ND	ug/L	5.0	0.71	1		07/20/23 18:0	6 78-87-5	
1,3-Dichloropropane	ND	ug/L	5.0	0.49	1		07/20/23 18:0		
2,2-Dichloropropane	ND	ug/L	5.0	0.62	1		07/20/23 18:0		
,1-Dichloropropene	ND	ug/L	5.0	0.64	1		07/20/23 18:0		
cis-1,3-Dichloropropene	ND	ug/L	5.0	0.50	1			6 10061-01-5	
rans-1,3-Dichloropropene	ND	ug/L	5.0	0.51	1			6 10061-02-6	
Ethylbenzene	ND	ug/L	5.0	0.35	1		07/20/23 18:0		
Ethyl methacrylate	ND	ug/L	100	0.64	1		07/20/23 18:0		
Hexachloro-1,3-butadiene	ND	ug/L	5.0	0.46	1		07/20/23 18:0		
-Hexane	ND	ug/L	5.0	0.46	1		07/20/23 18:0		
2-Hexanone	ND	ug/L	25.0	3.0	1		07/20/23 18:0		
odomethane	ND	ug/L	10.0	0.31	1		07/20/23 18:0		
sopropylbenzene (Cumene)	ND ND	ug/L	5.0	0.34	1		07/20/23 18:0		
o-Isopropyltoluene	ND	ug/L	5.0	0.34	1		07/20/23 18:0		
Methylene Chloride	ND	ug/L	5.0	2.2	1		07/20/23 18:0		
-Methylnaphthalene	ND ND	ug/L	10.0	0.61	1		07/20/23 18:0		
2-Methylnaphthalene	ND ND	ug/L	10.0	0.44	1		07/20/23 18:0		
1-Methyl-2-pentanone (MIBK)	ND ND	ug/L ug/L	25.0	2.5	1		07/20/23 18:0		
	ND ND	-	4.0	0.48	1		07/20/23 18:0		
Methyl-tert-butyl ether Naphthalene	ND ND	ug/L	1.2	0.46	1		07/20/23 18:0		
•	ND ND	ug/L	5.0	0.42	1		07/20/23 18:0		
n-Propylbenzene	ND ND	ug/L	5.0	0.34	1		07/20/23 18:0		
Styrene I,1,1,2-Tetrachloroethane	ND ND	ug/L	5.0	0.40	1		07/20/23 18:0		
		ug/L			1				
,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.52			07/20/23 18:0		
Tetrachloroethene	ND	ug/L	5.0	0.32	1		07/20/23 18:0		
Toluene	ND	ug/L	5.0	0.34	1		07/20/23 18:0		
,2,3-Trichlorobenzene	ND	ug/L	5.0	0.38	1		07/20/23 18:0		
,2,4-Trichlorobenzene	ND	ug/L	5.0	0.45	1		07/20/23 18:0		
,1,1-Trichloroethane	6.6	ug/L	5.0	0.47	1		07/20/23 18:0		
,1,2-Trichloroethane	ND	ug/L	5.0	0.78	1		07/20/23 18:0		
richloroethene	ND	ug/L	5.0	0.70	1		07/20/23 18:0		
Trichlorofluoromethane	ND	ug/L	5.0	0.62	1		07/20/23 18:0		
1,2,3-Trichloropropane	ND	ug/L	5.0	0.82	1		07/20/23 18:0		
,2,4-Trimethylbenzene	ND	ug/L	5.0	0.35	1		07/20/23 18:0		
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.30	1		07/20/23 18:0		
/inyl acetate	ND	ug/L	50.0	0.96	1		07/20/23 18:0		
/inyl chloride	269	ug/L	2.0	0.59	1		07/20/23 18:0		
Kylene (Total)	ND	ug/L	10.0	0.35	1		07/20/23 18:0	6 1330-20-7	

Project: GE Indy
Pace Project No.: 50349526

Date: 08/01/2023 12:11 PM

Sample: MW-410D-071723	Lab ID:	50349526004	Collected	d: 07/17/2	3 16:35	Received: 07	/18/23 12:10 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Anal	ytical Services	- Indianapo	lis					
Surrogates									
Dibromofluoromethane (S)	108	%.	82-128		1		07/20/23 18:06	1868-53-7	
4-Bromofluorobenzene (S)	104	%.	79-124		1		07/20/23 18:06	460-00-4	
Toluene-d8 (S)	97	%.	73-122		1		07/20/23 18:06	2037-26-5	
353.2 Nitrogen, NO2/NO3 unpres	Analytical	Method: EPA 3	53.2						
	Pace Anal	ytical Services	- Indianapo	lis					
Nitrogen, NO2 plus NO3	ND	mg/L	0.10	0.011	1		07/19/23 00:23		
Nitrogen, Nitrate	ND	mg/L	0.10	0.011	1		07/19/23 00:23	14797-55-8	
5310C TOC	Analytical	Method: SM 53	310C						
	-	ytical Services		lis					
Total Organic Carbon	12600	ug/L	4000	944	4		07/19/23 23:26	7440-44-0	

Project: GE Indy
Pace Project No.: 50349526

Date: 08/01/2023 12:11 PM

Sample: AD-100-071723	Lab ID:	50349526005	Collecte	d: 07/17/23	3 12:00	Received: 07	//18/23 12:10	Matrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF ——	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 50	030/8260						
	•	lytical Services -		lis					
Acetone	ND	ug/L	100	8.9	1		07/20/23 19:1	14 67-64-1	
Acrolein	ND	ug/L	50.0	12.7	1		07/20/23 19:1	14 107-02-8	
Acrylonitrile	ND	ug/L	100	2.2	1		07/20/23 19:1	14 107-13-1	
Benzene	ND	ug/L	5.0	0.39	1		07/20/23 19:1		
Bromobenzene	ND	ug/L	5.0	0.50	1		07/20/23 19:1		
Bromochloromethane	ND	ug/L	5.0	0.43	1		07/20/23 19:1		
Bromodichloromethane	ND	ug/L	5.0	0.57	1		07/20/23 19:1		
Bromoform	ND	ug/L	5.0	0.73	1		07/20/23 19:1		
Bromomethane	ND	ug/L	5.0	0.57	1		07/20/23 19:1		
2-Butanone (MEK)	ND	ug/L	25.0	4.7	1		07/20/23 19:1		
n-Butylbenzene	ND	ug/L	5.0	0.38	1		07/20/23 19:1		
sec-Butylbenzene	ND	ug/L	5.0	0.32	1		07/20/23 19:1		
ert-Butylbenzene	ND	ug/L	5.0	0.35	1		07/20/23 19:1		
Carbon disulfide	ND	ug/L	10.0	0.83	1		07/20/23 19:1		
Carbon tetrachloride	ND	ug/L	5.0	0.40	1		07/20/23 19:1		
Chlorobenzene	ND ND	ug/L ug/L	5.0	0.40	1		07/20/23 19:1		
Chloroethane	4800	_	500	49.6	100		07/20/23 19:1		
Chloroform	4800 ND	ug/L	5.0	0.44	1		07/20/23 19:1		
		ug/L			1				
Chloromethane	ND	ug/L	5.0	0.50	1		07/20/23 19:1		
2-Chlorotoluene	ND	ug/L	5.0	0.38			07/20/23 19:1		
4-Chlorotoluene	ND	ug/L	5.0	0.40	1		07/20/23 19:1		
Dibromochloromethane	ND	ug/L	5.0	0.56	1		07/20/23 19:1		
1,2-Dibromoethane (EDB)	ND	ug/L	5.0	0.55	1		07/20/23 19:1		
Dibromomethane	ND	ug/L	5.0	0.76	1		07/20/23 19:1		
1,2-Dichlorobenzene	ND	ug/L	5.0	0.45	1		07/20/23 19:1		
1,3-Dichlorobenzene	ND	ug/L	5.0	0.39	1		07/20/23 19:1		
1,4-Dichlorobenzene	ND	ug/L	5.0	0.43	1		07/20/23 19:1		
rans-1,4-Dichloro-2-butene	ND	ug/L	100	0.72	1		07/20/23 19:1		
Dichlorodifluoromethane	ND	ug/L	5.0	0.60	1		07/20/23 19:1		
1,1-Dichloroethane	13.8	ug/L	5.0	0.46	1		07/20/23 19:1		
1,2-Dichloroethane	ND	ug/L	5.0	0.54	1		07/20/23 19:1		
I,1-Dichloroethene	ND	ug/L	5.0	0.46	1		07/20/23 19:1		
cis-1,2-Dichloroethene	ND	ug/L	5.0	0.53	1		07/20/23 19:1		
rans-1,2-Dichloroethene	15.2	ug/L	5.0	0.35	1		07/20/23 19:1		
1,2-Dichloropropane	ND	ug/L	5.0	0.71	1		07/20/23 19:1		
1,3-Dichloropropane	ND	ug/L	5.0	0.49	1		07/20/23 19:1	14 142-28-9	
2,2-Dichloropropane	ND	ug/L	5.0	0.62	1		07/20/23 19:1		
1,1-Dichloropropene	ND	ug/L	5.0	0.64	1		07/20/23 19:1		
cis-1,3-Dichloropropene	ND	ug/L	5.0	0.50	1			14 10061-01-5	
rans-1,3-Dichloropropene	ND	ug/L	5.0	0.51	1		07/20/23 19:1	14 10061-02-6	
Ethylbenzene	ND	ug/L	5.0	0.35	1		07/20/23 19:1	14 100-41-4	
Ethyl methacrylate	ND	ug/L	100	0.64	1		07/20/23 19:1	14 97-63-2	
Hexachloro-1,3-butadiene	ND	ug/L	5.0	0.46	1		07/20/23 19:1	14 87-68-3	
n-Hexane	ND	ug/L	5.0	0.46	1		07/20/23 19:1	14 110-54-3	
2-Hexanone	ND	ug/L	25.0	3.0	1		07/20/23 19:1	14 591-78-6	

Project: GE Indy
Pace Project No.: 50349526

Date: 08/01/2023 12:11 PM

Sample: AD-100-071723	Lab ID:	50349526005	Collected	d: 07/17/23	3 12:00	Received: 07	7/18/23 12:10 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF ——	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Ana	lytical Services	- Indianapo	is					
lodomethane	ND	ug/L	10.0	0.31	1		07/20/23 19:14	74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	5.0	0.34	1		07/20/23 19:14	98-82-8	
p-Isopropyltoluene	ND	ug/L	5.0	0.36	1		07/20/23 19:14	99-87-6	
Methylene Chloride	ND	ug/L	5.0	2.2	1		07/20/23 19:14	75-09-2	
1-Methylnaphthalene	ND	ug/L	10.0	0.61	1		07/20/23 19:14	90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	0.44	1		07/20/23 19:14	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	2.5	1		07/20/23 19:14	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	4.0	0.48	1		07/20/23 19:14		
Naphthalene	ND	ug/L	1.2	0.42	1		07/20/23 19:14	91-20-3	
n-Propylbenzene	ND	ug/L	5.0	0.34	1		07/20/23 19:14	103-65-1	
Styrene	ND	ug/L	5.0	0.40	1		07/20/23 19:14	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.50	1		07/20/23 19:14	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.52	1		07/20/23 19:14		
Tetrachloroethene	ND	ug/L	5.0	0.32	1		07/20/23 19:14	127-18-4	
Toluene	ND	ug/L	5.0	0.34	1		07/20/23 19:14	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	0.38	1		07/20/23 19:14	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	5.0	0.45	1		07/20/23 19:14	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	5.0	0.47	1		07/20/23 19:14	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	5.0	0.78	1		07/20/23 19:14	79-00-5	
Trichloroethene	ND	ug/L	5.0	0.70	1		07/20/23 19:14	79-01-6	
Trichlorofluoromethane	ND	ug/L	5.0	0.62	1		07/20/23 19:14	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	5.0	0.82	1		07/20/23 19:14	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/L	5.0	0.35	1		07/20/23 19:14	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.30	1		07/20/23 19:14		
Vinyl acetate	ND	ug/L	50.0	0.96	1		07/20/23 19:14	108-05-4	
Vinyl chloride	ND	ug/L	2.0	0.59	1		07/20/23 19:14		
Xylene (Total)	ND	ug/L	10.0	0.35	1		07/20/23 19:14		
Surrogates		- 3							
Dibromofluoromethane (S)	105	%.	82-128		1		07/20/23 19:14	1868-53-7	
4-Bromofluorobenzene (S)	107	%.	79-124		1		07/20/23 19:14	460-00-4	
Toluene-d8 (S)	98	%.	73-122		1		07/20/23 19:14	2037-26-5	

Project: GE Indy
Pace Project No.: 50349526

Date: 08/01/2023 12:11 PM

Sample: Trip Blank-071723	Lab ID:	50349526006	526006 Collected: 07/17/23 08:00				Received: 07/18/23 12:10 Matrix: Water				
			Report								
Parameters	Results _	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qua		
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260								
	•	lytical Services		lis							
Acetone	ND	ug/L	100	8.9	1		07/20/23 19:4	8 67-64-1			
Acrolein	ND	ug/L	50.0	12.7	1		07/20/23 19:4	8 107-02-8			
Acrylonitrile	ND	ug/L	100	2.2	1		07/20/23 19:4	8 107-13-1			
Benzene	ND	ug/L	5.0	0.39	1		07/20/23 19:4				
Bromobenzene	ND	ug/L	5.0	0.50	1		07/20/23 19:4				
Bromochloromethane	ND	ug/L	5.0	0.43	1		07/20/23 19:4				
Bromodichloromethane	ND	ug/L	5.0	0.57	1		07/20/23 19:4				
Bromoform	ND	ug/L	5.0	0.73	1		07/20/23 19:4				
Bromomethane	ND	ug/L	5.0	0.57	1		07/20/23 19:4				
2-Butanone (MEK)	ND	ug/L	25.0	4.7	1		07/20/23 19:4				
n-Butylbenzene	ND	ug/L	5.0	0.38	1		07/20/23 19:4				
sec-Butylbenzene	ND	ug/L	5.0	0.32	1		07/20/23 19:4				
ert-Butylbenzene	ND	ug/L	5.0	0.35	1		07/20/23 19:4				
Carbon disulfide	ND	ug/L	10.0	0.83	1		07/20/23 19:4				
Carbon tetrachloride	ND	ug/L	5.0	0.40	1		07/20/23 19:4				
Chlorobenzene	ND ND	ug/L ug/L	5.0	0.40	1		07/20/23 19:4				
Chloroethane	ND ND	-	5.0	0.55	1		07/20/23 19:4				
Chloroform	ND ND	ug/L	5.0	0.55	1		07/20/23 19:4				
		ug/L			1		07/20/23 19:4				
Chloromethane	ND	ug/L	5.0	0.50	1						
2-Chlorotoluene	ND	ug/L	5.0	0.38			07/20/23 19:4				
4-Chlorotoluene	ND	ug/L	5.0	0.40	1		07/20/23 19:4				
Dibromochloromethane	ND	ug/L	5.0	0.56	1		07/20/23 19:4				
I,2-Dibromoethane (EDB)	ND	ug/L	5.0	0.55	1		07/20/23 19:4				
Dibromomethane	ND	ug/L	5.0	0.76	1		07/20/23 19:4				
1,2-Dichlorobenzene	ND	ug/L	5.0	0.45	1		07/20/23 19:4				
1,3-Dichlorobenzene	ND	ug/L	5.0	0.39	1		07/20/23 19:4				
1,4-Dichlorobenzene	ND	ug/L	5.0	0.43	1		07/20/23 19:4				
rans-1,4-Dichloro-2-butene	ND	ug/L	100	0.72	1		07/20/23 19:4				
Dichlorodifluoromethane	ND	ug/L	5.0	0.60	1		07/20/23 19:4				
1,1-Dichloroethane	ND	ug/L	5.0	0.46	1		07/20/23 19:4				
1,2-Dichloroethane	ND	ug/L	5.0	0.54	1		07/20/23 19:4				
1,1-Dichloroethene	ND	ug/L	5.0	0.46	1		07/20/23 19:4				
cis-1,2-Dichloroethene	ND	ug/L	5.0	0.53	1		07/20/23 19:4				
rans-1,2-Dichloroethene	ND	ug/L	5.0	0.35	1		07/20/23 19:4				
,2-Dichloropropane	ND	ug/L	5.0	0.71	1		07/20/23 19:4				
1,3-Dichloropropane	ND	ug/L	5.0	0.49	1		07/20/23 19:4	8 142-28-9			
2,2-Dichloropropane	ND	ug/L	5.0	0.62	1		07/20/23 19:4				
,1-Dichloropropene	ND	ug/L	5.0	0.64	1		07/20/23 19:4				
cis-1,3-Dichloropropene	ND	ug/L	5.0	0.50	1		07/20/23 19:4	8 10061-01-5			
rans-1,3-Dichloropropene	ND	ug/L	5.0	0.51	1		07/20/23 19:4	8 10061-02-6			
Ethylbenzene	ND	ug/L	5.0	0.35	1		07/20/23 19:4	8 100-41-4			
Ethyl methacrylate	ND	ug/L	100	0.64	1		07/20/23 19:4	8 97-63-2			
Hexachloro-1,3-butadiene	ND	ug/L	5.0	0.46	1		07/20/23 19:4	8 87-68-3			
n-Hexane	ND	ug/L	5.0	0.46	1		07/20/23 19:4	8 110-54-3			
2-Hexanone	ND	ug/L	25.0	3.0	1		07/20/23 19:4	8 591-78-6			

Project: GE Indy
Pace Project No.: 50349526

Date: 08/01/2023 12:11 PM

Sample: Trip Blank-071723	Lab ID:	50349526006	Collecte	d: 07/17/23	3 08:00	Received: 07	7/18/23 12:10 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Ana	lytical Services	- Indianapo	lis					
lodomethane	ND	ug/L	10.0	0.31	1		07/20/23 19:48	74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	5.0	0.34	1		07/20/23 19:48	98-82-8	
p-Isopropyltoluene	ND	ug/L	5.0	0.36	1		07/20/23 19:48	99-87-6	
Methylene Chloride	ND	ug/L	5.0	2.2	1		07/20/23 19:48	75-09-2	
1-Methylnaphthalene	ND	ug/L	10.0	0.61	1		07/20/23 19:48	90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	0.44	1		07/20/23 19:48	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	2.5	1		07/20/23 19:48	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	4.0	0.48	1		07/20/23 19:48	1634-04-4	
Naphthalene	ND	ug/L	1.2	0.42	1		07/20/23 19:48	91-20-3	
n-Propylbenzene	ND	ug/L	5.0	0.34	1		07/20/23 19:48	103-65-1	
Styrene	ND	ug/L	5.0	0.40	1		07/20/23 19:48	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.50	1		07/20/23 19:48	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.52	1		07/20/23 19:48	79-34-5	
Tetrachloroethene	ND	ug/L	5.0	0.32	1		07/20/23 19:48	127-18-4	
Toluene	ND	ug/L	5.0	0.34	1		07/20/23 19:48	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	0.38	1		07/20/23 19:48	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	5.0	0.45	1		07/20/23 19:48	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	5.0	0.47	1		07/20/23 19:48	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	5.0	0.78	1		07/20/23 19:48	79-00-5	
Trichloroethene	ND	ug/L	5.0	0.70	1		07/20/23 19:48	79-01-6	
Trichlorofluoromethane	ND	ug/L	5.0	0.62	1		07/20/23 19:48	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	5.0	0.82	1		07/20/23 19:48	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/L	5.0	0.35	1		07/20/23 19:48	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.30	1		07/20/23 19:48	108-67-8	
Vinyl acetate	ND	ug/L	50.0	0.96	1		07/20/23 19:48		
Vinyl chloride	ND	ug/L	2.0	0.59	1		07/20/23 19:48		
Xylene (Total)	ND	ug/L	10.0	0.35	1		07/20/23 19:48		
Surrogates		- 3							
Dibromofluoromethane (S)	104	%.	82-128		1		07/20/23 19:48	1868-53-7	
4-Bromofluorobenzene (S)	104	%.	79-124		1		07/20/23 19:48	460-00-4	
Toluene-d8 (S)	98	%.	73-122		1		07/20/23 19:48	2037-26-5	

Project: GE Indy
Pace Project No.: 50349526

Date: 08/01/2023 12:11 PM

Pace Project No.: 50349526									
Sample: MW-411S-071823	Lab ID:	50349526007	Collected	: 07/18/23	10:25	Received: 07/	/18/23 12:10 N	fatrix: Water	
Doromotoro	Results	Units	Report Limit	MDL	DF	Droporod	Analyzad	CAS No.	Ougl
Parameters	— Results	————			DF	Prepared	Analyzed	CAS NO.	Qual
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	300.0						
	Pace Ana	llytical Services	- Indianapoli	s					
Sulfate	3930	ug/L	250	190	1		07/22/23 11:52	14808-79-8	
Indicator Gases Water LHC	Analytical	Method: AM20	GAX						
	•	lytical Gulf Coa							
Methane	7300	ug/L	10	4.0	2		07/26/23 10:10	74-82-8	
Ethane	4.9	ug/L	2.0	0.34	2		07/26/23 10:10		
Ethene	360	ug/L	2.0	0.48	2		07/26/23 10:10		
n-Propane	ND	ug/L	2.0	0.58	2		07/26/23 10:10		
		ū							
Propylene	ND	ug/L	2.0	0.61	2		07/26/23 10:10		
Isobutane	ND	ug/L	4.0	0.13	2		07/26/23 10:10	JUNK40	
n-Butane	ND	ug/L	4.0	1.1	2		07/26/23 10:10	JUNK42	
6010 MET ICP, Dissolved	Analytical	Method: EPA 6	010 Prepara	ation Metho	d: EPA	A 3010			
	Pace Ana	llytical Services	- Indianapoli	S					
Iron, Dissolved	58600	ug/L	100	28.6	1	07/25/23 03:34	07/25/23 04:27	7 7439-89-6	
8260 MSV Indiana	Analytical	Method: EPA 5	5030/8260						
	Pace Ana	lytical Services	- Indianapoli	S					
Acetone	ND	ug/L	5000	444	50		07/20/23 20:22	2 67-64-1	
Acrolein	ND	ug/L	2500	635	50		07/20/23 20:22	2 107-02-8	
Acrylonitrile	ND	ug/L	5000	110	50		07/20/23 20:22		
Benzene	ND	ug/L	250	19.3	50		07/20/23 20:22		
Bromobenzene	ND ND	ug/L ug/L	250	24.8	50		07/20/23 20:22		
		•							
Bromochloromethane	ND	ug/L	250	21.4	50		07/20/23 20:22		
Bromodichloromethane	ND	ug/L	250	28.4	50		07/20/23 20:22		
Bromoform	ND	ug/L	250	36.7	50		07/20/23 20:22	2 75-25-2	
Bromomethane	ND	ug/L	250	28.6	50		07/20/23 20:22	2 74-83-9	
2-Butanone (MEK)	ND	ug/L	1250	233	50		07/20/23 20:22	2 78-93-3	
n-Butylbenzene	ND	ug/L	250	19.2	50		07/20/23 20:22	2 104-51-8	
sec-Butylbenzene	ND	ug/L	250	16.0	50		07/20/23 20:22	2 135-98-8	
tert-Butylbenzene	ND	ug/L	250	17.4	50		07/20/23 20:22		
Carbon disulfide	ND	ug/L	500	41.4	50		07/20/23 20:22		
Carbon tetrachloride	ND	•	250	20.1	50		07/20/23 20:22		
	ND ND	ug/L							
Chlorosethese		ug/L	250	18.2	50		07/20/23 20:22		
Chloroethane	28000	ug/L	2500	274	500		07/20/23 20:56		
Chloroform	ND	ug/L	250	21.8	50		07/20/23 20:22		
Chloromethane	ND	ug/L	250	25.1	50		07/20/23 20:22		
2-Chlorotoluene	ND	ug/L	250	19.0	50		07/20/23 20:22	2 95-49-8	
4-Chlorotoluene	ND	ug/L	250	19.8	50		07/20/23 20:22	2 106-43-4	
Dibromochloromethane	ND	ug/L	250	27.8	50		07/20/23 20:22	2 124-48-1	
1,2-Dibromoethane (EDB)	ND	ug/L	250	27.4	50		07/20/23 20:22		
Dibromomethane	ND	ug/L	250	38.2	50		07/20/23 20:22		
1,2-Dichlorobenzene	ND ND	ug/L ug/L	250	22.4	50		07/20/23 20:22		
		•							
1,3-Dichlorobenzene	ND	ug/L	250	19.4	50		07/20/23 20:22		
1,4-Dichlorobenzene	ND	ug/L	250	21.7	50		07/20/23 20:22	2 106-46-7	

Project: GE Indy
Pace Project No.: 50349526

Date: 08/01/2023 12:11 PM

Sample: MW-411S-071823	Lab ID:	50349526007	Collected:	07/18/23	10:25	Received: 07	7/18/23 12:10 M	latrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytica	l Method: EPA 5	030/8260						
	Pace Ana	alytical Services	- Indianapolis	S					
trans-1,4-Dichloro-2-butene	ND	ug/L	5000	35.9	50		07/20/23 20:22	110-57-6	
Dichlorodifluoromethane	ND	ug/L	250	30.1	50		07/20/23 20:22		
1.1-Dichloroethane	ND	ug/L	250	23.0	50		07/20/23 20:22		
1,2-Dichloroethane	ND	ug/L	250	26.9	50		07/20/23 20:22		
1,1-Dichloroethene	ND	ug/L	250	23.0	50		07/20/23 20:22		
cis-1,2-Dichloroethene	ND	ug/L	250	26.3	50		07/20/23 20:22		
rans-1,2-Dichloroethene	ND ND	ug/L	250	17.4	50		07/20/23 20:22		
,2-Dichloropropane	ND	ug/L	250	35.5	50		07/20/23 20:22		
1,3-Dichloropropane	ND ND	ug/L	250	24.4	50		07/20/23 20:22		
2,2-Dichloropropane	ND ND	ug/L ug/L	250	31.2	50		07/20/23 20:22		
1,1-Dichloropropene	ND ND	ug/L ug/L	250 250	32.0	50		07/20/23 20:22		
cis-1,3-Dichloropropene	ND ND	ug/L	250	25.0	50		07/20/23 20:22		
rans-1,3-Dichloropropene	ND ND	ug/L ug/L	250	25.4	50		07/20/23 20:22		
Ethylbenzene	ND ND	ug/L	250	17.6	50		07/20/23 20:22		
Ethyl methacrylate	ND ND	-	5000	32.0	50		07/20/23 20:22		
Hexachloro-1,3-butadiene	ND ND	ug/L	250	23.0	50 50		07/20/23 20:22		
i-Hexane		ug/L		23.0	50 50		07/20/23 20:22		
i-nexane 2-Hexanone	ND	ug/L	250				07/20/23 20:22		
	ND	ug/L	1250	151 15.6	50 50				
odomethane	ND	ug/L	500	15.6	50 50		07/20/23 20:22		
sopropylbenzene (Cumene)	ND	ug/L	250	16.8			07/20/23 20:22		
o-Isopropyltoluene	ND	ug/L	250	17.8	50 50		07/20/23 20:22		
Methylene Chloride	ND	ug/L	250 500	110			07/20/23 20:22		
I-Methylnaphthalene	ND	ug/L	500	30.6	50 50		07/20/23 20:22		
2-Methylnaphthalene	ND	ug/L	500	22.0	50		07/20/23 20:22		
I-Methyl-2-pentanone (MIBK)	ND	ug/L	1250	126	50		07/20/23 20:22		
Methyl-tert-butyl ether	ND	ug/L	200	24.0	50		07/20/23 20:22		
Naphthalene	ND	ug/L	60.0	21.1	50		07/20/23 20:22		
n-Propylbenzene	ND	ug/L	250	17.2	50		07/20/23 20:22		
Styrene	ND	ug/L	250	20.0	50		07/20/23 20:22		
,1,1,2-Tetrachloroethane	ND	ug/L	250	25.2	50		07/20/23 20:22		
,1,2,2-Tetrachloroethane	ND	ug/L	250	26.1	50		07/20/23 20:22		
Tetrachloroethene	ND	ug/L	250	16.0	50		07/20/23 20:22		
Toluene	ND	ug/L	250	16.8	50		07/20/23 20:22		
,2,3-Trichlorobenzene	ND	ug/L	250	18.8	50		07/20/23 20:22		
,2,4-Trichlorobenzene	ND	ug/L	250	22.7	50		07/20/23 20:22		
,1,1-Trichloroethane	ND	ug/L	250	23.4	50		07/20/23 20:22		
,1,2-Trichloroethane	ND	ug/L	250	38.9	50		07/20/23 20:22		
Trichloroethene	ND	ug/L	250	34.8	50		07/20/23 20:22		
Trichlorofluoromethane	ND	ug/L	250	31.1	50		07/20/23 20:22		
1,2,3-Trichloropropane	ND	ug/L	250	41.1	50		07/20/23 20:22		
,2,4-Trimethylbenzene	ND	ug/L	250	17.4	50		07/20/23 20:22		
I,3,5-Trimethylbenzene	ND	ug/L	250	15.2	50		07/20/23 20:22		
/inyl acetate	ND	ug/L	2500	48.2	50		07/20/23 20:22		
/inyl chloride	478	ug/L	100	29.7	50		07/20/23 20:22		
(Ylene (Total)	ND	ug/L	500	17.6	50		07/20/23 20:22	2 1330-20-7	

Project: GE Indy
Pace Project No.: 50349526

Date: 08/01/2023 12:11 PM

Sample: MW-411S-071823	Lab ID:	50349526007	Collected	d: 07/18/2	3 10:25	Received: 07	7/18/23 12:10 Ma	atrix: Water			
			Report								
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual		
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260								
	Pace Analytical Services - Indianapolis										
Surrogates											
Dibromofluoromethane (S)	102	%.	82-128		50		07/20/23 20:22	1868-53-7	D4		
4-Bromofluorobenzene (S)	108	%.	79-124		50		07/20/23 20:22	460-00-4			
Toluene-d8 (S)	98	%.	73-122		50		07/20/23 20:22	2037-26-5			
353.2 Nitrogen, NO2/NO3 unpres	Analytical	Method: EPA 3	53.2								
	Pace Anal	ytical Services	- Indianapo	lis							
Nitrogen, NO2 plus NO3	ND	mg/L	0.10	0.011	1		07/19/23 00:45				
Nitrogen, Nitrate	ND	mg/L	0.10	0.011	1		07/19/23 00:45	14797-55-8			
5310C TOC	Analytical	Analytical Method: SM 5310C									
	Pace Anal	ytical Services	- Indianapo	lis							
Total Organic Carbon	442000	ug/L	32000	7550	32		07/20/23 14:47	7440-44-0			

Project: GE Indy Pace Project No.: 50349526

Date: 08/01/2023 12:11 PM

QC Batch: 744398 Analysis Method: EPA 300.0 QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

> Laboratory: Pace Analytical Services - Indianapolis

Associated Lab Samples: 50349526001, 50349526002, 50349526003, 50349526004, 50349526007

METHOD BLANK: Matrix: Water

Associated Lab Samples: 50349526001, 50349526002, 50349526003, 50349526004, 50349526007

> Blank Reporting

Parameter Units Result Limit MDL Analyzed Qualifiers ND 250 07/21/23 15:11

Sulfate 190 ug/L

LABORATORY CONTROL SAMPLE: 3413253

Spike LCS LCS % Rec Limits Parameter Units Conc. Result % Rec Qualifiers Sulfate 5000 4880 98 90-110 ug/L

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3413258 3413259

> MSD MS

50349396002 Spike Spike MS MSD MS MSD % Rec Max Parameter Units **RPD** RPD Result Conc. Conc. Result Result % Rec % Rec Limits Qual Sulfate ug/L 51.4 mg/L 50000 50000 97900 97600 93 92 80-120 0 15

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3413260 3413261

MS MSD

50349467001 MS MSD MS MSD % Rec Spike Spike Max RPD Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits RPD Qual Sulfate 71 71 739 mg/L 500000 500000 1090000 1090000 80-120 0 15 M0 ug/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50349526

Date: 08/01/2023 12:11 PM

QC Batch: 769496 Analysis Method: AM20GAX

QC Batch Method: AM20GAX Analysis Description: Indicator Gases Water LHC

Laboratory: Pace Analytical Gulf Coast

Associated Lab Samples: 50349526001, 50349526002, 50349526003, 50349526004, 50349526007

METHOD BLANK: 2503491 Matrix: Water

Associated Lab Samples: 50349526001, 50349526002, 50349526003, 50349526004, 50349526007

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Methane	ug/L	ND ND	5.0	2.0	07/26/23 06:24	
Ethane	ug/L	ND	1.0	0.17	07/26/23 06:24	
Ethene	ug/L	ND	1.0	0.24	07/26/23 06:24	
n-Propane	ug/L	ND	1.0	0.29	07/26/23 06:24	
Propylene	ug/L	ND	1.0	0.31	07/26/23 06:24	
Isobutane	ug/L	ND	2.0	0.065	07/26/23 06:24	
n-Butane	ug/L	ND	2.0	0.54	07/26/23 06:24	

LABORATORY CONTROL SAMPLE &	& LCSD: 2503492		25	03493						
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
Methane	ug/L	750	810	760	109	101	70-130	7	20	
Ethane	ug/L	38	34	35	90	92	70-130	2	20	
Ethene	ug/L	35	32	33	92	95	70-130	3	20	
n-Propane	ug/L	56	46	47	83	85	70-130	3	20	
Propylene	ug/L	53	41	42	78	80	70-130	3	20	
Isobutane	ug/L	73	58	62	79	85	70-130	7	20	
n-Butane	ug/L	73	50	66	68	90	70-130	28	20 1	_0,R1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50349526

Date: 08/01/2023 12:11 PM

QC Batch: 745041 Analysis Method: EPA 6010

QC Batch Method: EPA 3010 Analysis Description: 6010 MET Dissolved

Laboratory: Pace Analytical Services - Indianapolis

Associated Lab Samples: 50349526001, 50349526002, 50349526003, 50349526004, 50349526007

METHOD BLANK: 3415799 Matrix: Water

Associated Lab Samples: 50349526001, 50349526002, 50349526003, 50349526004, 50349526007

Blank Reporting

ParameterUnitsResultLimitMDLAnalyzedQualifiersIron, Dissolvedug/LND10028.607/25/23 03:54

LABORATORY CONTROL SAMPLE: 3415800

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Iron, Dissolved ug/L 10000 10400 104 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3415801 3415802

MS MSD

50349378001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Conc. Conc. Result Result % Rec % Rec **RPD** RPD Qual Result Limits Iron, Dissolved 10000 11300 11000 104 ug/L 838 10000 101 75-125 3 20

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50349526

Date: 08/01/2023 12:11 PM

QC Batch: 744535 Analysis Method: EPA 5030/8260
QC Batch Method: EPA 5030/8260 Analysis Description: 8260 MSV

Laboratory: Pace Analytical Services - Indianapolis

Associated Lab Samples: 50349526001, 50349526002, 50349526003, 50349526004, 50349526005, 50349526006, 50349526007

METHOD BLANK: 3413849 Matrix: Water

Associated Lab Samples: 50349526001, 50349526002, 50349526003, 50349526004, 50349526005, 50349526006, 50349526007

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	ND ND	5.0	0.50	07/20/23 14:06	
1,1,1-Trichloroethane	ug/L	ND	5.0	0.47	07/20/23 14:06	
1,1,2,2-Tetrachloroethane	ug/L	ND	5.0	0.52	07/20/23 14:06	
1,1,2-Trichloroethane	ug/L	ND	5.0	0.78	07/20/23 14:06	
1,1-Dichloroethane	ug/L	ND	5.0	0.46	07/20/23 14:06	
1,1-Dichloroethene	ug/L	ND	5.0	0.46	07/20/23 14:06	
1,1-Dichloropropene	ug/L	ND	5.0	0.64	07/20/23 14:06	
1,2,3-Trichlorobenzene	ug/L	ND	5.0	0.38	07/20/23 14:06	
1,2,3-Trichloropropane	ug/L	ND	5.0	0.82	07/20/23 14:06	
1,2,4-Trichlorobenzene	ug/L	ND	5.0	0.45	07/20/23 14:06	
1,2,4-Trimethylbenzene	ug/L	ND	5.0	0.35	07/20/23 14:06	
1,2-Dibromoethane (EDB)	ug/L	ND	5.0	0.55	07/20/23 14:06	
1,2-Dichlorobenzene	ug/L	ND	5.0	0.45	07/20/23 14:06	
1,2-Dichloroethane	ug/L	ND	5.0	0.54	07/20/23 14:06	
1,2-Dichloropropane	ug/L	ND	5.0	0.71	07/20/23 14:06	
1,3,5-Trimethylbenzene	ug/L	ND	5.0	0.30	07/20/23 14:06	
1,3-Dichlorobenzene	ug/L	ND	5.0	0.39	07/20/23 14:06	
1,3-Dichloropropane	ug/L	ND	5.0	0.49	07/20/23 14:06	
1,4-Dichlorobenzene	ug/L	ND	5.0	0.43	07/20/23 14:06	
1-Methylnaphthalene	ug/L	ND	10.0	0.61	07/20/23 14:06	
2,2-Dichloropropane	ug/L	ND	5.0	0.62	07/20/23 14:06	
2-Butanone (MEK)	ug/L	ND	25.0	4.7	07/20/23 14:06	
2-Chlorotoluene	ug/L	ND	5.0	0.38	07/20/23 14:06	
2-Hexanone	ug/L	ND	25.0	3.0	07/20/23 14:06	
2-Methylnaphthalene	ug/L	ND	10.0	0.44	07/20/23 14:06	
4-Chlorotoluene	ug/L	ND	5.0	0.40	07/20/23 14:06	
4-Methyl-2-pentanone (MIBK)	ug/L	ND	25.0	2.5	07/20/23 14:06	
Acetone	ug/L	ND	100	8.9	07/20/23 14:06	
Acrolein	ug/L	ND	50.0	12.7	07/20/23 14:06	
Acrylonitrile	ug/L	ND	100	2.2	07/20/23 14:06	
Benzene	ug/L	ND	5.0	0.39	07/20/23 14:06	
Bromobenzene	ug/L	ND	5.0	0.50	07/20/23 14:06	
Bromochloromethane	ug/L	ND	5.0	0.43	07/20/23 14:06	
Bromodichloromethane	ug/L	ND	5.0	0.57	07/20/23 14:06	
Bromoform	ug/L	ND	5.0	0.73	07/20/23 14:06	
Bromomethane	ug/L	ND	5.0	0.57	07/20/23 14:06	
Carbon disulfide	ug/L	ND	10.0	0.83	07/20/23 14:06	
Carbon tetrachloride	ug/L	ND	5.0	0.40	07/20/23 14:06	
Chlorobenzene	ug/L	ND	5.0	0.36	07/20/23 14:06	
Chloroethane	ug/L	ND	5.0	0.55	07/20/23 14:06	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50349526

Date: 08/01/2023 12:11 PM

METHOD BLANK: 3413849 Matrix: Water

Associated Lab Samples: 50349526001, 50349526002, 50349526003, 50349526004, 50349526005, 50349526006, 50349526007

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Chloroform	ug/L	ND ND	5.0	0.44	07/20/23 14:06	
Chloromethane	ug/L	ND	5.0	0.50	07/20/23 14:06	
cis-1,2-Dichloroethene	ug/L	ND	5.0	0.53	07/20/23 14:06	
cis-1,3-Dichloropropene	ug/L	ND	5.0	0.50	07/20/23 14:06	
Dibromochloromethane	ug/L	ND	5.0	0.56	07/20/23 14:06	
Dibromomethane	ug/L	ND	5.0	0.76	07/20/23 14:06	
Dichlorodifluoromethane	ug/L	ND	5.0	0.60	07/20/23 14:06	
Ethyl methacrylate	ug/L	ND	100	0.64	07/20/23 14:06	
Ethylbenzene	ug/L	ND	5.0	0.35	07/20/23 14:06	
Hexachloro-1,3-butadiene	ug/L	ND	5.0	0.46	07/20/23 14:06	
Iodomethane	ug/L	ND	10.0	0.31	07/20/23 14:06	
Isopropylbenzene (Cumene)	ug/L	ND	5.0	0.34	07/20/23 14:06	
Methyl-tert-butyl ether	ug/L	ND	4.0	0.48	07/20/23 14:06	
Methylene Chloride	ug/L	ND	5.0	2.2	07/20/23 14:06	
n-Butylbenzene	ug/L	ND	5.0	0.38	07/20/23 14:06	
n-Hexane	ug/L	ND	5.0	0.46	07/20/23 14:06	
n-Propylbenzene	ug/L	ND	5.0	0.34	07/20/23 14:06	
Naphthalene	ug/L	ND	1.2	0.42	07/20/23 14:06	
p-Isopropyltoluene	ug/L	ND	5.0	0.36	07/20/23 14:06	
sec-Butylbenzene	ug/L	ND	5.0	0.32	07/20/23 14:06	
Styrene	ug/L	ND	5.0	0.40	07/20/23 14:06	
tert-Butylbenzene	ug/L	ND	5.0	0.35	07/20/23 14:06	
Tetrachloroethene	ug/L	ND	5.0	0.32	07/20/23 14:06	
Toluene	ug/L	ND	5.0	0.34	07/20/23 14:06	
trans-1,2-Dichloroethene	ug/L	ND	5.0	0.35	07/20/23 14:06	
trans-1,3-Dichloropropene	ug/L	ND	5.0	0.51	07/20/23 14:06	
trans-1,4-Dichloro-2-butene	ug/L	ND	100	0.72	07/20/23 14:06	
Trichloroethene	ug/L	ND	5.0	0.70	07/20/23 14:06	
Trichlorofluoromethane	ug/L	ND	5.0	0.62	07/20/23 14:06	
Vinyl acetate	ug/L	ND	50.0	0.96	07/20/23 14:06	
Vinyl chloride	ug/L	ND	2.0	0.59	07/20/23 14:06	
Xylene (Total)	ug/L	ND	10.0	0.35	07/20/23 14:06	
4-Bromofluorobenzene (S)	%.	104	79-124		07/20/23 14:06	
Dibromofluoromethane (S)	%.	103	82-128		07/20/23 14:06	
Toluene-d8 (S)	%.	98	73-122		07/20/23 14:06	

LABORATORY CONTROL SAMPLE:	3413850					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L		49.3	99	81-130	
1,1,1-Trichloroethane	ug/L	50	53.5	107	76-127	
1,1,2,2-Tetrachloroethane	ug/L	50	45.6	91	70-126	
1,1,2-Trichloroethane	ug/L	50	52.5	105	79-124	
1,1-Dichloroethane	ug/L	50	48.2	96	76-123	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50349526

Date: 08/01/2023 12:11 PM

LABORATORY CONTROL SAMPL	E: 3413850					
_		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifier
1,1-Dichloroethene	ug/L	50	49.2	98	73-133	
1,1-Dichloropropene	ug/L	50	55.3	111	78-144	
1,2,3-Trichlorobenzene	ug/L	50	44.5	89	72-138	
,2,3-Trichloropropane	ug/L	50	47.9	96	75-121	
,2,4-Trichlorobenzene	ug/L	50	43.9	88	71-138	
,2,4-Trimethylbenzene	ug/L	50	44.6	89	70-127	
,2-Dibromoethane (EDB)	ug/L	50	54.9	110	80-126	
,2-Dichlorobenzene	ug/L	50	46.8	94	79-123	
,2-Dichloroethane	ug/L	50	49.2	98	70-124	
,2-Dichloropropane	ug/L	50	51.5	103	74-128	
,3,5-Trimethylbenzene	ug/L	50	44.5	89	71-124	
,3-Dichlorobenzene	ug/L	50	46.8	94	77-124	
,3-Dichloropropane	ug/L	50	51.1	102	77-126	
,4-Dichlorobenzene	ug/L	50	47.8	96	77-120	
-Methylnaphthalene	ug/L	50	46.0	92	49-175	
,2-Dichloropropane	ug/L	50	51.2	102	65-136	
-Butanone (MEK)	ug/L	250	211	85	59-134	
-Chlorotoluene	ug/L	50	45.6	91	74-121	
-Hexanone	ug/L	250	207	83	63-134	
-Methylnaphthalene	ug/L	50	44.6	89	52-170	
-Chlorotoluene	ug/L	50	45.7	91	78-123	
-Methyl-2-pentanone (MIBK)	ug/L	250	216	86	67-133	
cetone	ug/L	250	169	68	32-133	
crolein	ug/L	1000	1040	104	35-166	
crylonitrile	ug/L	250	242	97	69-137	
Senzene	_	50 50	49.2	98	74-124	
Bromobenzene	ug/L	50 50	49.2 47.5	95	74-124 76-122	
	ug/L				_	
Bromochloromethane	ug/L	50	46.7	93	66-127	
romodichloromethane	ug/L	50	53.1	106	80-126	
Bromoform	ug/L	50	46.8	94	75-128	
Bromomethane	ug/L	50	53.5	107	10-183	
Carbon disulfide	ug/L	50	50.2	100	68-123	
Carbon tetrachloride	ug/L	50	52.2	104	78-132	
Chlorobenzene	ug/L	50	49.0	98	77-121	
Chloroethane	ug/L	50	52.4	105	43-140	
Chloroform	ug/L	50	48.7	97	75-118	
Chloromethane	ug/L	50	48.2	96	45-130	
is-1,2-Dichloroethene	ug/L	50	49.3	99	76-125	
is-1,3-Dichloropropene	ug/L	50	52.3	105	76-132	
ibromochloromethane	ug/L	50	50.8	102	79-130	
ibromomethane	ug/L	50	52.2	104	79-124	
Pichlorodifluoromethane	ug/L	50	46.0	92	10-124	
thyl methacrylate	ug/L	50	46.3J	93	73-137	
thylbenzene	ug/L	50	48.8	98	74-125	
lexachloro-1,3-butadiene	ug/L	50	44.5	89	66-141	
odomethane	ug/L	50	45.4	91	10-160	
sopropylbenzene (Cumene)	ug/L	50	48.0	96	75-126	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50349526

Date: 08/01/2023 12:11 PM

ABORATORY CONTROL SAMPLE:	3413850					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
lethyl-tert-butyl ether	ug/L	50	50.3	101	74-129	
lethylene Chloride	ug/L	50	57.5	115	77-126	
Butylbenzene	ug/L	50	47.8	96	72-131	
Hexane	ug/L	50	49.3	99	58-131	
ropylbenzene	ug/L	50	49.0	98	76-127	
phthalene	ug/L	50	44.5	89	70-132	
sopropyltoluene	ug/L	50	48.1	96	76-126	
:-Butylbenzene	ug/L	50	48.4	97	76-129	
ene	ug/L	50	45.5	91	81-129	
Butylbenzene	ug/L	50	46.8	94	76-129	
achloroethene	ug/L	50	49.5	99	73-132	
ene	ug/L	50	43.4	87	72-119	
s-1,2-Dichloroethene	ug/L	50	49.9	100	74-125	
s-1,3-Dichloropropene	ug/L	50	50.9	102	75-132	
s-1,4-Dichloro-2-butene	ug/L	50	45.1J	90	66-152	
hloroethene	ug/L	50	54.3	109	75-127	
hlorofluoromethane	ug/L	50	64.5	129	64-136	
yl acetate	ug/L	200	297	149	62-159	
yl chloride	ug/L	50	55.1	110	48-133	
ene (Total)	ug/L	150	139	93	73-123	
romofluorobenzene (S)	%.			98	79-124	
omofluoromethane (S)	%.			97	82-128	
uene-d8 (S)	%.			98	73-122	

MATRIX SPIKE & MATRIX SP	PIKE DUPLIC	CATE: 3413	851		3413852							
			MS	MSD								
	5	0349526001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1,1,1,2-Tetrachloroethane	ug/L	ND	50	50	49.1	49.4	98	99	60-150	0	20	
1,1,1-Trichloroethane	ug/L	ND	50	50	52.9	52.5	100	100	63-138	1	20	
1,1,2,2-Tetrachloroethane	ug/L	ND	50	50	46.5	45.2	93	90	58-146	3	20	
1,1,2-Trichloroethane	ug/L	ND	50	50	50.9	50.5	102	101	63-142	1	20	
1,1-Dichloroethane	ug/L	15.5	50	50	60.0	58.6	89	86	64-138	2	20	
1,1-Dichloroethene	ug/L	ND	50	50	47.6	46.7	95	93	65-139	2	20	
1,1-Dichloropropene	ug/L	ND	50	50	53.3	52.6	107	105	68-155	1	20	
1,2,3-Trichlorobenzene	ug/L	ND	50	50	40.5	39.7	81	79	32-141	2	20	
1,2,3-Trichloropropane	ug/L	ND	50	50	48.6	46.9	97	94	54-144	4	20	
1,2,4-Trichlorobenzene	ug/L	ND	50	50	39.0	38.2	78	76	31-140	2	20	
1,2,4-Trimethylbenzene	ug/L	ND	50	50	43.2	41.7	86	83	34-144	4	20	
1,2-Dibromoethane (EDB)	ug/L	ND	50	50	53.0	53.5	106	107	64-139	1	20	
1,2-Dichlorobenzene	ug/L	ND	50	50	46.1	44.6	92	89	50-136	3	20	
1,2-Dichloroethane	ug/L	ND	50	50	51.9	50.7	104	101	55-146	2	20	
1,2-Dichloropropane	ug/L	ND	50	50	52.6	51.0	105	102	66-134	3	20	
1,3,5-Trimethylbenzene	ug/L	ND	50	50	43.1	42.3	86	85	29-151	2	20	
1,3-Dichlorobenzene	ug/L	ND	50	50	45.1	43.2	90	86	47-133	4	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50349526

Date: 08/01/2023 12:11 PM

MATRIX SPIKE & MATRIX SI	PIKE DUPI	LICATE: 3413			3413852							
			MS	MSD								
Davasatas	Llaita	50349526001	Spike	Spike	MS	MSD	MS % Dan	MSD	% Rec	000	Max	0
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qı —
,3-Dichloropropane	ug/L	ND	50	50	50.0	50.8	100	102	61-144	2		
,4-Dichlorobenzene	ug/L	ND	50	50	46.0	43.8	92	88	50-131	5		
I-Methylnaphthalene	ug/L	ND	50	50	41.7	41.5	83	83	20-176	0		
2,2-Dichloropropane	ug/L	ND	50	50	46.3	45.5	93	91	33-146	2		
P-Butanone (MEK)	ug/L	ND	250	250	204	211	82	85	45-155	3		
?-Chlorotoluene	ug/L	ND	50	50	45.1	43.2	90	86	43-142	4	20	
-Hexanone	ug/L	ND	250	250	196	203	78	81	48-157	4	20	
-Methylnaphthalene	ug/L	ND	50	50	40.3	39.6	81	79	21-175	2	20	
-Chlorotoluene	ug/L	ND	50	50	44.3	43.2	89	86	47-137	3	20	
-Methyl-2-pentanone MIBK)	ug/L	ND	250	250	205	212	82	85	53-156	4	20	
cetone	ug/L	ND	250	250	152	165	61	66	16-162	8	20	
Acrolein	ug/L	ND	1000	1000	860	831	86	83	39-184	3	20	
Acrylonitrile	ug/L	ND	250	250	236	237	94	95	58-140	0	20	
Benzene	ug/L	ND	50	50	51.4	50.4	98	96	65-137	2	20	
Bromobenzene	ug/L	ND	50	50	46.7	45.6	93	91	56-137	2	20	
Bromochloromethane	ug/L	ND	50	50	48.5	45.9	97	92	56-139	6	20	
romodichloromethane	ug/L	ND	50	50	53.0	52.1	106	104	61-149	2	20	
romoform	ug/L	ND	50	50	45.4	45.3	91	91	51-138	0	20	
romomethane	ug/L	ND	50	50	39.3	43.5	79	87	10-169	10	20	
Carbon disulfide	ug/L	ND	50	50	47.7	46.4	93	91	55-126	3		
Carbon tetrachloride	ug/L	ND	50	50	50.0	49.4	100	99	65-156	1		
Chlorobenzene	ug/L	ND	50	50	48.6	48.2	97	96	54-135	1		
Chloroethane	ug/L	274	50	50	255	256	-39	-37	46-142	0		M1
Chloroform	ug/L	ND	50	50	48.7	48.2	97	96	64-133	1		
Chloromethane	ug/L	ND	50	50	45.9	44.1	92	88	30-139	4		
is-1,2-Dichloroethene	ug/L	ND	50	50	50.9	50.4	97	96	59-141	1		
sis-1,3-Dichloropropene	ug/L	ND	50	50	50.7	50.4	101	101	57-141	1		
Dibromochloromethane	ug/L	ND	50	50	50.7	49.6	100	99	59-147	1		
Dibromomethane	ug/L	ND	50	50	50.8	51.8	102	104	64-142	2		
Dichlorodifluoromethane	_	ND ND	50	50	42.5	43.8	85	88	10-144	3		
Ethyl methacrylate	ug/L ug/L	ND ND	50 50	50	42.5 44.2J	45.2J	88	90	58-147	3	20	
•	_	ND	50	50	44.23	45.25	95	93	50-147	1		
Ethylbenzene	ug/L									1		
lexachloro-1,3-butadiene	ug/L	ND	50 50	50 50	39.3	38.6	79 115	77 111	16-155	2		
odomethane	ug/L	ND	50	50	57.6	55.6	115	111	10-154	4	-	
sopropylbenzene Cumene)	ug/L	ND	50	50	46.1	45.6	92	91	36-151	1		
Methyl-tert-butyl ether	ug/L	ND	50	50	50.6	50.7	101	101	66-138	0		
Methylene Chloride	ug/L	ND	50	50	53.4	53.2	107	106	53-126			
-Butylbenzene	ug/L	ND	50	50	44.3	42.3	89	85	31-142			
-Hexane	ug/L	ND	50	50	47.7	47.2	95	94	53-129	1		
-Propylbenzene	ug/L	ND	50	50	47.3	45.7	95	91	39-145	3		
laphthalene	ug/L	ND	50	50	42.7	41.5	85	83	51-135			
-Isopropyltoluene	ug/L	ND	50	50	45.2	43.8	90	88	38-145	3		
ec-Butylbenzene	ug/L	ND	50	50	47.4	45.9	95	92	33-153	3		
Styrene	ug/L	ND	50	50	43.4	43.8	87	88	57-141	1	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: GE Indy
Pace Project No.: 50349526

Date: 08/01/2023 12:11 PM

MATRIX SPIKE & MATRIX SP	IKE DUPL	ICATE: 3413	851		3413852							
			MS	MSD								
		50349526001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
tert-Butylbenzene	ug/L	ND	50	50	46.4	44.9	93	90	45-145	3	20	
Tetrachloroethene	ug/L	ND	50	50	46.1	45.7	92	91	43-149	1	20	
Toluene	ug/L	ND	50	50	43.9	43.4	84	84	57-137	1	20	
trans-1,2-Dichloroethene	ug/L	ND	50	50	47.8	47.5	96	95	63-133	1	20	
trans-1,3-Dichloropropene	ug/L	ND	50	50	48.2	47.8	96	96	56-140	1	20	
trans-1,4-Dichloro-2-butene	ug/L	ND	50	50	40.8J	40.5J	82	81	36-169		20	
Trichloroethene	ug/L	ND	50	50	54.2	52.7	108	105	52-145	3	20	
Trichlorofluoromethane	ug/L	ND	50	50	58.2	57.8	116	116	52-144	1	20	
Vinyl acetate	ug/L	ND	200	200	255	253	128	126	27-179	1	20	
Vinyl chloride	ug/L	3.2	50	50	53.3	53.0	100	99	43-139	1	20	
Xylene (Total)	ug/L	ND	150	150	134	132	90	88	52-137	2	20	
4-Bromofluorobenzene (S)	%.						96	94	79-124			
Dibromofluoromethane (S)	%.						95	95	82-128			
Toluene-d8 (S)	%.						98	99	73-122			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy Pace Project No.: 50349526

Nitrogen, NO2 plus NO3

Date: 08/01/2023 12:11 PM

QC Batch: 744196 Analysis Method: EPA 353.2

QC Batch Method: EPA 353.2 Analysis Description: 353.2 Nitrate + Nitrite, Unpres.

> Laboratory: Pace Analytical Services - Indianapolis

Associated Lab Samples: 50349526001, 50349526002, 50349526003, 50349526004, 50349526007

METHOD BLANK: Matrix: Water

Associated Lab Samples: 50349526001, 50349526002, 50349526003, 50349526004, 50349526007

Blank Reporting MDL Qualifiers Parameter Units Result Limit Analyzed Nitrogen, Nitrate mg/L ND 0.10 0.011 07/18/23 23:53 Nitrogen, NO2 plus NO3 mg/L ND 0.10 0.011 07/18/23 23:53

LABORATORY CONTROL SAMPLE: 3412300 Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers

Nitrogen, Nitrate 1.0 102 90-110 mg/L 1 mg/L Nitrogen, NO2 plus NO3 2 2.0 102 90-110

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3412301 3412302

mg/L

MS MSD 50349482001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual Nitrogen, Nitrate mg/L 1.8 1 1 2.8 2.8 105 106 90-110 0 20 Nitrogen, NO2 plus NO3 2 2 3.8 3.9 103 104 90-110 20 mg/L 1.8 0

3412303 MATRIX SPIKE SAMPLE: 50349482003 MS MS Spike % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers 1.5 90-110 Nitrogen, Nitrate mg/L 2.6 106 1 1.5

2

3.6

104

90-110

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50349526

QC Batch: 744310 Analysis Method: SM 5310C

QC Batch Method: SM 5310C Analysis Description: 5310C Total Organic Carbon

Laboratory: Pace Analytical Services - Indianapolis

Associated Lab Samples: 50349526001, 50349526002, 50349526003, 50349526004, 50349526007

METHOD BLANK: 3412748 Matrix: Water

Associated Lab Samples: 50349526001, 50349526002, 50349526003, 50349526004, 50349526007

Blank Reporting

Parameter Units Result Limit MDL Analyzed Qualifiers

Total Organic Carbon ug/L ND 1000 236 07/19/23 20:11

LABORATORY CONTROL SAMPLE: 3412749

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units **Total Organic Carbon** 10000 10100 101 90-110 ug/L

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3412750 3412751

MS MSD

50348454011 Spike Spike MS MSD MS MSD % Rec Max Parameter Units **RPD** RPD Result Conc. Conc. Result Result % Rec % Rec Limits Qual **Total Organic Carbon** 20 ug/L 19.8 mg/L 100000 100000 121000 120000 101 101 80-120 0

MATRIX SPIKE SAMPLE: 3412752

Date: 08/01/2023 12:11 PM

MS MS % Rec 50348454012 Spike Qualifiers Parameter Units Result Conc. Result % Rec Limits 35.3 mg/L Total Organic Carbon 80000 107000 90 80-120 ug/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: GE Indy
Pace Project No.: 50349526

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 08/01/2023 12:11 PM

D4	Sample was diluted due to the presence of high levels of target analytes.

LO Analyte recovery in the laboratory control sample (LCS) was outside QC limits.

M0 Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

R1 RPD value was outside control limits.

METHOD CROSS REFERENCE TABLE

Project: GE Indy
Pace Project No.: 50349526

Parameter	Matrix	Analytical Method	Preparation Method
6010 MET ICP, Dissolved	Water	SW-846 6010B	SW-846 3010A

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: GE Indy
Pace Project No.: 50349526

Date: 08/01/2023 12:11 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
50349526001	MW-425-071723	EPA 300.0	744398		
50349526002	MW-413S-071723	EPA 300.0	744398		
50349526003	MW-410S-071723	EPA 300.0	744398		
50349526004	MW-410D-071723	EPA 300.0	744398		
50349526007	MW-411S-071823	EPA 300.0	744398		
50349526001	MW-425-071723	AM20GAX	769496		
50349526002	MW-413S-071723	AM20GAX	769496		
50349526003	MW-410S-071723	AM20GAX	769496		
50349526004	MW-410D-071723	AM20GAX	769496		
50349526007	MW-411S-071823	AM20GAX	769496		
50349526001	MW-425-071723	EPA 3010	745041	EPA 6010	745042
50349526002	MW-413S-071723	EPA 3010	745041	EPA 6010	745042
50349526003	MW-410S-071723	EPA 3010	745041	EPA 6010	745042
50349526004	MW-410D-071723	EPA 3010	745041	EPA 6010	745042
50349526007	MW-411S-071823	EPA 3010	745041	EPA 6010	745042
50349526001	MW-425-071723	EPA 5030/8260	744535		
50349526002	MW-413S-071723	EPA 5030/8260	744535		
50349526003	MW-410S-071723	EPA 5030/8260	744535		
50349526004	MW-410D-071723	EPA 5030/8260	744535		
50349526005	AD-100-071723	EPA 5030/8260	744535		
50349526006	Trip Blank-071723	EPA 5030/8260	744535		
50349526007	MW-411S-071823	EPA 5030/8260	744535		
50349526001	MW-425-071723	EPA 353.2	744196		
50349526002	MW-413S-071723	EPA 353.2	744196		
50349526003	MW-410S-071723	EPA 353.2	744196		
50349526004	MW-410D-071723	EPA 353.2	744196		
50349526007	MW-411S-071823	EPA 353.2	744196		
50349526001	MW-425-071723	SM 5310C	744310		
50349526002	MW-413S-071723	SM 5310C	744310		
50349526003	MW-410S-071723	SM 5310C	744310		
50349526004	MW-410D-071723	SM 5310C	744310		
50349526007	MW-411S-071823	SM 5310C	744310		

WWW.PACELABS.COM

Required Client Information:

Ramboll OH

Section A

Company:

Submitting a sample via this chain of custody constitutes ack

Section B

Required Project Information: Report To: Chase Forman

W0#:50349526

equest Document

vant fields must be completed accurately.

t https://info.pacelabs.com/hubfs/pas-standard-terms.pdf.

	ř		1
Page:	1	Of	

ompany: Ramboll OH	Report To: Chase Forman		MCCOURTS F ayabic	
ddress: 8805 Governor's Hill Drive Suite 205	Сору То:		ompany Name: Ramboll OH	
Cincinnati, OH 45249 mail: chase.forman@ramboll.com	Purchase Order #: 1940006425		dress: Regulatory Agency	有的证明
	1010000120			
110 001				
Standard	. 10,000 11.			SE 118 2 TO 11 TO 11 TO 11 TO 11 TO 11 TO 11 TO 11 TO 11 TO 11 TO 11 TO 11 TO 11 TO 11 TO 11 TO 11 TO 11 TO 11
## SAMPLE ID One Character per box. (A-Z, 0-9/, -) Sample Ids must be unique 1	ter DW T START CODE SHOW T START T STA	IME DATE TIME 8 7-17-25 1210 1-17-25 1210 1-17-25 1210 1-17-25 1210 1-17-25 1210 1-17-25 1210 1-17-25 1210 1-17-25 1210 1-17-25 1210 1-17-25 1210 1-17-25 1210	TIME ACCEPTED BY / AFFILIATION State / Location IN Requested Analysis Filtered (Y/N) Perservatives ANA Requested Analysis Filtered (Y/N) ANA State / Location IN Requested Analysis Filtered (Y/N) ANA State / Location IN Requested Analysis Filtered (Y/N) ANA State / Location IN Requested Analysis Filtered (Y/N) ANA State / Location IN Requested Analysis Filtered (Y/N) ANA ANA State / Location IN Requested Analysis Filtered (Y/N) ANA State / Location IN State / Location IN Requested Analysis Filtered (Y/N) ANA ANA State / Location IN IN State / Location IN IN State / Location IN IN IN IN IN IN IN IN IN I	NDITIONS
AM20GAX for M/E/E/propane/propene/butane to Pace® Gulf C	past Watt Stamb	POG 7/18-23	115 20 7/15/23 11 W 7/15/23 1210 2.2 y	NY
	SA	MPLER NAME AND SIGNAT PRINT Name of SAMPLER SIGNATURE of SAMPLER	0 0	ealed cooler (AM)

SAMPLE CONDITION UPON RECEIPT FORM

Date/Time and Initials of person examining contents	Alle Street and the Association of the Association		213 CRR		_			
1. Courier: ☐ FED EX ☐ UPS ☐ CLIENT ☑ PACE	□NOW/J	ETT 🗆	OTHER	5. Packing Material:	☐ Bubble Wrap	Bubble	e Bags	
2. Custody Seal on Cooler/Box Present: Yes	No				☐ None	☐ Other		
(If yes)Seals Intact: \square Yes \square No (leave blank	if no seals	were prese	ent)					
3. Thermometer: 12345678 ABCD	EF(G)H			6. Ice Type: 📈 Wet	☐ Blue ☐ None)		
4. Cooler Temperature(s): 2-2/2-2 [Initial/Corrected] RECORD TEMPS OF ALL COOLERS RECE	IVED (use Cor	nments helo	w to add more)	7. If temp. is over 6°C or	under 0°C, was the PM			□ No
				omments section below.	inp should be above free	izing to o c	-	
	Yes	No				Yes	No	N/A
USDA Regulated Soils? (HI, ID, NY, WA, OR,CA, NM, TX, OK, AR, LA, TN, AL, MS, NC, SC, GA, FL, or Puerto Rico)		/	CHECKED?: Exception any container with a	ing acid/base preservation ptions: VOA, coliform, LLHo septum cap or preserved w	, O&G, RAD CHEM, and			
Short Hold Time Analysis (48 hours or less)? Analysis: Nitrate	/	(HNO3 (s2) H2SO4 Any non-conformance count form	(92) NaOH (>10) NaOH/2 to pH recommendations will t	ZnAc (>9) be noted on the container	/		
Time 5035A TC placed in Freezer or Short Holds To Lab	Time:				7 27	Present	Absent	N/A
			Residual Chlorine (Check (SVOC 625 Pest/PC	B 608)			1
Rush TAT Requested (4 days or less):		/	Residual Chlorine (Check (Total/Amenable/Fre	e Cyanide)		-	
Custody Signatures Present?	/		Headspace Wiscons	sin Sulfide?				1
Containers Intact?:	/		Headspace in VOA See Containter Cou			Present	Absent	No VOA Vials Sent
Sample Label (IDs/Dates/Times) Match COC?: Except TCs, which only require sample ID		/	Trip Blank Present?			1		
Extra labels on Terracore Vials? (soils only)			Trip Blank Custody	Seals?:		/		
COMMENTS: Sample ID MW-4105-071723	BP34 a	nd AG3	S don't have	Collection time [153	5) [7118123 CER			
								_

** Place a RED dot on containers

that	are	out	of	conformance	**

			MeOH (only)		ı	i				ΔMR	FR G	LASS						PI	_AST	ıc					ОТН	1ED		Nitric	Sulfuric	Sodium Hydroxide	Sodium Hydroxide/ ZnAc
		_	DI		VOA	. 0						LACC																Red	Yellow	Green	Black
Line Item	WGFU	WGKU BG1U	R	H69)	VIAL HS >6mm	VG9U	VG9T	AGOU	AG1H	AG1U	AG3U	AG3\$	AG38F	AG3B	BP1U	BP1N	BP2U	врзи	BP3N	ВРЗЕ	BP3S	вьзв	BP3Z	ССЗН	CG3F	Syringe Kit	Matrix	HNO3 <2	H2SO4 <2	NaOH >10	NaOH/Zn Ac >9
1				6								1						1		1							W	/	/		
2				5								1						1		4							M	V	/		
3				5								1						1		1							W	/	/		
4		711																													
5				5								1						1		1							wi	1	1		
6				3																	, ,						W				
7				3																							Wi				
8				5								1						1		1							wi	/	/		
9																					>										
10																															
11														1																	
12																															

Container Codes

	Glass									
DG9H	40mL HCl amber voa vial	BG1T	glass							
DG9P	40mL TSP amber vial	BG1U	1L unpreserved glass							
DG9S	40mL H2SO4 amber vial	CG3U	250mL Unpres Clear Glass							
DG9T	40mL Na Thio amber vial	AG0U	100mL unpres amber glass							
DG9U	40mL unpreserved amber vial	AG1H	1L HCl amber glass							
VG9H	40mL HCl clear vial	AG1S	1L H2SO4 amber glass							
VG9T	40mL Na Thio. clear vial	AG1T	1L Na Thiosulfate amber glass							
VG9U	40mL unpreserved clear vial	AG1U	1liter unpres amber glass							
I	40mL w/hexane wipe vial	AG2N	500mL HNO3 amber glass							
NGKU	8oz unpreserved clear jar	AG2S	500mL H2SO4 amber glass							
WGFU	4oz clear soil jar	AG2U	500mL unpres amber glass							
JGFU	4oz unpreserved amber wide	AG3S	250mL H2SO4 amber glass							
CG3H	250mL clear glass HCl	AG3SF	250mL H2SO4 amb glass -field filtered							
CG3F	250mL clear glass HCl, Field Filter	AG3U	250mL unpres amber glass							
BG1H	1L HCl clear glass	AG3B	250mL NaOH amber glass							
BG1S	1L H2SO4 clear glass	T								

	Plastic									
BP1B	1L NaOH plastic	BP4U	125mL unpreserved plastic							
BP1N	1L HNO3 plastic	BP4N	125mL HNO3 plastic							
BP1S	1L H2SO4 plastic	BP4S	125mL H2SO4 plastic							
BP1U	1L unpreserved plastic		Missollaneous							
BP1Z 1L NaOH, Zn, Ac			Miscellaneous							
BP2N	500mL HNO3 plastic	Syring	ge Kit LL Cr+6 sampling kit							
BP2C	500mL NaOH plastic	ZPLC	Ziploc Bag							
BP2S	500mL H2SO4 plastic	R	Terracore Kit							
BP2U	500mL unpreserved plastic	SP5T	120mL Coliform Sodium Thiosulfate							
BP2Z	500mL NaOH, Zn Ac	GN	General Container							
врзв	250mL NaOH plastic	U	Summa Can (air sample)							
BP3N	250mL HNO3 plastic	WT	Water							
BP3F	250mL HNO3 plastic-field filtered	SL	Solid							
BP3U	250mL unpreserved plastic	OL:	Oil							
BP3S	250mL H2SO4 plastic	NAL	Non-aqueous liquid							
BP3Z	250mL NaOH, ZnAc plastic	WP	Wipe							
BP3R	250mL Unpres. FF SO4/OH buffer		Pd							

age 42 of 42

August 02, 2023

Chase Forman Ramboll 8805 Governor's Hill Drive Suite 205 Cincinnati, OH 45249

RE: Project: GE Indy

Pace Project No.: 50349621

Dear Chase Forman:

Enclosed are the analytical results for sample(s) received by the laboratory on July 19, 2023. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

- Pace Analytical Gulf Coast
- Pace Analytical Services Indianapolis

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Heather Patterson heather.patterson@pacelabs.com

Heath Pathson

(317)228-3146 Project Manager

Enclosures

cc: Mr. Tyler Carter, Ramboll Environ

Matt Starrett, Ramboll Dana Williams, Ramboll

CERTIFICATIONS

Project: GE Indy
Pace Project No.: 50349621

Pace Analytical Services Indianapolis

7726 Moller Road, Indianapolis, IN 46268

Illinois Accreditation #: 200074

Indiana Drinking Water Laboratory #: C-49-06

Kansas/TNI Certification #: E-10177 Kentucky UST Agency Interest #: 80226

Kentucky WW Laboratory ID #: 98019 Michigan Drinking Water Laboratory #9050

Pace Analytical Gulf Coast

7979 Innovation Park Drive, Baton Rouge, LA 70820

Arkansas Certification #: 88-0655 DoD ELAP Certification #: 6429-01 Florida Certification #: E87854 Illinois Certification #: 004585 Kansas Certification #: E-10354 Louisiana/LELAP Certification #: 01955 North Carolina Certification #: 618 Ohio VAP Certified Laboratory #: CL0065

Oklahoma Laboratory #: 9204 Texas Certification #: T104704355 Wisconsin Laboratory #: 999788130

USDA Foreign Soil Permit #: 525-23-13-23119 USDA Compliance Agreement #: IN-SL-22-001

North Dakota Certification #: R-195 Oklahoma Certification #: 2019-101 South Carolina Certification #: 73006001 Texas Certification #: T104704178-19-11 USDA Soil Permit # P330-19-00209 Virginia Certification #: 460215 Washington Certification #: C929

SAMPLE SUMMARY

Project: GE Indy
Pace Project No.: 50349621

Lab ID	Sample ID	Matrix	Date Collected	Date Received
50349621001	MW-402-071823	Water	07/18/23 12:30	07/19/23 12:20
50349621002	AD-200-071823	Water	07/18/23 12:00	07/19/23 12:20
50349621003	MW-407S-071823	Water	07/18/23 15:35	07/19/23 12:20
50349621004	MW-407D-071923	Water	07/19/23 09:40	07/19/23 12:20
50349621005	Trip Blank-071923	Water	07/19/23 08:00	07/19/23 12:20
50349621006	MW-418S-071923	Water	07/19/23 11:00	07/19/23 12:20
50349621007	AD-300-071923	Water	07/19/23 12:00	07/19/23 12:20

SAMPLE ANALYTE COUNT

Project: GE Indy
Pace Project No.: 50349621

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
50349621001	MW-402-071823	EPA 300.0	ADM	1	PASI-I
		AM20GAX	LMB	7	GCLA
		EPA 6010	JPK	1	PASI-I
		EPA 5030/8260	SLB	75	PASI-I
		EPA 353.2	DAW	2	PASI-I
		SM 5310C	ATS	1	PASI-I
50349621002	AD-200-071823	EPA 5030/8260	SLB, TMW	75	PASI-I
50349621003	MW-407S-071823	EPA 300.0	ADM	1	PASI-I
		AM20GAX	LMB	7	GCLA
		EPA 6010	JPK	1	PASI-I
		EPA 5030/8260	SLB, TMW	75	PASI-I
		EPA 353.2	DAW	2	PASI-I
		SM 5310C	ATS	1	PASI-I
50349621004	MW-407D-071923	EPA 300.0	ADM	1	PASI-I
		AM20GAX	LMB	7	GCLA
		EPA 6010	JPK	1	PASI-I
		EPA 5030/8260	SLB	75	PASI-I
		EPA 353.2	DAW	2	PASI-I
		SM 5310C	ATS	1	PASI-I
50349621005	Trip Blank-071923	EPA 5030/8260	SLB	75	PASI-I
50349621006	MW-418S-071923	EPA 300.0	ADM	1	PASI-I
		AM20GAX	LMB	7	GCLA
		EPA 6010	JPK	1	PASI-I
		EPA 5030/8260	SLB	75	PASI-I
		EPA 353.2	DAW	2	PASI-I
		SM 5310C	ATS	1	PASI-I
50349621007	AD-300-071923	EPA 300.0	ADM	1	PASI-I
		AM20GAX	LMB	7	GCLA
		EPA 6010	JPK	1	PASI-I
		EPA 5030/8260	SLB	75	PASI-I
		EPA 353.2	DAW	2	PASI-I
		SM 5310C	ATS	1	PASI-I

GCLA = Pace Analytical Gulf Coast

PASI-I = Pace Analytical Services - Indianapolis

SUMMARY OF DETECTION

Project: GE Indy
Pace Project No.: 50349621

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
50349621001	MW-402-071823					
EPA 300.0	Sulfate	58600	ug/L	2500	07/27/23 10:57	
AM20GAX	Methane	7300	ug/L	5.0	07/27/23 06:54	
AM20GAX	Ethane	93	ug/L	1.0	07/27/23 06:54	
AM20GAX	Ethene	98	ug/L	1.0	07/27/23 06:54	
EPA 6010	Iron, Dissolved	12900	ug/L	100	07/27/23 02:24	
EPA 5030/8260	Chloroethane	880	ug/L	125	07/24/23 12:55	
EPA 5030/8260	1,1-Dichloroethane	253	ug/L	5.0	07/21/23 16:21	
EPA 5030/8260	1,1-Dichloroethene	6.9	ug/L	5.0		1d,CH
EPA 5030/8260	cis-1,2-Dichloroethene	5240	ug/L	125	07/24/23 12:55	,
EPA 5030/8260	trans-1,2-Dichloroethene	57.3	ug/L		07/21/23 16:21	
EPA 5030/8260	Methylene Chloride	13.5	ug/L	5.0	07/21/23 16:21	
EPA 5030/8260	1,1,1-Trichloroethane	60.8	ug/L	5.0	07/21/23 16:21	
EPA 5030/8260	Trichloroethene	102	ug/L	5.0	07/21/23 16:21	
EPA 5030/8260	Vinyl chloride	264	ug/L	50.0	07/24/23 12:55	
SM 5310C	Total Organic Carbon	14400	ug/L	8000		
	•	14400	ug/L	0000	01/25/25 10.10	
50349621002	AD-200-071823	202	/1	400	07/04/00 44-50	
EPA 5030/8260	Acetone	282	ug/L	100	07/24/23 14:50	
EPA 5030/8260	Chloroethane	31.0	ug/L	5.0	07/24/23 14:50	
50349621003	MW-407S-071823					
EPA 300.0	Sulfate	512	ug/L	250	07/27/23 11:30	
AM20GAX	Methane	5100	ug/L	5.0	07/27/23 07:06	
AM20GAX	Ethane	12	ug/L	1.0		
AM20GAX	Ethene	1.4	ug/L	1.0	07/27/23 07:06	
EPA 6010	Iron, Dissolved	29300	ug/L	100	07/27/23 02:30	
EPA 5030/8260	Acetone	239	ug/L	100	07/24/23 15:21	
EPA 5030/8260	Chloroethane	18.6	ug/L	5.0	07/24/23 15:21	
SM 5310C	Total Organic Carbon	169000	ug/L	16000	07/25/23 16:37	
0349621004	MW-407D-071923					
EPA 300.0	Sulfate	523	ug/L	250	07/27/23 12:23	
AM20GAX	Methane	6700	ug/L	5.0	07/27/23 07:20	
AM20GAX	Ethane	40	ug/L	1.0	07/27/23 07:20	
AM20GAX	Ethene	68	ug/L	1.0	07/27/23 07:20	
EPA 6010	Iron, Dissolved	15600	ug/L	100	07/27/23 02:42	
EPA 5030/8260	Chloroethane	290	ug/L		07/24/23 14:31	
EPA 5030/8260	1,1-Dichloroethane	7.9	ug/L	5.0	07/21/23 17:57	
EPA 5030/8260	cis-1,2-Dichloroethene	9.9	ug/L	5.0	07/21/23 17:57	
EPA 5030/8260	Vinyl chloride	33.3	ug/L	2.0	07/24/23 14:31	
SM 5310C	Total Organic Carbon	84900	ug/L	16000	07/25/23 16:48	
0349621006	MW-418S-071923					
EPA 300.0	Sulfate	318	ug/L	250	07/27/23 13:58	
AM20GAX	Methane	8300	ug/L	5.0	07/27/23 07:33	
AM20GAX	Ethane	300	ug/L	1.0	07/27/23 07:33	
AM20GAX	Ethene	1900	ug/L	1.0	07/27/23 07:33	
EPA 6010	Iron, Dissolved	14000	ug/L	100	07/27/23 02:34	
EPA 5030/8260	Chloroethane	131	ug/L		07/21/23 19:01	1d,CH

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

SUMMARY OF DETECTION

Project: GE Indy
Pace Project No.: 50349621

Lab Sample ID Method	Client Sample ID Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
50349621006	MW-418S-071923		Office		711017200	
EPA 5030/8260	1,1-Dichloroethane	119	ug/L	50.0	07/21/23 19:01	
EPA 5030/8260	1,1-Dichloroethene	51.0	ug/L	50.0	07/21/23 19:01	1d,CH
EPA 5030/8260	cis-1,2-Dichloroethene	11400	ug/L	500	07/25/23 11:01	HS
EPA 5030/8260	Vinyl chloride	10500	ug/L	200	07/25/23 11:01	HS
SM 5310C	Total Organic Carbon	7710	ug/L	4000	07/25/23 17:02	
50349621007	AD-300-071923					
EPA 300.0	Sulfate	290	ug/L	250	07/27/23 14:47	
AM20GAX	Methane	7900	ug/L	5.0	07/27/23 07:47	
AM20GAX	Ethane	280	ug/L	1.0	07/27/23 07:47	
AM20GAX	Ethene	1800	ug/L	1.0	07/27/23 07:47	
EPA 6010	Iron, Dissolved	13700	ug/L	100	07/27/23 02:37	
EPA 5030/8260	Chloroethane	125	ug/L	50.0	07/21/23 19:33	1d,CH
EPA 5030/8260	1,1-Dichloroethane	118	ug/L	50.0	07/21/23 19:33	
EPA 5030/8260	1,1-Dichloroethene	50.5	ug/L	50.0	07/21/23 19:33	1d,CH
EPA 5030/8260	cis-1,2-Dichloroethene	12400	ug/L	500	07/25/23 12:37	
EPA 5030/8260	Vinyl chloride	10900	ug/L	200	07/25/23 12:37	
SM 5310C	Total Organic Carbon	9430	ug/L	4000	07/25/23 17:12	

Project: GE Indy
Pace Project No.: 50349621

Date: 08/02/2023 05:01 PM

Sample: MW-402-071823	Lab ID: 503	49621001	Collected	d: 07/18/23	3 12:30	Received: 07/	19/23 12:20 Ma	atrix: Water	
			Report						
Parameters	Results L	Jnits	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
300.0 IC Anions 28 Days	Analytical Meth	nod: EPA 30	0.0						
•	Pace Analytica	l Services -	Indianapo	lis					
Sulfate	58600 u	ıg/L	2500	1900	10		07/27/23 10:57	14808-79-8	
Indicator Gases Water LHC	Analytical Meth	nod: AM20G	SAX						
	Pace Analytica	l Gulf Coas	t						
Methane	7300 (ıg/L	5.0	2.0	1		07/27/23 06:54	74-82-8	
Ethane	93 ເ	ıg/L	1.0	0.17	1		07/27/23 06:54	74-84-0	
Ethene	98 ເ	ıg/L	1.0	0.24	1		07/27/23 06:54	74-85-1	
n-Propane	ND u	ıg/L	1.0	0.29	1		07/27/23 06:54	74-98-6	
Propylene		ıg/L	1.0	0.31	1		07/27/23 06:54	115-07-1	
Isobutane		ıg/L	2.0	0.065	1		07/27/23 06:54		
n-Butane		ıg/L	2.0	0.54	1		07/27/23 06:54		
6010 MET ICP, Dissolved	Analytical Meth	nod: EPA 60)10 Prepai	ration Meth	od: EPA	3010			
,	Pace Analytica		•						
Iron, Dissolved	12900 (ıg/L	100	28.6	1	07/27/23 01:58	07/27/23 02:24	7439-89-6	
8260 MSV Indiana	Analytical Meth	nod: EPA 50	30/8260						
	Pace Analytica	l Services -	Indianapo	lis					
Acetone	ND u	ıg/L	100	37.5	1		07/21/23 16:21	67-64-1	
Acrolein	ND u	ıg/L	50.0	24.1	1		07/21/23 16:21	107-02-8	
Acrylonitrile		ıg/L	100	2.5	1		07/21/23 16:21	107-13-1	
Benzene		ıg/L	5.0	0.41	1		07/21/23 16:21	71-43-2	
Bromobenzene		ıg/L	5.0	0.50	1		07/21/23 16:21		
Bromochloromethane		ıg/L	5.0	1.0	1		07/21/23 16:21		
Bromodichloromethane		ıg/L	5.0	0.51	1		07/21/23 16:21		
Bromoform		ig/L	5.0	3.4	1		07/21/23 16:21		
		-			1				
Bromomethane		ıg/L	5.0	0.87			07/21/23 16:21		
2-Butanone (MEK)		ıg/L	25.0	3.4	1		07/21/23 16:21		
n-Butylbenzene		ıg/L	5.0	0.42	1		07/21/23 16:21		
sec-Butylbenzene		ıg/L	5.0	0.44	1		07/21/23 16:21		
tert-Butylbenzene		ıg/L	5.0	0.38	1		07/21/23 16:21		
Carbon disulfide		ıg/L	10.0	0.72	1		07/21/23 16:21		
Carbon tetrachloride		ıg/L	5.0	1.2	1		07/21/23 16:21		
Chlorobenzene	ND u	ıg/L	5.0	0.36	1		07/21/23 16:21	108-90-7	
Chloroethane	880 u	ıg/L	125	42.0	25		07/24/23 12:55	75-00-3	
Chloroform	ND u	ıg/L	5.0	1.4	1		07/21/23 16:21	67-66-3	
Chloromethane	ND u	ıg/L	5.0	0.42	1		07/21/23 16:21	74-87-3	
2-Chlorotoluene		ıg/L	5.0	0.33	1		07/21/23 16:21		
4-Chlorotoluene		ıg/L	5.0	0.44	1		07/21/23 16:21		
Dibromochloromethane		ıg/L	5.0	0.41	1		07/21/23 16:21		
1,2-Dibromoethane (EDB)		ig/L	5.0	4.4	1		07/21/23 16:21		
Dibromomethane		•							
		ıg/L	5.0	1.4	1		07/21/23 16:21		
1,2-Dichlorobenzene		ıg/L	5.0	0.46	1		07/21/23 16:21		
1,3-Dichlorobenzene		ıg/L	5.0	0.41	1		07/21/23 16:21		
1,4-Dichlorobenzene	ND u	ıg/L	5.0	0.50	1		07/21/23 16:21	106-46-7	

Project: GE Indy
Pace Project No.: 5034962

Date: 08/02/2023 05:01 PM

Sample: MW-402-071823	Lab ID:	50349621001	Collecte	d: 07/18/23	3 12:30	Received: 07	7/19/23 12:20 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Indiana	Analytical	Method: EPA 5	5030/8260						
	Pace Ana	lytical Services	- Indianapo	lis					
trans-1,4-Dichloro-2-butene	ND	ug/L	100	2.6	1		07/21/23 16:21	110-57-6	
Dichlorodifluoromethane	ND	ug/L	5.0	0.48	1		07/21/23 16:21		
1.1-Dichloroethane	253	ug/L	5.0	0.40	1		07/21/23 16:21		
1,2-Dichloroethane	ND	ug/L	5.0	1.2	1		07/21/23 16:21		
1,1-Dichloroethene	6.9	ug/L	5.0	0.31	1		07/21/23 16:21		1d,CH
cis-1,2-Dichloroethene	5240	ug/L	125	9.5	25		07/24/23 12:55		14,011
trans-1,2-Dichloroethene	57.3	ug/L	5.0	0.41	1		07/21/23 16:21		
1,2-Dichloropropane	ND	ug/L	5.0	0.59	1		07/21/23 16:21		
1,3-Dichloropropane	ND	ug/L	5.0	0.50	1		07/21/23 16:21		
2,2-Dichloropropane	ND ND	ug/L	5.0	0.35	1		07/21/23 16:21		
1,1-Dichloropropene	ND ND	ug/L ug/L	5.0	0.33	1		07/21/23 16:21		
cis-1,3-Dichloropropene	ND ND	ug/L ug/L	5.0	0.44	1		07/21/23 16:21		
trans-1,3-Dichloropropene	ND ND	ug/L ug/L	5.0	0.47	1		07/21/23 16:21		
Ethylbenzene	ND ND	ug/L ug/L	5.0	0.88	1		07/21/23 16:21		
•	ND ND	-	100	1.6	1		07/21/23 16:21		
Ethyl methacrylate Hexachloro-1,3-butadiene	ND ND	ug/L	5.0	0.60	1		07/21/23 16:21		
•		ug/L							
n-Hexane	ND	ug/L	5.0	0.53	1		07/21/23 16:21		
2-Hexanone	ND	ug/L	25.0	3.0	1		07/21/23 16:21		
lodomethane	ND	ug/L	10.0	3.2	1		07/21/23 16:21		
Isopropylbenzene (Cumene)	ND	ug/L	5.0	0.43	1		07/21/23 16:21		
p-Isopropyltoluene	ND	ug/L	5.0	0.41	1		07/21/23 16:21		
Methylene Chloride	13.5	ug/L	5.0	3.9	1		07/21/23 16:21		
1-Methylnaphthalene	ND	ug/L	10.0	5.2	1		07/21/23 16:21		
2-Methylnaphthalene	ND	ug/L	10.0	4.8	1		07/21/23 16:21		
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	2.2	1		07/21/23 16:21		
Methyl-tert-butyl ether	ND	ug/L	4.0	0.41	1		07/21/23 16:21		
Naphthalene	ND	ug/L	1.2	1.1	1		07/21/23 16:21		
n-Propylbenzene	ND	ug/L	5.0	0.32	1		07/21/23 16:21		
Styrene	ND	ug/L	5.0	0.38	1		07/21/23 16:21		
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.46	1		07/21/23 16:21	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.62	1		07/21/23 16:21	79-34-5	
Tetrachloroethene	ND	ug/L	5.0	0.52	1		07/21/23 16:21	127-18-4	
Toluene	ND	ug/L	5.0	0.38	1		07/21/23 16:21	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	1.4	1		07/21/23 16:21	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	5.0	1.1	1		07/21/23 16:21	120-82-1	
1,1,1-Trichloroethane	60.8	ug/L	5.0	0.36	1		07/21/23 16:21	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	5.0	3.6	1		07/21/23 16:21	79-00-5	
Trichloroethene	102	ug/L	5.0	4.6	1		07/21/23 16:21	79-01-6	
Trichlorofluoromethane	ND	ug/L	5.0	0.48	1		07/21/23 16:21	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	5.0	4.1	1		07/21/23 16:21	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/L	5.0	0.65	1		07/21/23 16:21		
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.39	1		07/21/23 16:21		
Vinyl acetate	ND	ug/L	50.0	1.3	1		07/21/23 16:21		
Vinyl chloride	264	ug/L	50.0	12.0	25		07/24/23 12:55		
Xylene (Total)	ND	ug/L	10.0	1.2	1		07/21/23 16:21		

Project: GE Indy
Pace Project No.: 50349621

Date: 08/02/2023 05:01 PM

Sample: MW-402-071823	Lab ID:	50349621001	Collected	d: 07/18/2	3 12:30	Received: 07	7/19/23 12:20 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Anal	ytical Services	- Indianapo	lis					
Surrogates									
Dibromofluoromethane (S)	101	%.	82-128		1		07/21/23 16:21	1868-53-7	
4-Bromofluorobenzene (S)	102	%.	79-124		1		07/21/23 16:21	460-00-4	
Toluene-d8 (S)	100	%.	73-122		1		07/21/23 16:21	2037-26-5	
353.2 Nitrogen, NO2/NO3 unpres	Analytical	Method: EPA 3	53.2						
	Pace Anal	ytical Services	- Indianapo	lis					
Nitrogen, NO2 plus NO3	ND	mg/L	0.10	0.011	1		07/19/23 23:26		
Nitrogen, Nitrate	ND	mg/L	0.10	0.011	1		07/19/23 23:26	14797-55-8	
5310C TOC	Analytical	Method: SM 53	310C						
	Pace Anal	ytical Services	- Indianapo	lis					
Total Organic Carbon	14400	ug/L	8000	1890	8		07/25/23 16:18	7440-44-0	

Project: GE Indy
Pace Project No.: 5034962

Date: 08/02/2023 05:01 PM

Sample: AD-200-071823	Lab ID:	50349621002	Collected	d: 07/18/23	12:00	Received: 07	7/19/23 12:20 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Ana	lytical Services	- Indianapol	lis					
Acetone	282	ug/L	100	6.4	1		07/24/23 14:50	67-64-1	
Acrolein	ND	ug/L	50.0	24.1	1		07/21/23 16:53	107-02-8	
Acrylonitrile	ND	ug/L	100	2.5	1		07/21/23 16:53	107-13-1	
Benzene	ND	ug/L	5.0	0.41	1		07/21/23 16:53	71-43-2	
Bromobenzene	ND	ug/L	5.0	0.50	1		07/21/23 16:53		
Bromochloromethane	ND	ug/L	5.0	1.0	1		07/21/23 16:53		
Bromodichloromethane	ND	ug/L	5.0	0.51	1		07/21/23 16:53		
Bromoform	ND	ug/L	5.0	3.4	1		07/21/23 16:53		
Bromomethane	ND	ug/L	5.0	0.87	1		07/21/23 16:53		
2-Butanone (MEK)	ND ND	ug/L	25.0	3.4	1		07/21/23 16:53		
n-Butylbenzene	ND ND	ug/L	5.0	0.42	1		07/21/23 16:53		
sec-Butylbenzene	ND ND	_	5.0	0.42	1		07/21/23 16:53		
•		ug/L			1				
ert-Butylbenzene	ND	ug/L	5.0	0.38			07/21/23 16:53		
Carbon disulfide	ND	ug/L	10.0	0.72	1		07/21/23 16:53		
Carbon tetrachloride	ND	ug/L	5.0	1.2	1		07/21/23 16:53		
Chlorobenzene	ND	ug/L	5.0	0.36	1		07/21/23 16:53		
Chloroethane	31.0	ug/L	5.0	0.87	1		07/24/23 14:50		
Chloroform	ND	ug/L	5.0	1.4	1		07/21/23 16:53		
Chloromethane	ND	ug/L	5.0	0.42	1		07/21/23 16:53		
2-Chlorotoluene	ND	ug/L	5.0	0.33	1		07/21/23 16:53		
4-Chlorotoluene	ND	ug/L	5.0	0.44	1		07/21/23 16:53	106-43-4	
Dibromochloromethane	ND	ug/L	5.0	0.41	1		07/21/23 16:53	124-48-1	
1,2-Dibromoethane (EDB)	ND	ug/L	5.0	4.4	1		07/21/23 16:53	106-93-4	
Dibromomethane	ND	ug/L	5.0	1.4	1		07/21/23 16:53	74-95-3	
1,2-Dichlorobenzene	ND	ug/L	5.0	0.46	1		07/21/23 16:53	95-50-1	
1,3-Dichlorobenzene	ND	ug/L	5.0	0.41	1		07/21/23 16:53	541-73-1	
1,4-Dichlorobenzene	ND	ug/L	5.0	0.50	1		07/21/23 16:53	106-46-7	
rans-1,4-Dichloro-2-butene	ND	ug/L	100	2.6	1		07/21/23 16:53	110-57-6	
Dichlorodifluoromethane	ND	ug/L	5.0	0.48	1		07/21/23 16:53	75-71-8	
1,1-Dichloroethane	ND	ug/L	5.0	0.40	1		07/21/23 16:53	75-34-3	
1,2-Dichloroethane	ND	ug/L	5.0	1.2	1		07/21/23 16:53	107-06-2	
1,1-Dichloroethene	ND	ug/L	5.0	0.31	1		07/21/23 16:53	75-35-4	
cis-1,2-Dichloroethene	ND	ug/L	5.0	0.38	1		07/21/23 16:53		
rans-1,2-Dichloroethene	ND	ug/L	5.0	0.41	1		07/21/23 16:53		
1,2-Dichloropropane	ND	ug/L	5.0	0.59	1		07/21/23 16:53		
1,3-Dichloropropane	ND	ug/L	5.0	0.50	1		07/21/23 16:53		
2,2-Dichloropropane	ND	ug/L	5.0	0.35	1		07/21/23 16:53		
1,1-Dichloropropene	ND	ug/L	5.0	0.44	1		07/21/23 16:53		
cis-1,3-Dichloropropene	ND ND	ug/L	5.0	0.47	1		07/21/23 16:53		
rans-1,3-Dichloropropene	ND ND	ug/L ug/L	5.0	0.47	1		07/21/23 16:53		
Ethylbenzene		_	5.0 5.0	0.88	1		07/21/23 16:53		
•	ND	ug/L							
Ethyl methacrylate	ND	ug/L	100	1.6	1		07/21/23 16:53		
Hexachloro-1,3-butadiene	ND	ug/L	5.0	0.60	1		07/21/23 16:53		
n-Hexane	ND	ug/L	5.0	0.53	1		07/21/23 16:53	440 540	

Project: GE Indy
Pace Project No.: 50349621

Date: 08/02/2023 05:01 PM

Sample: AD-200-071823	Lab ID:	50349621002	Collected	d: 07/18/23	3 12:00	Received: 07	7/19/23 12:20 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Ana	lytical Services	- Indianapo	lis					
Iodomethane	ND	ug/L	10.0	3.2	1		07/21/23 16:53	74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	5.0	0.43	1		07/21/23 16:53	98-82-8	
p-Isopropyltoluene	ND	ug/L	5.0	0.41	1		07/21/23 16:53	99-87-6	
Methylene Chloride	ND	ug/L	5.0	3.9	1		07/21/23 16:53	75-09-2	
1-Methylnaphthalene	ND	ug/L	10.0	5.2	1		07/21/23 16:53	90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	4.8	1		07/21/23 16:53	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	2.2	1		07/21/23 16:53	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	4.0	0.41	1		07/21/23 16:53	1634-04-4	
Naphthalene	ND	ug/L	1.2	1.1	1		07/21/23 16:53	91-20-3	
n-Propylbenzene	ND	ug/L	5.0	0.32	1		07/21/23 16:53	103-65-1	
Styrene	ND	ug/L	5.0	0.38	1		07/21/23 16:53	100-42-5	
1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.46	1		07/21/23 16:53	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.62	1		07/21/23 16:53		
Tetrachloroethene	ND	ug/L	5.0	0.52	1		07/21/23 16:53	127-18-4	
Toluene	ND	ug/L	5.0	0.38	1		07/21/23 16:53	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	1.4	1		07/21/23 16:53	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	5.0	1.1	1		07/21/23 16:53	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	5.0	0.36	1		07/21/23 16:53	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	5.0	3.6	1		07/21/23 16:53	79-00-5	
Trichloroethene	ND	ug/L	5.0	4.6	1		07/21/23 16:53	79-01-6	
Trichlorofluoromethane	ND	ug/L	5.0	0.48	1		07/21/23 16:53		
1,2,3-Trichloropropane	ND	ug/L	5.0	4.1	1		07/21/23 16:53		
1,2,4-Trimethylbenzene	ND	ug/L	5.0	0.65	1		07/21/23 16:53	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.39	1		07/21/23 16:53		
Vinyl acetate	ND	ug/L	50.0	1.3	1		07/21/23 16:53		
Vinyl chloride	ND	ug/L	2.0	0.48	1		07/21/23 16:53		
Xylene (Total)	ND	ug/L	10.0	1.2	1		07/21/23 16:53		
Surrogates		- 3 -		_					
Dibromofluoromethane (S)	101	%.	82-128		1		07/21/23 16:53	1868-53-7	
4-Bromofluorobenzene (S)	103	%.	79-124		1		07/21/23 16:53	460-00-4	
Toluene-d8 (S)	102	%.	73-122		1		07/21/23 16:53	2037-26-5	

Project: GE Indy
Pace Project No.: 5034962

Date: 08/02/2023 05:01 PM

Pace Project No.: 50349621									
Sample: MW-407S-071823	Lab ID:	50349621003	Collected	: 07/18/23	15:35	Received: 07/	/19/23 12:20 N	fatrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
- I didilicios	— — —				DI	- Trepared	- Analyzeu		Quai
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	300.0						
	Pace Ana	llytical Services	- Indianapoli	S					
Sulfate	512	ug/L	250	190	1		07/27/23 11:30	14808-79-8	
Indicator Gases Water LHC	Analytical	Method: AM20	GAX						
	•	lytical Gulf Coa							
Methane	5100	ug/L	5.0	2.0	1		07/27/23 07:06	6 74-82-8	
Ethane	12	ug/L	1.0	0.17	1		07/27/23 07:06		
Ethene	1.4	ug/L	1.0	0.24	1		07/27/23 07:06		
n-Propane	ND	ug/L	1.0	0.29	1		07/27/23 07:06		
	ND	Ū	1.0	0.23	1		07/27/23 07:06		
Propylene		ug/L							
Isobutane	ND	ug/L	2.0	0.065	1		07/27/23 07:06		
n-Butane	ND	ug/L	2.0	0.54	1		07/27/23 07:06	5 JUNK42	
6010 MET ICP, Dissolved	Analytical	Method: EPA 6	010 Prepara	ation Metho	od: EPA	A 3010			
	Pace Ana	llytical Services	- Indianapoli	S					
Iron, Dissolved	29300	ug/L	100	28.6	1	07/27/23 01:58	07/27/23 02:30	7439-89-6	
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Ana	lytical Services	- Indianapoli	S					
Acetone	239	ug/L	100	6.4	1		07/24/23 15:2	1 67-64-1	
Acrolein	ND	ug/L	50.0	24.1	1		07/21/23 17:25	5 107-02-8	
Acrylonitrile	ND	ug/L	100	2.5	1		07/21/23 17:25		
Benzene	ND	ug/L	5.0	0.41	1		07/21/23 17:25		
Bromobenzene	ND	ug/L	5.0	0.50	1		07/21/23 17:25		
		_							
Bromochloromethane	ND	ug/L	5.0	1.0	1		07/21/23 17:25		
Bromodichloromethane	ND	ug/L	5.0	0.51	1		07/21/23 17:25		
Bromoform	ND	ug/L	5.0	3.4	1		07/21/23 17:25		
Bromomethane	ND	ug/L	5.0	0.87	1		07/21/23 17:25	5 74-83-9	
2-Butanone (MEK)	ND	ug/L	25.0	3.4	1		07/21/23 17:25	5 78-93-3	
n-Butylbenzene	ND	ug/L	5.0	0.42	1		07/21/23 17:25	5 104-51-8	
sec-Butylbenzene	ND	ug/L	5.0	0.44	1		07/21/23 17:25	5 135-98-8	
tert-Butylbenzene	ND	ug/L	5.0	0.38	1		07/21/23 17:25	5 98-06-6	
Carbon disulfide	ND	ug/L	10.0	0.72	1		07/21/23 17:25		
Carbon tetrachloride	ND	ug/L	5.0	1.2	1		07/21/23 17:25		
Chlorobenzene	ND	ug/L	5.0	0.36	1		07/21/23 17:25		
Chloroethane	18.6	ug/L	5.0	0.87	1		07/24/23 15:2		
		•							
Chloroform	ND	ug/L	5.0	1.4	1		07/21/23 17:25		
Chloromethane	ND	ug/L	5.0	0.42	1		07/21/23 17:25		
2-Chlorotoluene	ND	ug/L	5.0	0.33	1		07/21/23 17:25		
4-Chlorotoluene	ND	ug/L	5.0	0.44	1		07/21/23 17:25	5 106-43-4	
Dibromochloromethane	ND	ug/L	5.0	0.41	1		07/21/23 17:25	5 124-48-1	
1,2-Dibromoethane (EDB)	ND	ug/L	5.0	4.4	1		07/21/23 17:25	5 106-93-4	
Dibromomethane	ND	ug/L	5.0	1.4	1		07/21/23 17:25		
1,2-Dichlorobenzene	ND	ug/L	5.0	0.46	1		07/21/23 17:25		
1,3-Dichlorobenzene	ND ND	ug/L	5.0	0.40	1		07/21/23 17:25		
-		_							
1,4-Dichlorobenzene	ND	ug/L	5.0	0.50	1		07/21/23 17:25	106-46-7	

Project: GE Indy
Pace Project No.: 5034962

Date: 08/02/2023 05:01 PM

Sample: MW-407S-071823	Lab ID:	50349621003	Collected	: 07/18/23	15:35	Received: 07	7/19/23 12:20 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Ana	lytical Services	- Indianapoli	is					
trans-1,4-Dichloro-2-butene	ND	ug/L	100	2.6	1		07/21/23 17:25	110-57-6	
Dichlorodifluoromethane	ND ND	ug/L	5.0	0.48	1		07/21/23 17:25		
1,1-Dichloroethane	ND ND	ug/L	5.0	0.40	1		07/21/23 17:25		
1,2-Dichloroethane	ND ND	ug/L	5.0	1.2	1		07/21/23 17:25		
1,1-Dichloroethene	ND ND	ug/L	5.0	0.31	1		07/21/23 17:25		
cis-1,2-Dichloroethene	ND ND	ug/L	5.0	0.31	1		07/21/23 17:25		
rans-1,2-Dichloroethene	ND ND	ug/L	5.0	0.30	1		07/21/23 17:25		
1,2-Dichloropropane	ND ND	ug/L ug/L	5.0	0.41	1		07/21/23 17:25		
1,3-Dichloropropane	ND ND	ug/L	5.0	0.59	1		07/21/23 17:25		
2,2-Dichloropropane	ND ND	ug/L ug/L	5.0	0.35	1		07/21/23 17:25		
1,1-Dichloropropane	ND ND	ug/L ug/L	5.0	0.33	1		07/21/23 17:25		
cis-1,3-Dichloropropene	ND ND		5.0	0.44	1		07/21/23 17:25		
rans-1,3-Dichloropropene	ND ND	ug/L ug/L	5.0	0.47	1		07/21/23 17:25		
	ND ND	-	5.0	0.88	1		07/21/23 17:25		
Ethylbenzene Ethyl methacrylate		ug/L		1.6	1				
•	ND	ug/L	100		1		07/21/23 17:25		
Hexachloro-1,3-butadiene	ND	ug/L	5.0	0.60			07/21/23 17:25		
n-Hexane	ND	ug/L	5.0	0.53	1		07/21/23 17:25		
2-Hexanone	ND	ug/L	25.0	3.0	1		07/21/23 17:25		
odomethane	ND	ug/L	10.0	3.2	1		07/21/23 17:25		
sopropylbenzene (Cumene)	ND	ug/L	5.0	0.43	1		07/21/23 17:25		
o-Isopropyltoluene	ND	ug/L	5.0	0.41	1		07/21/23 17:25		
Methylene Chloride	ND	ug/L	5.0	3.9 5.2	1		07/21/23 17:25		
1-Methylnaphthalene	ND	ug/L	10.0	5.2 4.8	1		07/21/23 17:25		
2-Methylnaphthalene	ND	ug/L	10.0		1		07/21/23 17:25		
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	2.2	1		07/21/23 17:25		
Methyl-tert-butyl ether	ND	ug/L	4.0	0.41	1		07/21/23 17:25		
Naphthalene	ND	ug/L	1.2	1.1	1		07/21/23 17:25		
n-Propylbenzene	ND	ug/L	5.0	0.32	1		07/21/23 17:25		
Styrene	ND	ug/L	5.0	0.38	1		07/21/23 17:25		
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.46	1		07/21/23 17:25		
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.62	1		07/21/23 17:25		
Tetrachloroethene	ND	ug/L	5.0	0.52	1		07/21/23 17:25	_	
Toluene	ND	ug/L	5.0	0.38	1		07/21/23 17:25		
1,2,3-Trichlorobenzene	ND	ug/L	5.0	1.4	1		07/21/23 17:25		
,2,4-Trichlorobenzene	ND	ug/L	5.0	1.1	1		07/21/23 17:25		
,1,1-Trichloroethane	ND	ug/L	5.0	0.36	1		07/21/23 17:25		
I,1,2-Trichloroethane	ND	ug/L	5.0	3.6	1		07/21/23 17:25		
Frichloroethene	ND	ug/L	5.0	4.6	1		07/21/23 17:25		
Trichlorofluoromethane	ND	ug/L	5.0	0.48	1		07/21/23 17:25		
1,2,3-Trichloropropane	ND	ug/L	5.0	4.1	1		07/21/23 17:25		
I,2,4-Trimethylbenzene	ND	ug/L	5.0	0.65	1		07/21/23 17:25		
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.39	1		07/21/23 17:25		
/inyl acetate	ND	ug/L	50.0	1.3	1		07/21/23 17:25		
Vinyl chloride	ND	ug/L	2.0	0.48	1		07/21/23 17:25		
(Ylene (Total)	ND	ug/L	10.0	1.2	1		07/21/23 17:25	1330-20-7	

Project: GE Indy
Pace Project No.: 50349621

Date: 08/02/2023 05:01 PM

Sample: MW-407S-071823	Lab ID:	50349621003	Collected	d: 07/18/2	3 15:35	Received: 07	7/19/23 12:20 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qual
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Anal	ytical Services	- Indianapo	lis					
Surrogates									
Dibromofluoromethane (S)	101	%.	82-128		1		07/21/23 17:25	1868-53-7	
4-Bromofluorobenzene (S)	104	%.	79-124		1		07/21/23 17:25	460-00-4	
Toluene-d8 (S)	101	%.	73-122		1		07/21/23 17:25	2037-26-5	
353.2 Nitrogen, NO2/NO3 unpres	Analytical	Method: EPA 3	53.2						
	Pace Anal	ytical Services	- Indianapo	lis					
Nitrogen, NO2 plus NO3	ND	mg/L	0.10	0.011	1		07/19/23 23:47		
Nitrogen, Nitrate	ND	mg/L	0.10	0.011	1		07/19/23 23:47	14797-55-8	
5310C TOC	Analytical	Method: SM 53	310C						
	Pace Anal	ytical Services	- Indianapo	lis					
Total Organic Carbon	169000	ug/L	16000	3780	16		07/25/23 16:37	7440-44-0	

Project: GE Indy
Pace Project No.: 50349621

Date: 08/02/2023 05:01 PM

Sample: MW-407D-071923	Lab ID: 4	50349621004	Collected	d: 07/19/23	3 09:40	Received: 07/	19/23 12:20 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
300.0 IC Anions 28 Days	Analytical N	/lethod: EPA 30	0.00						
•	•	tical Services -		lis					
Sulfate	523	ug/L	250	190	1		07/27/23 12:23	14808-79-8	
Indicator Gases Water LHC	Analytical N	Nethod: AM200	SAX						
	Pace Analy	tical Gulf Coas	t						
Methane	6700	ug/L	5.0	2.0	1		07/27/23 07:20	74-82-8	
Ethane	40	ug/L	1.0	0.17	1		07/27/23 07:20	74-84-0	
Ethene	68	ug/L	1.0	0.24	1		07/27/23 07:20	74-85-1	
n-Propane	ND	ug/L	1.0	0.29	1		07/27/23 07:20	74-98-6	
Propylene	ND	ug/L	1.0	0.31	1		07/27/23 07:20		
Isobutane	ND	ug/L	2.0	0.065	1		07/27/23 07:20		
n-Butane	ND	ug/L	2.0	0.54	1		07/27/23 07:20		
6010 MET ICP, Dissolved	Analytical N	/lethod: EPA 60	010 Prena	ration Meth	nd: FPA	3010			
oo to MET for, Dissolved		tical Services -			od. Li 7				
ron, Dissolved	15600	ug/L	100	28.6	1	07/27/23 01:58	07/27/23 02:42	7439-89-6	
3260 MSV Indiana	Analytical N	/lethod: EPA 50	030/8260						
200 mov malana	•	tical Services -		lis					
Acetone	ND	ug/L	100	37.5	1		07/21/23 17:57	67-64-1	
Acrolein	ND	ug/L	50.0	24.1	1		07/21/23 17:57		
Acrylonitrile	ND	ug/L	100	2.5	1		07/21/23 17:57		
Benzene	ND	ug/L	5.0	0.41	1		07/21/23 17:57		
Bromobenzene	ND	ug/L	5.0	0.50	1		07/21/23 17:57		
		•							
Bromochloromethane	ND	ug/L	5.0	1.0	1		07/21/23 17:57		
Bromodichloromethane	ND	ug/L	5.0	0.51	1		07/21/23 17:57		
Bromoform .	ND	ug/L	5.0	3.4	1		07/21/23 17:57		
Bromomethane	ND	ug/L	5.0	0.87	1		07/21/23 17:57		
2-Butanone (MEK)	ND	ug/L	25.0	3.4	1		07/21/23 17:57		
n-Butylbenzene	ND	ug/L	5.0	0.42	1		07/21/23 17:57		
sec-Butylbenzene	ND	ug/L	5.0	0.44	1		07/21/23 17:57	135-98-8	
ert-Butylbenzene	ND	ug/L	5.0	0.38	1		07/21/23 17:57	98-06-6	
Carbon disulfide	ND	ug/L	10.0	0.72	1		07/21/23 17:57	75-15-0	
Carbon tetrachloride	ND	ug/L	5.0	1.2	1		07/21/23 17:57	56-23-5	
Chlorobenzene	ND	ug/L	5.0	0.36	1		07/21/23 17:57	108-90-7	
Chloroethane	290	ug/L	5.0	1.7	1		07/24/23 14:31	75-00-3	
Chloroform	ND	ug/L	5.0	1.4	1		07/21/23 17:57	67-66-3	
Chloromethane	ND	ug/L	5.0	0.42	1		07/21/23 17:57		
2-Chlorotoluene	ND	ug/L	5.0	0.33	1		07/21/23 17:57		
4-Chlorotoluene	ND	ug/L	5.0	0.44	1		07/21/23 17:57		
Dibromochloromethane	ND	ug/L	5.0	0.44	1		07/21/23 17:57		
		-					07/21/23 17:57		
I,2-Dibromoethane (EDB)	ND	ug/L	5.0	4.4	1				
Dibromomethane	ND	ug/L	5.0	1.4	1		07/21/23 17:57		
1,2-Dichlorobenzene	ND	ug/L	5.0	0.46	1		07/21/23 17:57		
1,3-Dichlorobenzene	ND	ug/L	5.0	0.41	1		07/21/23 17:57		
1,4-Dichlorobenzene	ND	ug/L	5.0	0.50	1		07/21/23 17:57	106-46-7	

Project: GE Indy
Pace Project No.: 5034962

Date: 08/02/2023 05:01 PM

Sample: MW-407D-071923	Lab ID:	50349621004	Collecte	d: 07/19/23	3 09:40	Received: 07	7/19/23 12:20 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical I	Method: EPA 5	030/8260						
		ytical Services		lis					
trans-1,4-Dichloro-2-butene	ND	ug/L	100	2.6	1		07/21/23 17:57	110-57-6	
Dichlorodifluoromethane	ND	ug/L	5.0	0.48	1		07/21/23 17:57		
1,1-Dichloroethane	7.9	ug/L	5.0	0.40	1		07/21/23 17:57		
1,2-Dichloroethane	ND	ug/L	5.0	1.2	1		07/21/23 17:57		
1,1-Dichloroethene	ND	ug/L	5.0	0.31	1		07/21/23 17:57		
cis-1,2-Dichloroethene	9.9	ug/L	5.0	0.38	1		07/21/23 17:57		
trans-1,2-Dichloroethene	ND	ug/L	5.0	0.41	1		07/21/23 17:57		
1,2-Dichloropropane	ND	ug/L	5.0	0.59	1		07/21/23 17:57		
1,3-Dichloropropane	ND	ug/L	5.0	0.50	1		07/21/23 17:57		
2,2-Dichloropropane	ND ND	ug/L ug/L	5.0	0.35	1		07/21/23 17:57		
1,1-Dichloropropene	ND ND	ug/L ug/L	5.0	0.33	1		07/21/23 17:57		
cis-1,3-Dichloropropene	ND ND	ug/L ug/L	5.0 5.0	0.44	1		07/21/23 17:57		
trans-1,3-Dichloropropene	ND ND	ug/L ug/L	5.0	0.47	1		07/21/23 17:57		
Ethylbenzene	ND ND	ug/L ug/L	5.0	0.88	1		07/21/23 17:57		
•		-			1		07/21/23 17:57		
Ethyl methacrylate	ND	ug/L	100	1.6					
Hexachloro-1,3-butadiene	ND	ug/L	5.0	0.60	1		07/21/23 17:57		
n-Hexane	ND	ug/L	5.0	0.53	1		07/21/23 17:57		
2-Hexanone	ND	ug/L	25.0	3.0	1		07/21/23 17:57		
lodomethane	ND	ug/L	10.0	3.2	1		07/21/23 17:57		
Isopropylbenzene (Cumene)	ND	ug/L	5.0	0.43	1		07/21/23 17:57		
p-Isopropyltoluene	ND	ug/L	5.0	0.41	1		07/21/23 17:57		
Methylene Chloride	ND	ug/L	5.0	3.9	1		07/21/23 17:57		
1-Methylnaphthalene	ND	ug/L	10.0	5.2	1		07/21/23 17:57		
2-Methylnaphthalene	ND	ug/L	10.0	4.8	1		07/21/23 17:57		
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	2.2	1		07/21/23 17:57		
Methyl-tert-butyl ether	ND	ug/L	4.0	0.41	1		07/21/23 17:57		
Naphthalene	ND	ug/L	1.2	1.1	1		07/21/23 17:57		
n-Propylbenzene	ND	ug/L	5.0	0.32	1		07/21/23 17:57	103-65-1	
Styrene	ND	ug/L	5.0	0.38	1		07/21/23 17:57	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.46	1		07/21/23 17:57	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.62	1		07/21/23 17:57	79-34-5	
Tetrachloroethene	ND	ug/L	5.0	0.52	1		07/21/23 17:57	127-18-4	
Toluene	ND	ug/L	5.0	0.38	1		07/21/23 17:57	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	1.4	1		07/21/23 17:57	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	5.0	1.1	1		07/21/23 17:57	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	5.0	0.36	1		07/21/23 17:57	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	5.0	3.6	1		07/21/23 17:57	79-00-5	
Trichloroethene	ND	ug/L	5.0	4.6	1		07/21/23 17:57	79-01-6	
Trichlorofluoromethane	ND	ug/L	5.0	0.48	1		07/21/23 17:57	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	5.0	4.1	1		07/21/23 17:57		
1,2,4-Trimethylbenzene	ND	ug/L	5.0	0.65	1		07/21/23 17:57		
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.39	1		07/21/23 17:57		
Vinyl acetate	ND	ug/L	50.0	1.3	1		07/21/23 17:57		
Vinyl chloride	33.3	ug/L	2.0	0.48	1		07/24/23 14:31		
Xylene (Total)	ND	ug/L ug/L	10.0	1.2	1		07/21/23 17:57		

Project: GE Indy
Pace Project No.: 50349621

Date: 08/02/2023 05:01 PM

Sample: MW-407D-071923	Lab ID:	50349621004	Collected	d: 07/19/23	3 09:40	Received: 07	/19/23 12:20 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Anal	ytical Services	- Indianapo	lis					
Surrogates									
Dibromofluoromethane (S)	102	%.	82-128		1		07/21/23 17:57	1868-53-7	
4-Bromofluorobenzene (S)	105	%.	79-124		1		07/21/23 17:57	460-00-4	
Toluene-d8 (S)	100	%.	73-122		1		07/21/23 17:57	2037-26-5	
353.2 Nitrogen, NO2/NO3 unpres	Analytical	Method: EPA 3	53.2						
	Pace Anal	ytical Services	- Indianapo	lis					
Nitrogen, NO2 plus NO3	ND	mg/L	0.10	0.011	1		07/19/23 23:52		
Nitrogen, Nitrate	ND	mg/L	0.10	0.011	1		07/19/23 23:52	14797-55-8	
5310C TOC	Analytical	Method: SM 53	310C						
	-	ytical Services		lis					
Total Organic Carbon	84900	ug/L	16000	3780	16		07/25/23 16:48	7440-44-0	

Project: GE Indy
Pace Project No.: 5034962

Date: 08/02/2023 05:01 PM

Sample: Trip Blank-071923	Lab ID:	50349621005	Collecte	d: 07/19/23	08:00	Received: 07	7/19/23 12:20 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Ana	lytical Services	- Indianapo	olis					
Acetone	ND	ug/L	100	37.5	1		07/21/23 18:29	67-64-1	
Acrolein	ND	ug/L	50.0	24.1	1		07/21/23 18:29		
Acrylonitrile	ND	ug/L	100	2.5	1		07/21/23 18:29		
Benzene	ND	ug/L	5.0	0.41	1		07/21/23 18:29		
Bromobenzene	ND	ug/L	5.0	0.50	1		07/21/23 18:29		
Bromochloromethane	ND	ug/L	5.0	1.0	1		07/21/23 18:29		
Bromodichloromethane	ND	ug/L	5.0	0.51	1		07/21/23 18:29		
Bromoform	ND	ug/L	5.0	3.4	1		07/21/23 18:29		
Bromomethane	ND ND	ug/L	5.0	0.87	1		07/21/23 18:29		
	ND ND	-	25.0	3.4	1		07/21/23 18:29		
2-Butanone (MEK) n-Butylbenzene	ND ND	ug/L ug/L	25.0 5.0	0.42	1		07/21/23 18:29		
•		-			1				
sec-Butylbenzene	ND	ug/L	5.0	0.44			07/21/23 18:29		
ert-Butylbenzene	ND	ug/L	5.0	0.38	1		07/21/23 18:29		
Carbon disulfide	ND	ug/L	10.0	0.72	1		07/21/23 18:29		
Carbon tetrachloride	ND	ug/L	5.0	1.2	1		07/21/23 18:29		
Chlorobenzene	ND	ug/L	5.0	0.36	1		07/21/23 18:29		
Chloroethane	ND	ug/L	5.0	1.7	1		07/21/23 18:29		
Chloroform	ND	ug/L	5.0	1.4	1		07/21/23 18:29		
Chloromethane	ND	ug/L	5.0	0.42	1		07/21/23 18:29		
2-Chlorotoluene	ND	ug/L	5.0	0.33	1		07/21/23 18:29	95-49-8	
4-Chlorotoluene	ND	ug/L	5.0	0.44	1		07/21/23 18:29	106-43-4	
Dibromochloromethane	ND	ug/L	5.0	0.41	1		07/21/23 18:29	124-48-1	
1,2-Dibromoethane (EDB)	ND	ug/L	5.0	4.4	1		07/21/23 18:29	106-93-4	
Dibromomethane	ND	ug/L	5.0	1.4	1		07/21/23 18:29	74-95-3	
1,2-Dichlorobenzene	ND	ug/L	5.0	0.46	1		07/21/23 18:29	95-50-1	
1,3-Dichlorobenzene	ND	ug/L	5.0	0.41	1		07/21/23 18:29	541-73-1	
1,4-Dichlorobenzene	ND	ug/L	5.0	0.50	1		07/21/23 18:29	106-46-7	
rans-1,4-Dichloro-2-butene	ND	ug/L	100	2.6	1		07/21/23 18:29	110-57-6	
Dichlorodifluoromethane	ND	ug/L	5.0	0.48	1		07/21/23 18:29	75-71-8	
1,1-Dichloroethane	ND	ug/L	5.0	0.40	1		07/21/23 18:29		
1,2-Dichloroethane	ND	ug/L	5.0	1.2	1		07/21/23 18:29		
1.1-Dichloroethene	ND	ug/L	5.0	0.31	1		07/21/23 18:29		
cis-1,2-Dichloroethene	ND	ug/L	5.0	0.38	1		07/21/23 18:29		
rans-1,2-Dichloroethene	ND	ug/L	5.0	0.41	1		07/21/23 18:29		
1,2-Dichloropropane	ND	ug/L	5.0	0.59	1		07/21/23 18:29		
1,3-Dichloropropane	ND	ug/L	5.0	0.50	1		07/21/23 18:29		
2,2-Dichloropropane	ND ND	-	5.0	0.35	1		07/21/23 18:29		
· ' '		ug/L							
1,1-Dichloropropene	ND ND	ug/L	5.0	0.44	1		07/21/23 18:29		
cis-1,3-Dichloropropene	ND	ug/L	5.0	0.47	1		07/21/23 18:29		
rans-1,3-Dichloropropene	ND	ug/L	5.0	0.88	1		07/21/23 18:29		
Ethylbenzene	ND	ug/L	5.0	0.40	1		07/21/23 18:29		
Ethyl methacrylate	ND	ug/L	100	1.6	1		07/21/23 18:29		
Hexachloro-1,3-butadiene	ND	ug/L	5.0	0.60	1		07/21/23 18:29		
n-Hexane	ND	ug/L	5.0	0.53	1		07/21/23 18:29		
2-Hexanone	ND	ug/L	25.0	3.0	1		07/21/23 18:29	591-78-6	

Project: GE Indy
Pace Project No.: 50349621

Date: 08/02/2023 05:01 PM

Sample: Trip Blank-071923	Lab ID:	50349621005	Collected:	07/19/23	8 08:00	Received: 07	7/19/23 12:20 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA	5030/8260						
	Pace Ana	ytical Services	s - Indianapoli	s					
lodomethane	ND	ug/L	10.0	3.2	1		07/21/23 18:29	74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	5.0	0.43	1		07/21/23 18:29	98-82-8	
p-Isopropyltoluene	ND	ug/L	5.0	0.41	1		07/21/23 18:29	99-87-6	
Methylene Chloride	ND	ug/L	5.0	3.9	1		07/21/23 18:29	75-09-2	
1-Methylnaphthalene	ND	ug/L	10.0	5.2	1		07/21/23 18:29	90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	4.8	1		07/21/23 18:29	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	2.2	1		07/21/23 18:29	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	4.0	0.41	1		07/21/23 18:29	1634-04-4	
Naphthalene	ND	ug/L	1.2	1.1	1		07/21/23 18:29	91-20-3	
n-Propylbenzene	ND	ug/L	5.0	0.32	1		07/21/23 18:29	103-65-1	
Styrene	ND	ug/L	5.0	0.38	1		07/21/23 18:29	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.46	1		07/21/23 18:29	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.62	1		07/21/23 18:29	79-34-5	
Tetrachloroethene	ND	ug/L	5.0	0.52	1		07/21/23 18:29	127-18-4	
Toluene	ND	ug/L	5.0	0.38	1		07/21/23 18:29	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	1.4	1		07/21/23 18:29	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	5.0	1.1	1		07/21/23 18:29	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	5.0	0.36	1		07/21/23 18:29	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	5.0	3.6	1		07/21/23 18:29	79-00-5	
Trichloroethene	ND	ug/L	5.0	4.6	1		07/21/23 18:29	79-01-6	
Trichlorofluoromethane	ND	ug/L	5.0	0.48	1		07/21/23 18:29	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	5.0	4.1	1		07/21/23 18:29	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/L	5.0	0.65	1		07/21/23 18:29	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.39	1		07/21/23 18:29	108-67-8	
Vinyl acetate	ND	ug/L	50.0	1.3	1		07/21/23 18:29	108-05-4	
Vinyl chloride	ND	ug/L	2.0	0.48	1		07/21/23 18:29	75-01-4	
Xylene (Total)	ND	ug/L	10.0	1.2	1		07/21/23 18:29	1330-20-7	
Surrogates		-							
Dibromofluoromethane (S)	102	%.	82-128		1		07/21/23 18:29	1868-53-7	
4-Bromofluorobenzene (S)	106	%.	79-124		1		07/21/23 18:29	460-00-4	
Toluene-d8 (S)	105	%.	73-122		1		07/21/23 18:29	2037-26-5	

Project: GE Indy
Pace Project No.: 5034962

Date: 08/02/2023 05:01 PM

Pace Project No.: 50349621									
Sample: MW-418S-071923	Lab ID:	50349621006	Collected:	07/19/23	11:00	Received: 07/	/19/23 12:20 N	latrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
300.0 IC Anions 28 Days	Analytical	Method: EPA 3							
occio lo Amerio 20 Dayo	•	lytical Services		s					
Outfalls		•	·				07/07/00 40 50	14000 70 0	
Sulfate	318	ug/L	250	190	1		07/27/23 13:58	3 14808-79-8	
Indicator Gases Water LHC	Analytical	Method: AM20	GAX						
	Pace Ana	lytical Gulf Coa	st						
Methane	8300	ug/L	5.0	2.0	1		07/27/23 07:33	3 74-82-8	
Ethane	300	ug/L	1.0	0.17	1		07/27/23 07:33		
Ethene	1900	ug/L	1.0	0.24	1		07/27/23 07:33		
n-Propane	ND	ug/L	1.0	0.29	1		07/27/23 07:33		
Propylene	ND	ug/L	1.0	0.31	1		07/27/23 07:33		
Isobutane	ND ND	ug/L	2.0	0.065	1		07/27/23 07:33		
	ND ND	•	2.0	0.065	1		07/27/23 07:33		
n-Butane	ND	ug/L	2.0	0.54	ı		07/27/23 07:33	JUNK42	
6010 MET ICP, Dissolved	Analytical	Method: EPA 6	010 Prepara	ation Metho	od: EPA	3010			
	Pace Ana	lytical Services	- Indianapoli	S					
Iron, Dissolved	14000	ug/L	100	28.6	1	07/27/23 01:58	07/27/23 02:34	7439-89-6	
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	•	lytical Services		S					
0.01000		•	·		40		07/04/00 40 04	07.04.4	
Acetone	ND	ug/L	1000	375	10		07/21/23 19:01		
Acrolein	ND	ug/L	500	241	10		07/21/23 19:01		
Acrylonitrile	ND	ug/L	1000	24.6	10		07/21/23 19:01		
Benzene	ND	ug/L	50.0	4.1	10		07/21/23 19:01		
Bromobenzene	ND	ug/L	50.0	5.0	10		07/21/23 19:01		
Bromochloromethane	ND	ug/L	50.0	10	10		07/21/23 19:01	74-97-5	
Bromodichloromethane	ND	ug/L	50.0	5.1	10		07/21/23 19:01	75-27-4	
Bromoform	ND	ug/L	50.0	34.4	10		07/21/23 19:01	75-25-2	
Bromomethane	ND	ug/L	50.0	8.7	10		07/21/23 19:01	74-83-9	
2-Butanone (MEK)	ND	ug/L	250	33.9	10		07/21/23 19:01	78-93-3	
n-Butylbenzene	ND	ug/L	50.0	4.2	10		07/21/23 19:01	104-51-8	
sec-Butylbenzene	ND	ug/L	50.0	4.4	10		07/21/23 19:01	135-98-8	
tert-Butylbenzene	ND	ug/L	50.0	3.8	10		07/21/23 19:01	98-06-6	
Carbon disulfide	ND	ug/L	100	7.2	10		07/21/23 19:01	75-15-0	
Carbon tetrachloride	ND	ug/L	50.0	11.7	10		07/21/23 19:01	56-23-5	
Chlorobenzene	ND	ug/L	50.0	3.6	10		07/21/23 19:01		
Chloroethane	131	ug/L	50.0	16.8	10		07/21/23 19:01		1d,CH
Chloroform	ND	ug/L	50.0	14.0	10		07/21/23 19:01		14,011
Chloromethane	ND ND	ug/L	50.0	4.2	10		07/21/23 19:01		
2-Chlorotoluene	ND ND	ug/L	50.0	3.3	10		07/21/23 19:01		
4-Chlorotoluene	ND ND	ug/L ug/L	50.0	3.3 4.4	10		07/21/23 19:01		
Dibromochloromethane		-							
	ND	ug/L	50.0	4.1	10		07/21/23 19:01		
1,2-Dibromoethane (EDB)	ND	ug/L	50.0	43.8	10		07/21/23 19:01		
Dibromomethane	ND	ug/L	50.0	14.3	10		07/21/23 19:01		
1,2-Dichlorobenzene	ND	ug/L	50.0	4.6	10		07/21/23 19:01		
1,3-Dichlorobenzene	ND	ug/L	50.0	4.1	10		07/21/23 19:01		
1,4-Dichlorobenzene	ND	ug/L	50.0	5.0	10		07/21/23 19:01	106-46-7	

Project: GE Indy
Pace Project No.: 50349621

Date: 08/02/2023 05:01 PM

Sample: MW-418S-071923	Lab ID:	50349621006	Collected:	07/19/23	3 11:00	Received: 0	7/19/23 12:20 I	Matrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Ana	lytical Services	- Indianapolis	5					
trans-1,4-Dichloro-2-butene	ND	ug/L	1000	25.5	10		07/21/23 19:0	1 110-57-6	
Dichlorodifluoromethane	ND	ug/L	50.0	4.8	10		07/21/23 19:0		
1.1-Dichloroethane	119	ug/L	50.0	4.0	10		07/21/23 19:0		
1,2-Dichloroethane	ND	ug/L	50.0	12.2	10		07/21/23 19:0		
1,1-Dichloroethene	51.0	ug/L	50.0	3.1	10		07/21/23 19:0		1d,CH
cis-1,2-Dichloroethene	11400	ug/L	500	37.9	100		07/25/23 11:0		HS
trans-1,2-Dichloroethene	ND	ug/L	50.0	4.1	100		07/23/23 11:0		110
1,2-Dichloropropane	ND	ug/L	50.0	5.9	10		07/21/23 19:0		
1,3-Dichloropropane	ND ND	ug/L	50.0	5.0	10		07/21/23 19:0		
2,2-Dichloropropane	ND ND	ug/L	50.0	3.5	10		07/21/23 19:0		
1,1-Dichloropropene	ND ND	ug/L	50.0	4.4	10		07/21/23 19:0		
cis-1,3-Dichloropropene	ND ND	ug/L	50.0	4.7	10			1 10061-01-5	
trans-1,3-Dichloropropene	ND ND	ug/L ug/L	50.0	8.8	10			1 10061-01-3	
Ethylbenzene	ND ND	ug/L	50.0	4.0	10		07/21/23 19:0		
Ethyl methacrylate	ND ND	ug/L	1000	15.6	10		07/21/23 19:0		
Hexachloro-1,3-butadiene	ND ND	_	50.0	6.0	10		07/21/23 19:0		
n-Hexane	ND ND	ug/L	50.0	5.3	10		07/21/23 19:0		
n-nexane 2-Hexanone	ND ND	ug/L	250	29.6	10		07/21/23 19:0		
lodomethane	ND ND	ug/L	100	32.5	10		07/21/23 19:0		
		ug/L							
Isopropylbenzene (Cumene)	ND	ug/L	50.0	4.3	10 10		07/21/23 19:0		
p-Isopropyltoluene	ND	ug/L	50.0	4.1			07/21/23 19:0		
Methylene Chloride	ND	ug/L	50.0	39.0	10		07/21/23 19:0		
1-Methylnaphthalene	ND	ug/L	100	52.2	10		07/21/23 19:0		
2-Methylnaphthalene	ND	ug/L	100	47.5	10		07/21/23 19:0		
4-Methyl-2-pentanone (MIBK)	ND	ug/L	250	22.0	10		07/21/23 19:0		
Methyl-tert-butyl ether	ND	ug/L	40.0	4.1	10		07/21/23 19:0		
Naphthalene	ND	ug/L	12.0	11.2	10		07/21/23 19:0		
n-Propylbenzene	ND	ug/L	50.0	3.2	10		07/21/23 19:0		
Styrene	ND	ug/L	50.0	3.8	10		07/21/23 19:0		
1,1,1,2-Tetrachloroethane	ND	ug/L	50.0	4.6	10		07/21/23 19:0		
1,1,2,2-Tetrachloroethane	ND	ug/L	50.0	6.2	10		07/21/23 19:0		
Tetrachloroethene	ND	ug/L	50.0	5.2	10		07/21/23 19:0		
Toluene	ND	ug/L	50.0	3.8	10		07/21/23 19:0		
1,2,3-Trichlorobenzene	ND	ug/L	50.0	13.9	10		07/21/23 19:0		
1,2,4-Trichlorobenzene	ND	ug/L	50.0	11.0	10		07/21/23 19:0		
1,1,1-Trichloroethane	ND	ug/L	50.0	3.6	10		07/21/23 19:0		
1,1,2-Trichloroethane	ND	ug/L	50.0	36.3	10		07/21/23 19:0		
Trichloroethene	ND	ug/L	50.0	45.5	10		07/21/23 19:0		
Trichlorofluoromethane	ND	ug/L	50.0	4.8	10		07/21/23 19:0		
1,2,3-Trichloropropane	ND	ug/L	50.0	40.9	10		07/21/23 19:0		
1,2,4-Trimethylbenzene	ND	ug/L	50.0	6.5	10		07/21/23 19:0		
1,3,5-Trimethylbenzene	ND	ug/L	50.0	3.9	10		07/21/23 19:0		
Vinyl acetate	ND	ug/L	500	13.0	10		07/21/23 19:0		
Vinyl chloride	10500	ug/L	200	48.1	100		07/25/23 11:0		HS
Xylene (Total)	ND	ug/L	100	12.2	10		07/21/23 19:0	1 1330-20-7	

Project: GE Indy
Pace Project No.: 50349621

Date: 08/02/2023 05:01 PM

Sample: MW-418S-071923	Lab ID:	50349621006	Collected	d: 07/19/2	3 11:00	Received: 07	7/19/23 12:20 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Anal	ytical Services	- Indianapo	lis					
Surrogates									
Dibromofluoromethane (S)	101	%.	82-128		10		07/21/23 19:01	1868-53-7	D4
4-Bromofluorobenzene (S)	103	%.	79-124		10		07/21/23 19:01	460-00-4	
Toluene-d8 (S)	99	%.	73-122		10		07/21/23 19:01	2037-26-5	
353.2 Nitrogen, NO2/NO3 unpres	Analytical	Method: EPA 3	53.2						
	Pace Anal	ytical Services	- Indianapo	lis					
Nitrogen, NO2 plus NO3	ND	mg/L	0.10	0.011	1		07/19/23 23:56		
Nitrogen, Nitrate	ND	mg/L	0.10	0.011	1		07/19/23 23:56	14797-55-8	
5310C TOC	Analytical	Method: SM 53	310C						
	-	ytical Services		lis					
Total Organic Carbon	7710	ug/L	4000	944	4		07/25/23 17:02	7440-44-0	

Project: GE Indy
Pace Project No.: 50349621

Date: 08/02/2023 05:01 PM

Sample: AD-300-071923	Lab ID: 5	0349621007	Collected	: 07/19/23	3 12:00	Received: 07/	/19/23 12:20 I	Matrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
300.0 IC Anions 28 Days	Analytical M	Method: EPA 3	00.0						
·	Pace Analy	tical Services	- Indianapoli	s					
Sulfate	290	ug/L	250	190	1		07/27/23 14:4	7 14808-79-8	
Indicator Gases Water LHC	Analytical M	lethod: AM20	GAX						
	Pace Analy	tical Gulf Coas	st						
Methane	7900	ug/L	5.0	2.0	1		07/27/23 07:4	7 74-82-8	
Ethane	280	ug/L	1.0	0.17	1		07/27/23 07:4	7 74-84-0	
Ethene	1800	ug/L	1.0	0.24	1		07/27/23 07:4	7 74-85-1	
n-Propane	ND	ug/L	1.0	0.29	1		07/27/23 07:4	7 74-98-6	
Propylene	ND	ug/L	1.0	0.31	1		07/27/23 07:4	7 115-07-1	
Isobutane	ND	ug/L	2.0	0.065	1		07/27/23 07:4	7 JUNK40	
n-Butane	ND	ug/L	2.0	0.54	1		07/27/23 07:4		
6010 MET ICP, Dissolved	Analytical M	fethod: EPA 6	010 Prepara	ation Meth	od: EPA	3010			
,	•	tical Services	•						
Iron, Dissolved	13700	ug/L	100	28.6	1	07/27/23 01:58	07/27/23 02:3	7 7439-89-6	
8260 MSV Indiana	Analytical N	lethod: EPA 5	030/8260						
	•	tical Services		s					
Acetone	ND	ug/L	1000	375	10		07/21/23 19:3	3 67-64-1	
Acrolein	ND	ug/L	500	241	10		07/21/23 19:3		
Acrylonitrile	ND	ug/L	1000	24.6	10		07/21/23 19:3		
Benzene	ND	ug/L	50.0	4.1	10		07/21/23 19:3		
Bromobenzene	ND	ug/L	50.0	5.0	10		07/21/23 19:3		
Bromochloromethane	ND	ug/L	50.0	10	10		07/21/23 19:3		
Bromodichloromethane	ND	ug/L ug/L	50.0	5.1	10		07/21/23 19:3		
Bromoform	ND ND	-	50.0	34.4			07/21/23 19:3		
		ug/L			10				
Bromomethane	ND	ug/L	50.0	8.7	10		07/21/23 19:3		
2-Butanone (MEK)	ND	ug/L	250	33.9	10		07/21/23 19:3		
n-Butylbenzene	ND	ug/L	50.0	4.2	10		07/21/23 19:3		
sec-Butylbenzene	ND	ug/L	50.0	4.4	10		07/21/23 19:3		
tert-Butylbenzene	ND	ug/L	50.0	3.8	10		07/21/23 19:3		
Carbon disulfide	ND	ug/L	100	7.2	10		07/21/23 19:3		
Carbon tetrachloride	ND	ug/L	50.0	11.7	10		07/21/23 19:3		
Chlorobenzene	ND	ug/L	50.0	3.6	10		07/21/23 19:3		
Chloroethane	125	ug/L	50.0	16.8	10		07/21/23 19:3		1d,CH
Chloroform	ND	ug/L	50.0	14.0	10		07/21/23 19:3	3 67-66-3	
Chloromethane	ND	ug/L	50.0	4.2	10		07/21/23 19:3	3 74-87-3	
2-Chlorotoluene	ND	ug/L	50.0	3.3	10		07/21/23 19:3	3 95-49-8	
4-Chlorotoluene	ND	ug/L	50.0	4.4	10		07/21/23 19:3	3 106-43-4	
Dibromochloromethane	ND	ug/L	50.0	4.1	10		07/21/23 19:3	3 124-48-1	
1,2-Dibromoethane (EDB)	ND	ug/L	50.0	43.8	10		07/21/23 19:3	3 106-93-4	
Dibromomethane	ND	ug/L	50.0	14.3	10		07/21/23 19:3	3 74-95-3	
1,2-Dichlorobenzene	ND	ug/L	50.0	4.6	10		07/21/23 19:3		
1,3-Dichlorobenzene	ND	ug/L	50.0	4.1	10		07/21/23 19:3		
1,4-Dichlorobenzene	ND	ug/L	50.0	5.0	10		07/21/23 19:3		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: GE Indy
Pace Project No.: 50349621

Date: 08/02/2023 05:01 PM

Sample: AD-300-071923	Lab ID:	50349621007	Collected	d: 07/19/23	3 12:00	Received: 0	7/19/23 12:20	Matrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF ——	Prepared	Analyzed	CAS No.	Qual
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
ozoo mor malana	•	ytical Services		is					
trans-1,4-Dichloro-2-butene	ND	ug/L	1000	25.5	10		07/21/23 19:	33 110-57-6	
Dichlorodifluoromethane	ND	ug/L	50.0	4.8	10		07/21/23 19:		
1,1-Dichloroethane	118	ug/L	50.0	4.0	10		07/21/23 19:		
1,2-Dichloroethane	ND	ug/L	50.0	12.2	10			33 107-06-2	
1,1-Dichloroethene	50.5	ug/L	50.0	3.1	10		07/21/23 19:		1d,CH
cis-1,2-Dichloroethene	12400	ug/L	500	37.9	100			37 156-59-2	,
rans-1,2-Dichloroethene	ND	ug/L	50.0	4.1	10			33 156-60-5	
1,2-Dichloropropane	ND	ug/L	50.0	5.9	10		07/21/23 19:		
1,3-Dichloropropane	ND	ug/L	50.0	5.0	10			33 142-28-9	
2,2-Dichloropropane	ND	ug/L	50.0	3.5	10			33 594-20-7	
1,1-Dichloropropene	ND	ug/L	50.0	4.4	10			33 563-58-6	
cis-1,3-Dichloropropene	ND	ug/L	50.0	4.7	10			33 10061-01-5	
rans-1,3-Dichloropropene	ND	ug/L ug/L	50.0	8.8	10			33 10061-01-5	
Ethylbenzene	ND ND	ug/L ug/L	50.0	4.0	10			33 100-41-4	
•	ND ND	_	1000	15.6	10		07/21/23 19:		
Ethyl methacrylate		ug/L					07/21/23 19:		
Hexachloro-1,3-butadiene	ND	ug/L	50.0	6.0	10				
n-Hexane	ND	ug/L	50.0	5.3	10			33 110-54-3	
2-Hexanone	ND	ug/L	250	29.6	10			33 591-78-6	
odomethane	ND	ug/L	100	32.5	10		07/21/23 19:		
sopropylbenzene (Cumene)	ND	ug/L	50.0	4.3	10		07/21/23 19:		
o-Isopropyltoluene	ND	ug/L	50.0	4.1	10		07/21/23 19:		
Methylene Chloride	ND	ug/L	50.0	39.0	10		07/21/23 19:		
1-Methylnaphthalene	ND	ug/L	100	52.2	10		07/21/23 19:		
2-Methylnaphthalene	ND	ug/L	100	47.5	10		07/21/23 19:		
4-Methyl-2-pentanone (MIBK)	ND	ug/L	250	22.0	10		07/21/23 19:		
Methyl-tert-butyl ether	ND	ug/L	40.0	4.1	10			33 1634-04-4	
Naphthalene 	ND	ug/L	12.0	11.2	10		07/21/23 19:		
n-Propylbenzene	ND	ug/L	50.0	3.2	10			33 103-65-1	
Styrene	ND	ug/L	50.0	3.8	10			33 100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	50.0	4.6	10			33 630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	50.0	6.2	10		07/21/23 19:		
Tetrachloroethene	ND	ug/L	50.0	5.2	10			33 127-18-4	
Toluene	ND	ug/L	50.0	3.8	10			33 108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	50.0	13.9	10		07/21/23 19:		
1,2,4-Trichlorobenzene	ND	ug/L	50.0	11.0	10			33 120-82-1	
1,1,1-Trichloroethane	ND	ug/L	50.0	3.6	10		07/21/23 19:	33 71-55-6	
1,1,2-Trichloroethane	ND	ug/L	50.0	36.3	10		07/21/23 19:	33 79-00-5	
Trichloroethene	ND	ug/L	50.0	45.5	10		07/21/23 19:		
Trichlorofluoromethane	ND	ug/L	50.0	4.8	10		07/21/23 19:	33 75-69-4	
1,2,3-Trichloropropane	ND	ug/L	50.0	40.9	10		07/21/23 19:	33 96-18-4	
1,2,4-Trimethylbenzene	ND	ug/L	50.0	6.5	10		07/21/23 19:	33 95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	50.0	3.9	10		07/21/23 19:	33 108-67-8	
Vinyl acetate	ND	ug/L	500	13.0	10		07/21/23 19:	33 108-05-4	
Vinyl chloride	10900	ug/L	200	48.1	100		07/25/23 12:	37 75-01-4	
Xylene (Total)	ND	ug/L	100	12.2	10		07/21/23 19:	33 1330-20-7	

Project: GE Indy
Pace Project No.: 50349621

Date: 08/02/2023 05:01 PM

Sample: AD-300-071923	Lab ID:	50349621007	Collected	d: 07/19/2	3 12:00	Received: 07	/19/23 12:20 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qual
8260 MSV Indiana	Analytical	Method: EPA 5	5030/8260						
	Pace Anal	ytical Services	- Indianapo	lis					
Surrogates									
Dibromofluoromethane (S)	103	%.	82-128		10		07/21/23 19:33	1868-53-7	D4
4-Bromofluorobenzene (S)	101	%.	79-124		10		07/21/23 19:33	460-00-4	
Toluene-d8 (S)	95	%.	73-122		10		07/21/23 19:33	2037-26-5	
353.2 Nitrogen, NO2/NO3 unpres	Analytical	Method: EPA 3	353.2						
	Pace Anal	ytical Services	- Indianapo	lis					
Nitrogen, NO2 plus NO3	ND	mg/L	0.10	0.011	1		07/19/23 23:58		
Nitrogen, Nitrate	ND	mg/L	0.10	0.011	1		07/19/23 23:58	14797-55-8	
5310C TOC	Analytical	Method: SM 5	310C						
	-	ytical Services		lis					
Total Organic Carbon	9430	ug/L	4000	944	4		07/25/23 17:12	7440-44-0	

Sulfate

Date: 08/02/2023 05:01 PM

QUALITY CONTROL DATA

Project: GE Indy Pace Project No.: 50349621

QC Batch: 745310 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Indianapolis

Associated Lab Samples: 50349621001, 50349621003, 50349621004, 50349621006, 50349621007

METHOD BLANK: 3416795 Matrix: Water

Associated Lab Samples: 50349621001, 50349621003, 50349621004, 50349621006, 50349621007

Blank Reporting

Parameter Units Result Limit MDL Analyzed Qualifiers

Sulfate ug/L ND 250 190 07/27/23 01:38

LABORATORY CONTROL SAMPLE: 3416796

Spike LCS LCS % Rec Limits Parameter Units Conc. Result % Rec Qualifiers 5000 4670 93 90-110 ug/L

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3416797 3416798

MS MSD

50349557001 Spike Spike MS MSD MS MSD % Rec Max Units **RPD** RPD Parameter Result Conc. Conc. Result Result % Rec % Rec Limits Qual Sulfate ug/L 45.3 mg/L 50000 50000 88900 88800 87 87 80-120 0 15

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3416799 3416800

MS MSD

52120593002 MSD MS MSD % Rec Spike Spike MS Max RPD Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits RPD Qual Sulfate 94 19.4 mg/L 5000 5000 24100 24100 94 0 15 ug/L 80-120

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50349621

Date: 08/02/2023 05:01 PM

QC Batch: 769638 Analysis Method: AM20GAX

QC Batch Method: AM20GAX Analysis Description: Indicator Gases Water LHC

Laboratory: Pace Analytical Gulf Coast

Associated Lab Samples: 50349621001, 50349621003, 50349621004, 50349621006, 50349621007

METHOD BLANK: 2504236 Matrix: Water

Associated Lab Samples: 50349621001, 50349621003, 50349621004, 50349621006, 50349621007

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Methane	ug/L	ND	5.0	2.0	07/27/23 06:40	
Ethane	ug/L	ND	1.0	0.17	07/27/23 06:40	
Ethene	ug/L	ND	1.0	0.24	07/27/23 06:40	
n-Propane	ug/L	ND	1.0	0.29	07/27/23 06:40	
Propylene	ug/L	ND	1.0	0.31	07/27/23 06:40	
Isobutane	ug/L	ND	2.0	0.065	07/27/23 06:40	
n-Butane	ug/L	ND	2.0	0.54	07/27/23 06:40	

LABORATORY CONTROL SAM	PLE & LCSD: 2504237		25	504238						
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
Methane	 ug/L	750	730	670	98	90	70-130	8	20	
Ethane	ug/L	38	31	29	82	77	70-130	5	20	
Ethene	ug/L	35	28	28	79	78	70-130	0	20	
n-Propane	ug/L	56	40	41	72	74	70-130	2	20	
Propylene	ug/L	53	36	36	68	68	70-130	1	20 L0)
Isobutane	ug/L	73	52	56	72	76	70-130	6	20	
n-Butane	ug/L	73	54	60	73	83	70-130	12	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy Pace Project No.: 50349621

Date: 08/02/2023 05:01 PM

QC Batch: 745454 Analysis Method: EPA 6010

QC Batch Method: EPA 3010 Analysis Description: 6010 MET Dissolved

Laboratory: Pace Analytical Services - Indianapolis

Associated Lab Samples: 50349621001, 50349621003, 50349621004, 50349621006, 50349621007

METHOD BLANK: 3417594 Matrix: Water

Associated Lab Samples: 50349621001, 50349621003, 50349621004, 50349621006, 50349621007

Blank Reporting

Parameter Units Result Limit MDL Analyzed Qualifiers

Iron, Dissolved ug/L ND 100 28.6 07/27/23 02:16

LABORATORY CONTROL SAMPLE: 3417595

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units ug/L Iron, Dissolved 10000 9440 94 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3417596 3417597

MS MSD

50349682004 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Conc. Result Result **RPD** RPD Qual Result Conc. % Rec % Rec Limits Iron, Dissolved 35000 20 ug/L 27000 10000 10000 35900 80 88 75-125 2

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50349621

Date: 08/02/2023 05:01 PM

QC Batch: 744671 Analysis Method: EPA 5030/8260
QC Batch Method: EPA 5030/8260 Analysis Description: 8260 MSV

Laboratory: Pace Analytical Services - Indianapolis

Associated Lab Samples: 50349621001, 50349621002, 50349621003, 50349621004, 50349621005, 50349621006, 50349621007

METHOD BLANK: 3414371 Matrix: Water

Associated Lab Samples: 50349621001, 50349621002, 50349621003, 50349621004, 50349621005, 50349621006, 50349621007

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	ND	5.0	0.46	07/21/23 11:04	
1,1,1-Trichloroethane	ug/L	ND	5.0	0.36	07/21/23 11:04	
1,1,2,2-Tetrachloroethane	ug/L	ND	5.0	0.62	07/21/23 11:04	
1,1,2-Trichloroethane	ug/L	ND	5.0	3.6	07/21/23 11:04	
1,1-Dichloroethane	ug/L	ND	5.0	0.40	07/21/23 11:04	
1,1-Dichloroethene	ug/L	ND	5.0	0.31	07/21/23 11:04	
1,1-Dichloropropene	ug/L	ND	5.0	0.44	07/21/23 11:04	
1,2,3-Trichlorobenzene	ug/L	ND	5.0	1.4	07/21/23 11:04	
1,2,3-Trichloropropane	ug/L	ND	5.0	4.1	07/21/23 11:04	
1,2,4-Trichlorobenzene	ug/L	ND	5.0	1.1	07/21/23 11:04	
1,2,4-Trimethylbenzene	ug/L	ND	5.0	0.65	07/21/23 11:04	
1,2-Dibromoethane (EDB)	ug/L	ND	5.0	4.4	07/21/23 11:04	
1,2-Dichlorobenzene	ug/L	ND	5.0	0.46	07/21/23 11:04	
1,2-Dichloroethane	ug/L	ND	5.0	1.2	07/21/23 11:04	
1,2-Dichloropropane	ug/L	ND	5.0	0.59	07/21/23 11:04	
1,3,5-Trimethylbenzene	ug/L	ND	5.0	0.39	07/21/23 11:04	
1,3-Dichlorobenzene	ug/L	ND	5.0	0.41	07/21/23 11:04	
1,3-Dichloropropane	ug/L	ND	5.0	0.50	07/21/23 11:04	
1,4-Dichlorobenzene	ug/L	ND	5.0	0.50	07/21/23 11:04	
1-Methylnaphthalene	ug/L	ND	10.0	5.2	07/21/23 11:04	
2,2-Dichloropropane	ug/L	ND	5.0	0.35	07/21/23 11:04	
2-Butanone (MEK)	ug/L	ND	25.0	3.4	07/21/23 11:04	
2-Chlorotoluene	ug/L	ND	5.0	0.33	07/21/23 11:04	
2-Hexanone	ug/L	ND	25.0	3.0	07/21/23 11:04	
2-Methylnaphthalene	ug/L	ND	10.0	4.8	07/21/23 11:04	
4-Chlorotoluene	ug/L	ND	5.0	0.44	07/21/23 11:04	
4-Methyl-2-pentanone (MIBK)	ug/L	ND	25.0	2.2	07/21/23 11:04	
Acetone	ug/L	ND	100	37.5	07/21/23 11:04	
Acrolein	ug/L	ND	50.0	24.1	07/21/23 11:04	
Acrylonitrile	ug/L	ND	100	2.5	07/21/23 11:04	
Benzene	ug/L	ND	5.0	0.41	07/21/23 11:04	
Bromobenzene	ug/L	ND	5.0	0.50	07/21/23 11:04	
Bromochloromethane	ug/L	ND	5.0	1.0	07/21/23 11:04	
Bromodichloromethane	ug/L	ND	5.0	0.51	07/21/23 11:04	
Bromoform	ug/L	ND	5.0	3.4	07/21/23 11:04	
Bromomethane	ug/L	ND	5.0	0.87	07/21/23 11:04	
Carbon disulfide	ug/L	ND	10.0	0.72	07/21/23 11:04	
Carbon tetrachloride	ug/L	ND	5.0	1.2	07/21/23 11:04	
Chlorobenzene	ug/L	ND	5.0	0.36	07/21/23 11:04	
Chloroethane	ug/L	ND	5.0	1.7	07/21/23 11:04	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50349621

Date: 08/02/2023 05:01 PM

METHOD BLANK: 3414371 Matrix: Water

Associated Lab Samples: 50349621001, 50349621002, 50349621003, 50349621004, 50349621005, 50349621006, 50349621007

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Chloroform	ug/L	ND	5.0	1.4	07/21/23 11:04	
Chloromethane	ug/L	ND	5.0	0.42	07/21/23 11:04	
cis-1,2-Dichloroethene	ug/L	ND	5.0	0.38	07/21/23 11:04	
cis-1,3-Dichloropropene	ug/L	ND	5.0	0.47	07/21/23 11:04	
Dibromochloromethane	ug/L	ND	5.0	0.41	07/21/23 11:04	
Dibromomethane	ug/L	ND	5.0	1.4	07/21/23 11:04	
Dichlorodifluoromethane	ug/L	ND	5.0	0.48	07/21/23 11:04	
Ethyl methacrylate	ug/L	ND	100	1.6	07/21/23 11:04	
Ethylbenzene	ug/L	ND	5.0	0.40	07/21/23 11:04	
Hexachloro-1,3-butadiene	ug/L	ND	5.0	0.60	07/21/23 11:04	
Iodomethane	ug/L	ND	10.0	3.2	07/21/23 11:04	
Isopropylbenzene (Cumene)	ug/L	ND	5.0	0.43	07/21/23 11:04	
Methyl-tert-butyl ether	ug/L	ND	4.0	0.41	07/21/23 11:04	
Methylene Chloride	ug/L	ND	5.0	3.9	07/21/23 11:04	
n-Butylbenzene	ug/L	ND	5.0	0.42	07/21/23 11:04	
n-Hexane	ug/L	ND	5.0	0.53	07/21/23 11:04	
n-Propylbenzene	ug/L	ND	5.0	0.32	07/21/23 11:04	
Naphthalene	ug/L	ND	1.2	1.1	07/21/23 11:04	
p-Isopropyltoluene	ug/L	ND	5.0	0.41	07/21/23 11:04	
sec-Butylbenzene	ug/L	ND	5.0	0.44	07/21/23 11:04	
Styrene	ug/L	ND	5.0	0.38	07/21/23 11:04	
tert-Butylbenzene	ug/L	ND	5.0	0.38	07/21/23 11:04	
Tetrachloroethene	ug/L	ND	5.0	0.52	07/21/23 11:04	
Toluene	ug/L	ND	5.0	0.38	07/21/23 11:04	
trans-1,2-Dichloroethene	ug/L	ND	5.0	0.41	07/21/23 11:04	
trans-1,3-Dichloropropene	ug/L	ND	5.0	0.88	07/21/23 11:04	
trans-1,4-Dichloro-2-butene	ug/L	ND	100	2.6	07/21/23 11:04	
Trichloroethene	ug/L	ND	5.0	4.6	07/21/23 11:04	
Trichlorofluoromethane	ug/L	ND	5.0	0.48	07/21/23 11:04	
Vinyl acetate	ug/L	ND	50.0	1.3	07/21/23 11:04	
Vinyl chloride	ug/L	ND	2.0	0.48	07/21/23 11:04	
Xylene (Total)	ug/L	ND	10.0	1.2	07/21/23 11:04	
4-Bromofluorobenzene (S)	%.	101	79-124		07/21/23 11:04	
Dibromofluoromethane (S)	%.	100	82-128		07/21/23 11:04	
Toluene-d8 (S)	%.	102	73-122		07/21/23 11:04	

LABORATORY CONTROL SAMPLE:	3414372					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1-Trichloroethane	ug/L	50	49.1	98	76-127	
1,1,2,2-Tetrachloroethane	ug/L	50	41.7	83	70-126	
1,1-Dichloroethene	ug/L	50	48.3	97	73-133	
1,2,4-Trimethylbenzene	ug/L	50	43.5	87	70-127	
1,2-Dibromoethane (EDB)	ug/L	50	46.8	94	80-126	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50349621

Date: 08/02/2023 05:01 PM

ABORATORY CONTROL SAMPLE:	3414372					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
,2-Dichloroethane	ug/L	50	46.3	93	70-124	
,2-Dichloropropane	ug/L	50	45.0	90	74-128	
enzene	ug/L	50	43.4	87	74-124	
nlorobenzene	ug/L	50	44.7	89	77-121	
nloroform	ug/L	50	45.4	91	75-118	
s-1,2-Dichloroethene	ug/L	50	44.2	88	76-125	
nylbenzene	ug/L	50	44.2	88	74-125	
propylbenzene (Cumene)	ug/L	50	46.0	92	75-126	
thyl-tert-butyl ether	ug/L	50	43.3	87	74-129	
exane	ug/L	50	45.4	91	58-131	
ohthalene	ug/L	50	41.9	84	70-132	
achloroethene	ug/L	50	47.2	94	73-132	
iene	ug/L	50	41.3	83	72-119	
ns-1,2-Dichloroethene	ug/L	50	47.8	96	74-125	
chloroethene	ug/L	50	45.4	91	75-127	
nyl chloride	ug/L	50	52.6	105	48-133	
ene (Total)	ug/L	150	127	85	73-123	
romofluorobenzene (S)	%.			102	79-124	
romofluoromethane (S)	%.			99	82-128	
uene-d8 (S)	%.			101	73-122	

MATRIX SPIKE & MATRIX SF	PIKE DUPLIC	ATE: 3414	373		3414374							
			MS	MSD								
	5	0349550001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1,1,1-Trichloroethane	ug/L	ND	50	50	58.3	61.5	117	123	63-138	5	20	
1,1,2,2-Tetrachloroethane	ug/L	ND	50	50	53.8	53.0	108	106	58-146	1	20	
1,1-Dichloroethene	ug/L	ND	50	50	59.2	61.1	118	122	65-139	3	20	
1,2,4-Trimethylbenzene	ug/L	ND	50	50	54.6	51.5	109	103	34-144	6	20	
1,2-Dibromoethane (EDB)	ug/L	ND	50	50	58.2	59.8	116	120	64-139	3	20	
1,2-Dichloroethane	ug/L	ND	50	50	56.9	59.6	114	119	55-146	5	20	
1,2-Dichloropropane	ug/L	ND	50	50	54.9	57.2	110	114	66-134	4	20	
Benzene	ug/L	ND	50	50	52.9	56.4	106	113	65-137	6	20	
Chlorobenzene	ug/L	ND	50	50	55.3	54.7	111	109	54-135	1	20	
Chloroform	ug/L	ND	50	50	54.5	57.2	109	114	64-133	5	20	
cis-1,2-Dichloroethene	ug/L	ND	50	50	52.9	56.2	106	112	59-141	6	20	
Ethylbenzene	ug/L	ND	50	50	55.9	56.0	112	112	50-143	0	20	
Isopropylbenzene (Cumene)	ug/L	ND	50	50	56.5	56.3	113	113	36-151	0	20	
Methyl-tert-butyl ether	ug/L	ND	50	50	54.9	58.9	109	117	66-138	7	20	
n-Hexane	ug/L	ND	50	50	58.2	60.8	116	122	53-129	4	20	
Naphthalene	ug/L	ND	50	50	54.9	54.2	110	108	51-135	1	20	
Tetrachloroethene	ug/L	ND	50	50	57.8	57.6	116	115	43-149	0	20	
Toluene	ug/L	ND	50	50	52.8	51.7	101	99	57-137	2	20	
trans-1,2-Dichloroethene	ug/L	ND	50	50	57.8	57.6	116	115	63-133	0	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50349621

Date: 08/02/2023 05:01 PM

MATRIX SPIKE & MATRIX SP	IKE DUPLIC	CATE: 3414	373		3414374							
			MS	MSD								
	5	0349550001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Trichloroethene	ug/L	ND	50	50	56.3	58.6	113	117	52-145	4	20	
Vinyl chloride	ug/L	ND	50	50	62.1	62.7	124	125	43-139	1	20	
Xylene (Total)	ug/L	ND	150	150	161	159	107	106	52-137	1	20	
4-Bromofluorobenzene (S)	%.						105	103	79-124			
Dibromofluoromethane (S)	%.						97	103	82-128			
Toluene-d8 (S)	%.						99	103	73-122			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50349621

QC Batch: 744381

QC Batch Method: EPA 353.2

Analysis Method: EPA 353.2

Analysis Description:

353.2 Nitrate + Nitrite, Unpres.

Laboratory:

Pace Analytical Services - Indianapolis

Associated Lab Samples: 50349621001

METHOD BLANK: 3413204

Date: 08/02/2023 05:01 PM

Matrix: Water

Associated Lab Samples: 50349621001

Blank Reporting Limit MDL Qualifiers Parameter Units Result Analyzed Nitrogen, Nitrate mg/L ND 0.10 0.011 07/19/23 23:00 Nitrogen, NO2 plus NO3 mg/L ND 0.10 0.011 07/19/23 23:00

LABORATORY CONTROL SAMPLE: 3413205

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Nitrogen, Nitrate 1.0 102 90-110 mg/L 1 Nitrogen, NO2 plus NO3 mg/L 2 2.0 102 90-110

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3413206 3413207 MS MSD 50349603003 Spike Spike MS MSD MS MSD % Rec Max RPD Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD**

Qual Nitrogen, Nitrate mg/L 0.49 1 1 1.5 1.5 105 106 90-110 0 20 Nitrogen, NO2 plus NO3 2 2 3.9 3.9 102 102 90-110 20 mg/L 1.8 0

3413208 MATRIX SPIKE SAMPLE: 50349621001 MS MS Spike % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers ND 1.0 90-110 Nitrogen, Nitrate mg/L 1 101 ND 2 Nitrogen, NO2 plus NO3 2.0 100 90-110 mg/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy Pace Project No.: 50349621

QC Batch: 744382 Analysis Method: EPA 353.2

QC Batch Method: EPA 353.2 Analysis Description: 353.2 Nitrate + Nitrite, Unpres.

Laboratory: Pace Analytical Services - Indianapolis

Associated Lab Samples: 50349621003, 50349621004, 50349621006, 50349621007

METHOD BLANK: 3413212 Matrix: Water

Associated Lab Samples: 50349621003, 50349621004, 50349621006, 50349621007

Blank Reporting
Parameter Units Result Limit

MDL Qualifiers Parameter Analyzed Nitrogen, Nitrate mg/L ND 0.10 0.011 07/19/23 23:34 Nitrogen, NO2 plus NO3 mg/L ND 0.10 0.011 07/19/23 23:34

LABORATORY CONTROL SAMPLE: 3413213

Date: 08/02/2023 05:01 PM

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Nitrogen, Nitrate 1.0 104 90-110 mg/L 1 Nitrogen, NO2 plus NO3 mg/L 2 2.1 103 90-110

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3413214 3413215 MS MSD 50349603004 Spike Spike MS MSD MS MSD % Rec Max RPD Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** Qual Nitrogen, Nitrate mg/L 0.54 1 1 1.6 1.6 104 102 90-110 20 Nitrogen, NO2 plus NO3 1.7 2 2 3.8 3.8 101 101 90-110 0 20 mg/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy Pace Project No.: 50349621

QC Batch: 744515 Analysis Method: SM 5310C

QC Batch Method: SM 5310C Analysis Description: 5310C Total Organic Carbon

Laboratory: Pace Analytical Services - Indianapolis

Associated Lab Samples: 50349621001, 50349621003, 50349621004, 50349621006, 50349621007

METHOD BLANK: 3413766 Matrix: Water

Associated Lab Samples: 50349621001, 50349621003, 50349621004, 50349621006, 50349621007

Blank Reporting

Parameter Units Result Limit MDL Analyzed Qualifiers

Total Organic Carbon ug/L ND 1000 236 07/25/23 13:19

LABORATORY CONTROL SAMPLE: 3413767

Spike LCS LCS % Rec
Parameter Units Conc. Result % Rec Limits Qualifiers

Total Organic Carbon ug/L 10000 9220 92 90-110

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3413768 3413769

MS MSD

50349577001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units RPD Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** Qual **Total Organic Carbon** 42000 20 ug/L 4110 40000 40000 41500 95 93 80-120

MATRIX SPIKE SAMPLE: 3413770

Date: 08/02/2023 05:01 PM

50349577002 MS MS % Rec Spike Parameter Units Result Conc. Result % Rec Limits Qualifiers 1700 Total Organic Carbon 10000 6920 52 80-120 M0 ug/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: GE Indy
Pace Project No.: 50349621

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 08/02/2023 05:01 PM

1d	Due to the high analyte concentration of target compounds the sample was not reanalyzed at 1X.

- CH The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased high.
- D4 Sample was diluted due to the presence of high levels of target analytes.
- HS Results are from sample aliquot taken from VOA vial with headspace (air bubble greater than 6 mm diameter).
- L0 Analyte recovery in the laboratory control sample (LCS) was outside QC limits.
- M0 Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.

METHOD CROSS REFERENCE TABLE

Project: GE Indy
Pace Project No.: 50349621

Parameter	Matrix	Analytical Method	Preparation Method	
6010 MET ICP, Dissolved	Water	SW-846 6010B	SW-846 3010A	

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: GE Indy
Pace Project No.: 50349621

Date: 08/02/2023 05:01 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
50349621001	MW-402-071823	EPA 300.0	745310		
50349621003	MW-407S-071823	EPA 300.0	745310		
50349621004	MW-407D-071923	EPA 300.0	745310		
50349621006	MW-418S-071923	EPA 300.0	745310		
50349621007	AD-300-071923	EPA 300.0	745310		
50349621001	MW-402-071823	AM20GAX	769638		
50349621003	MW-407S-071823	AM20GAX	769638		
50349621004	MW-407D-071923	AM20GAX	769638		
50349621006	MW-418S-071923	AM20GAX	769638		
50349621007	AD-300-071923	AM20GAX	769638		
50349621001	MW-402-071823	EPA 3010	745454	EPA 6010	745455
50349621003	MW-407S-071823	EPA 3010	745454	EPA 6010	745455
50349621004	MW-407D-071923	EPA 3010	745454	EPA 6010	745455
50349621006	MW-418S-071923	EPA 3010	745454	EPA 6010	745455
50349621007	AD-300-071923	EPA 3010	745454	EPA 6010	745455
50349621001	MW-402-071823	EPA 5030/8260	744671		
50349621002	AD-200-071823	EPA 5030/8260	744671		
50349621003	MW-407S-071823	EPA 5030/8260	744671		
50349621004	MW-407D-071923	EPA 5030/8260	744671		
50349621005	Trip Blank-071923	EPA 5030/8260	744671		
50349621006	MW-418S-071923	EPA 5030/8260	744671		
50349621007	AD-300-071923	EPA 5030/8260	744671		
50349621001	MW-402-071823	EPA 353.2	744381		
50349621003	MW-407S-071823	EPA 353.2	744382		
50349621004	MW-407D-071923	EPA 353.2	744382		
50349621006	MW-418S-071923	EPA 353.2	744382		
50349621007	AD-300-071923	EPA 353.2	744382		
50349621001	MW-402-071823	SM 5310C	744515		
50349621003	MW-407S-071823	SM 5310C	744515		
50349621004	MW-407D-071923	SM 5310C	744515		
50349621006	MW-418S-071923	SM 5310C	744515		
50349621007	AD-300-071923	SM 5310C	744515		

WWW.PACELABS.COM

Section A

Submitting a sample via t

W0#:50349621 TODY / Analytical Request Document a LEGAL DOCUMENT. All relevant fields must be completed accurately.

P	ace Terms and C	onditions found at h	ttps://info.pacelabs	s.com/hubfs/pas-st	andard-terms.po

on C		1	
ce Information:	Page:	Of	

ompany: Ramboll OH	Report To: Chase Forman	ntion: Accounts Payable	
ddress: 8805 Governor's Hill Drive Suite 205	Сору То:	Company Name: Ramboll OH	
incinnati, OH 45249		Address:	Regulatory Agency
mail: chase.forman@ramboll.com	Purchase Order #: 1940006425	Pace Quote:	
hone: (740)403-1387 Fax:	Project Name: GE Indy	Pace Project Manager: heather.patterson@pacelabs.com,	State / Location
equested Due Date: Standard	Project #:	Pace Profile #: 9761-8	IN
			A STATE OF THE PROPERTY OF THE

		left)	MP)		П	T	_			N			eques	led Al	lalysis Filtere					
	Drinking Water Water	AM AM AM AM AM AM AM AM AM AM AM AM AM A	START	END	TEMP AT COLLECTION	VERS	Pr	eserva	tives		lest	Dissolved Gases by AM20GAX	Filtered Fe	300.0			lorine (Y/N)			
ITEM #	(A-Z, 0-9 /, -) Sample lds must be unique Air Other Tissue	ST TO SE	SAMPLE TYPE T STAD	IME DATE TIME	MPLE	# OF CONTAINERS Unpreserved	H2SO4 HN03	HCI	Na2S203 Methanol	Other	VOC by 8260	Dissolved Gase	Metals, Field	Nitrate by 353.2 Sulfate by 300.0	TOC 5310		Residual Chlorine (Y/N)			
1 2	MW-402-071873 AD-260-071823	WT	G	1 7-18-23(23C		8 1	1 1	3		H	X	X	X	$\langle \rangle$				00	12)
3	MW-4073-071823 MW-407D-071913			7-19-23 948		81	11	5		H	1	√X √X	X				\mathbb{H}	00		
5	Trin Blank-071923 Maj-4188-071923		Gus	tion		3/8/1	11	3			Ž			XX			H	005		
7	AD-300-071973			1200		81	((5			Ź	K	X	XX				00:		
9					\parallel					H	F	+		+			\blacksquare			
10										\parallel	F	+		-	\Box					
12	ADDITIONAL COMMENTS	RELIN	IQUISHED BY / AFF	ILIATION DAT	TE	TIM			ACCEPT	ED BY	AFFIL	LATIO			DATE	TIME		SAMPLE	CONDITIONS	
	AX for M/E/E/propane/propene/butane to Pace® Gulf Coast	Must	Staut	fac 1/19)	23	122	1	Puis	D.	0	_	7	966	_	7/9/2		2.4	У	N	У
			S	AMPLER NAME AND SIG	505063				1/								U	uo p		
			-	SIGNATURE of SAM		14	AH	Ang	41	AA.	Т	DA	TE Sig	ned:	7-19-	73	TEMP in	Received	Custody Sealed Cooler	o Sect along

SAMPLE CONDITION UPON RECEIPT FORM

Date/Time and Initials of person examining contents	s: 7/19	123 1	248 LR			
1. Courier: FED EX UPS CLIENT PACE NOW. IFT OTHER 2. Custody Seal on Cooler/Box Present: Yes No (leave blank if no seals were present) 3. Thermometer: 1 2 3 4 5 6 7 8 AB C D E F G H 4. Cooler Temperature(s): 26 / 2. Y						
2. Custody Seal on Cooler/Box Present:	No		□ None	/		
(If yes)Seals Intact:	k if no seals	were prese	nt)			
3. Thermometer: 1 2 3 4 5 6 7 8 ABCD	EFGH		6. Ice Type: → Wet □ Blue □ None			
4. Cooler Temperature(s): 2.6/2.4			7. If temp. is over 6°C or under 0°C, was the PM	notified?:		□ No
(Initial/Corrected) RECORD TEMPS OF ALL COOLERS RECE				zing to 6°C		
All	8		written out in the comments section below.	Vac	No	T N/A
	Yes		<u>CHECKED?</u> Exceptions: VOA, coliform, LLHg, O&G, RAD CHEM, and any container with a septum cap or preserved with HCI.		NO	N/A
Analysis:	x		HNO3 (>2) (H2SO4 (>2) NaOH (>10) NaOH/ZnAc (>9) Any non-conformance to pH recommendations will be noted on the container			
Time 5035A TC placed in Freezer or Short Holds To Lab			Residual Chlorine Check (SVOC 625 Pest/PCB 608)	Present	Absent	N/A
Rush TAT Requested (4 days or less):	transfer transpers	×	Residual Chlorine Check (Total/Amenable/Free Cyanide)			>
Custody Signatures Present?	×		Headspace Wisconsin Sulfide?			~
Containers Intact?:	×				Absent	No VOA Vials Sen
	*		Trip Blank Present?	×		
Extra labels on Terracore Vials? (soils only)		×	Trip Blank Custody Seals?:	\succ		
				have	date	on

Page 40 of 41

COC PAGE ____ of ____

MDW 7/19/23

** Place a RED dot on containers

that are out of conformance **

			MeOH (only)																									Nitric	Sulfuric	Sodium Hydroxide	Sodium Hydroxide/ ZnAc	
			SBS							AMB	ER G	LASS						PL	AST	IC					OTH	HER		Red	Yellow	Green	Black	
COC Line Item	3FU	WGKU BG1U		56	VOA VIAL HS >6mm	VG9U	16	3	H.	5	AG3U	AG38	AG38F	AG3B	5	Z	20	30	S S	3F	38	3B	32	сезн	CG3F	Syringe Kit	Matrix	HNO3	H2SO4	NaOH	NaOH/Zn	F
Item	WGF	WC	R	H650	>6mm	VG	VG9T	AGOL	AG1F	AG1	AG	AG	AG	AG	BP1U	BP1N	BP2U	вРзс	BP3N	врзғ	BP3S	ВРЗВ	BP3Z	00	8	Syr	Ma	<2	<2	>10	Ac >9	
1				5								1						1		1							WT	V	1			
2				3	2/3															,												
3				5	2/5							1						1		1								/	1			
4				5								1						1		1								1				
5				3																												
6				5	7	1912	3					1				7		1		1								1	"			
7				5		业						1						1		١							¥	/	V			
8																																
9																																
10																																
11																																
12					_																											

Container Codes

	Glas	SS	
DG9H	40mL HCl amber voa vial	BG1T	glass
DG9P	40mL TSP amber vial	BG1U	1L unpreserved glass
DG9S	40mL H2SO4 amber vial	CG3U	250mL Unpres Clear Glass
DG9T	40mL Na Thio amber vial	AG0U	,100mL unpres amber glass
DG9U	40mL unpreserved amber vial	AG1H	1L HCl amber glass
VG9H	40mL HCl clear vial	AG1S	1L H2SO4 amber glass
VG9T	40mL Na Thio. clear vial	AG1T	1L Na Thiosulfate amber glass
VG9U	40mL unpreserved clear vial	AG1U	1liter unpres amber glass
I	40mL w/hexane wipe vial	AG2N	500mL HNO3 amber glass
WGKU	8oz unpreserved clear jar	AG2S	500mL H2SO4 amber glass
WGFU	4oz clear soil jar	AG2U	500mL unpres amber glass
JGFU	4oz unpreserved amber wide	AG3S	250mL H2SO4 amber glass
CG3H	250mL clear glass HCl	AG3SF	250mL H2SO4 amb glass -field filtered
CG3F	250mL clear glass HCI, Field Filter	AG3U	250mL unpres amber glass
BG1H	1L HCl clear glass	AG3B	250mL NaOH amber glass
BG1S	1L H2SO4 clear glass		

			Plastic
BP1B	1L NaOH plastic	BP4U	125mL unpreserved plastic
BP1N	1L HNO3 plastic	BP4N	125mL HNO3 plastic
BP1S	1L H2SO4 plastic	BP4S	125mL H2SO4 plastic
BP1U	1L unpreserved plastic		Miscellaneous
BP1Z	1L NaOH, Zn, Ac		Miscellalleous
BP2N	500mL HNO3 plastic	Syring	ge Kit LL Cr+6 sampling kit
BP2C	500mL NaOH plastic	ZPLC	Ziploc Bag
BP2S	500mL H2SO4 plastic	R	Terracore Kit
BP2U	500mL unpreserved plastic	SP5T	120mL Coliform Sodium Thiosulfate
BP2Z	500mL NaOH, Zn Ac	GN	General Container
BP3B	250mL NaOH plastic	U	Summa Can (air sample)
BP3N	250mL HNO3 plastic	WT	Water
BP3F	250mL HNO3 plastic-field filtered	SL	Solid
BP3U	250mL unpreserved plastic	OL:	Oil
BP3S	250mL H2SO4 plastic	NAL	Non-aqueous liquid
BP3Z	250mL NaOH, ZnAc plastic	WP	Wipe
BP3R	250mL Unpres. FF SO4/OH buffer		

Page 41 of 41

August 04, 2023

Chase Forman Ramboll 8805 Governor's Hill Drive Suite 205 Cincinnati, OH 45249

RE: Project: GE Indy

Pace Project No.: 50349809

Dear Chase Forman:

Enclosed are the analytical results for sample(s) received by the laboratory on July 20, 2023. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

- Pace Analytical Gulf Coast
- Pace Analytical Services Indianapolis

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Heather Patterson heather.patterson@pacelabs.com (317)228-3146

Heath Pathson

Project Manager

Enclosures

cc: Mr. Tyler Carter, Ramboll Environ Matt Starrett, Ramboll

Dana Williams, Ramboll

CERTIFICATIONS

Project: GE Indy
Pace Project No.: 50349809

Pace Analytical Services Indianapolis

7726 Moller Road, Indianapolis, IN 46268

Illinois Accreditation #: 200074

Indiana Drinking Water Laboratory #: C-49-06

Kansas/TNI Certification #: E-10177 Kentucky UST Agency Interest #: 80226

Kentucky WW Laboratory ID #: 98019

Michigan Drinking Water Laboratory #9050

Ohio VAP Certified Laboratory #: CL0065

Oklahoma Laboratory #: 9204 Texas Certification #: T104704355

Wisconsin Laboratory #: 999788130

USDA Foreign Soil Permit #: 525-23-13-23119 USDA Compliance Agreement #: IN-SL-22-001

Pace Analytical Gulf Coast

7979 Innovation Park Drive, Baton Rouge, LA 70820

Arkansas Certification #: 88-0655 DoD ELAP Certification #: 6429-01 Florida Certification #: E87854 Illinois Certification #: 004585 Kansas Certification #: E-10354 Louisiana/LELAP Certification #: 01955

North Carolina Certification #: 618

North Dakota Certification #: R-195 Oklahoma Certification #: 2019-101 South Carolina Certification #: 73006001 Texas Certification #: T104704178-19-11 USDA Soil Permit # P330-19-00209 Virginia Certification #: 460215 Washington Certification #: C929

SAMPLE SUMMARY

Project: GE Indy
Pace Project No.: 50349809

Lab ID	Sample ID	Matrix	Date Collected	Date Received
50349809001	MW-428-071923	Water	07/19/23 14:50	07/20/23 16:45
50349809002	MW-418D-071923	Water	07/19/23 12:20	07/20/23 16:45
50349809003	MW-331-072023	Water	07/20/23 09:00	07/20/23 16:45
50349809004	MW-311-072023	Water	07/20/23 09:30	07/20/23 16:45
50349809005	W-9-072023	Water	07/20/23 10:15	07/20/23 16:45
50349809006	MW-313-072023	Water	07/20/23 10:25	07/20/23 16:45
50349809007	MW-112-072023	Water	07/20/23 10:35	07/20/23 16:45
50349809008	MW-253-072023	Water	07/20/23 10:55	07/20/23 16:45
50349809009	MW-251-072023	Water	07/20/23 11:05	07/20/23 16:45
50349809010	W-10-072023	Water	07/20/23 11:15	07/20/23 16:45
50349809011	MW-153-072023	Water	07/20/23 11:20	07/20/23 16:45
50349809012	W-8-072023	Water	07/20/23 11:30	07/20/23 16:45
50349809013	MW-163-072023	Water	07/20/23 11:35	07/20/23 16:45
50349809014	MW-312-072023	Water	07/20/23 11:40	07/20/23 16:45
50349809015	MW-132-072023	Water	07/20/23 11:55	07/20/23 16:45
50349809016	MW-41-072023	Water	07/20/23 12:15	07/20/23 16:45
50349809017	MW-333-072023	Water	07/20/23 12:35	07/20/23 16:45
50349809018	MW-343-072023	Water	07/20/23 12:40	07/20/23 16:45
50349809019	AD-400-072023	Water	07/20/23 12:00	07/20/23 16:45
50349809020	MW-241-072023	Water	07/20/23 12:45	07/20/23 16:45
50349809021	MW-32-072023	Water	07/20/23 13:40	07/20/23 16:45
50349809022	MW-33-072023	Water	07/20/23 13:45	07/20/23 16:45
50349809023	Trip Blank-072023	Water	07/19/23 08:00	07/20/23 16:45

SAMPLE ANALYTE COUNT

Project: GE Indy
Pace Project No.: 50349809

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
50349809001	MW-428-071923	EPA 300.0	ADM	1	PASI-I
		AM20GAX	LMB	7	GCLA
		EPA 6010	JPK	1	PASI-I
		EPA 5030/8260	KLP	75	PASI-I
		EPA 353.2	DAW	2	PASI-I
		SM 5310C	ATS	1	PASI-I
50349809002	MW-418D-071923	EPA 300.0	ADM	1	PASI-I
		AM20GAX	LMB	7	GCLA
		EPA 6010	JPK	1	PASI-I
		EPA 5030/8260	KLP	75	PASI-I
		EPA 353.2	DAW	2	PASI-I
		SM 5310C	ATS	1	PASI-I
50349809003	MW-331-072023	EPA 5030/8260	KLP	75	PASI-I
50349809004	MW-311-072023	EPA 5030/8260	KLP	75	PASI-I
50349809005	W-9-072023	AM20GAX	LMB	7	GCLA
		EPA 5030/8260	KLP	75	PASI-I
50349809006	MW-313-072023	EPA 5030/8260	KLP	75	PASI-I
50349809007	MW-112-072023	EPA 5030/8260	KLP	75	PASI-I
50349809008	MW-253-072023	EPA 5030/8260	KLP	75	PASI-I
50349809009	MW-251-072023	EPA 5030/8260	KLP	75	PASI-I
50349809010	W-10-072023	EPA 5030/8260	KLP	75	PASI-I
50349809011	MW-153-072023	EPA 5030/8260	KLP	75	PASI-I
50349809012	W-8-072023	AM20GAX	LMB	7	GCLA
		EPA 5030/8260	KLP	75	PASI-I
50349809013	MW-163-072023	EPA 5030/8260	KLP	75	PASI-I
50349809014	MW-312-072023	EPA 5030/8260	KLP	75	PASI-I
50349809015	MW-132-072023	EPA 5030/8260	KLP	75	PASI-I
50349809016	MW-41-072023	EPA 5030/8260	KLP	75	PASI-I
50349809017	MW-333-072023	EPA 5030/8260	KLP	75	PASI-I
50349809018	MW-343-072023	EPA 5030/8260	KLP	75	PASI-I
50349809019	AD-400-072023	EPA 5030/8260	KLP	75	PASI-I
50349809020	MW-241-072023	EPA 5030/8260	KLP	75	PASI-I
50349809021	MW-32-072023	EPA 5030/8260	KLP	75	PASI-I
50349809022	MW-33-072023	EPA 5030/8260	KLP	75	PASI-I
50349809023	Trip Blank-072023	EPA 5030/8260	KLP	75	PASI-I

GCLA = Pace Analytical Gulf Coast

PASI-I = Pace Analytical Services - Indianapolis

SUMMARY OF DETECTION

Project: GE Indy
Pace Project No.: 50349809

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
0349809001	MW-428-071923					
EPA 300.0	Sulfate	48800	ug/L	2500	07/27/23 23:43	
AM20GAX	Methane	8800	ug/L	5.0	07/27/23 08:00	
AM20GAX	Ethane	4.6	ug/L	1.0	07/27/23 08:00	
AM20GAX	Ethene	75	ug/L	1.0	07/27/23 08:00	
EPA 6010	Iron, Dissolved	3780	ug/L	100	07/27/23 03:19	
EPA 5030/8260	1,1,1-Trichloroethane	6.4	ug/L	5.0	07/25/23 19:47	
EPA 5030/8260	Vinyl chloride	33.3	ug/L	2.0	07/25/23 19:47	
SM 5310C	Total Organic Carbon	5230	ug/L	1000	07/25/23 04:36	
0349809002	MW-418D-071923					
EPA 300.0	Sulfate	354	ug/L	250	07/28/23 00:01	
AM20GAX	Methane	8900	ug/L	5.0	07/27/23 08:12	
AM20GAX	Ethane	36	ug/L	1.0	07/27/23 08:12	
AM20GAX	Ethene	53	ug/L	1.0	07/27/23 08:12	
EPA 6010	Iron, Dissolved	14600	ug/L	100	07/27/23 03:26	
EPA 5030/8260	Chloroethane	7.7	ug/L	5.0	07/24/23 16:37	
EPA 5030/8260	Vinyl chloride	190	ug/L	2.0	07/24/23 16:37	
SM 5310C	Total Organic Carbon	4290	ug/L	4000	07/25/23 04:51	
0349809003	MW-331-072023					
EPA 5030/8260	Chloroethane	610	ug/L	50.0	07/25/23 20:21	
EPA 5030/8260	1,1-Dichloroethane	6.2	ug/L	5.0	07/24/23 17:11	
EPA 5030/8260	Vinyl chloride	2.5	ug/L	2.0	07/24/23 17:11	
0349809004	MW-311-072023					
EPA 5030/8260	Chloroethane	411	ug/L	50.0	07/24/23 17:45	
0349809005	W-9-072023					
AM20GAX	Methane	20	ug/L	5.0	07/27/23 08:26	
EPA 5030/8260	cis-1,2-Dichloroethene	8.8	ug/L	5.0	07/24/23 18:53	
EPA 5030/8260	Vinyl chloride	5.5	ug/L	2.0	07/24/23 18:53	
0349809006	MW-313-072023					
EPA 5030/8260	1,1-Dichloroethane	5.1	ug/L	5.0	07/24/23 19:27	
EPA 5030/8260	cis-1,2-Dichloroethene	728	ug/L	50.0	07/25/23 20:54	
EPA 5030/8260	Vinyl chloride	62.2	ug/L	2.0	07/24/23 19:27	
0349809007	MW-112-072023					
EPA 5030/8260	cis-1,2-Dichloroethene	369	ug/L	25.0	07/24/23 20:01	
EPA 5030/8260	Vinyl chloride	511	ug/L	10.0	07/24/23 20:01	
0349809009	MW-251-072023					
EPA 5030/8260	Chloroethane	957	ug/L	50.0	07/24/23 21:09	
EPA 5030/8260	1,1-Dichloroethane	159	ug/L	50.0	07/24/23 21:09	
EPA 5030/8260	1,2-Dichloroethane	78.6	ug/L	50.0	07/24/23 21:09	
EPA 5030/8260	cis-1,2-Dichloroethene	15400	ug/L	500	07/24/23 21:42	
EPA 5030/8260	trans-1,2-Dichloroethene	166	ug/L	50.0	07/24/23 21:09	
EPA 5030/8260	Vinyl chloride	2530	ug/L	20.0	07/24/23 21:09	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

SUMMARY OF DETECTION

Project: GE Indy
Pace Project No.: 50349809

Lab Sample ID Method	Client Sample ID Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
 50349809013	MW-163-072023					
EPA 5030/8260	cis-1,2-Dichloroethene	7230	ug/L	250	07/25/23 00:32	
EPA 5030/8260	trans-1,2-Dichloroethene	76.8	ug/L	25.0	07/24/23 23:58	
EPA 5030/8260	Vinyl chloride	1610	ug/L	100	07/25/23 00:32	
50349809014	MW-312-072023					
EPA 5030/8260	cis-1,2-Dichloroethene	61.8	ug/L	5.0	07/25/23 01:05	
EPA 5030/8260	Trichloroethene	23.1	ug/L	5.0	07/25/23 01:05	
EPA 5030/8260	Vinyl chloride	38.6	ug/L	2.0	07/25/23 01:05	
50349809015	MW-132-072023					
EPA 5030/8260	1,1-Dichloroethane	56.8	ug/L	5.0	07/25/23 12:58	
EPA 5030/8260	cis-1,2-Dichloroethene	528	ug/L	50.0	07/25/23 13:33	
EPA 5030/8260	trans-1,2-Dichloroethene	38.9	ug/L	5.0	07/25/23 12:58	
EPA 5030/8260	Trichloroethene	530	ug/L	50.0	07/25/23 13:33	
EPA 5030/8260	Vinyl chloride	218	ug/L	2.0	07/25/23 12:58	
50349809017	MW-333-072023					
EPA 5030/8260	Benzene	13.1	ug/L	5.0	07/25/23 14:41	
EPA 5030/8260	1,2-Dichloroethane	32.0	ug/L	5.0	07/25/23 14:41	
EPA 5030/8260	1,1-Dichloroethene	28.9	ug/L	5.0	07/25/23 14:41	
EPA 5030/8260	cis-1,2-Dichloroethene	10100	ug/L	500	07/26/23 21:22	
EPA 5030/8260	trans-1,2-Dichloroethene	162	ug/L	5.0	07/25/23 14:41	
EPA 5030/8260	Vinyl chloride	2340	ug/L	20.0	07/25/23 15:15	

Project: GE Indy
Pace Project No.: 50349809

Date: 08/04/2023 05:01 PM

Sample: MW-428-071923	Lab ID:	50349809001	Collected:	07/19/23	14:50	Received: 07/	20/23 16:45 M	latrix: Water	
·			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	300.0						
•	Pace Ana	lytical Services	- Indianapoli	S					
Sulfate	48800	ug/L	2500	1900	10		07/27/23 23:43	14808-79-8	
Indicator Gases Water LHC	Analytical	Method: AM20	GAX						
	•	lytical Gulf Coa							
Mathana				2.0	4		07/27/22 00:00	74 02 0	
Methane Ethane	8800 4.6	ug/L	5.0 1.0	2.0 0.17	1		07/27/23 08:00		
Ethene		ug/L			1		07/27/23 08:00		
	75 ND	ug/L	1.0	0.24	1		07/27/23 08:00		
n-Propane	ND	ug/L	1.0	0.29	1		07/27/23 08:00		
Propylene	ND	ug/L	1.0	0.31	1		07/27/23 08:00		
Isobutane	ND	ug/L	2.0	0.065	1		07/27/23 08:00		
n-Butane	ND	ug/L	2.0	0.54	1		07/27/23 08:00	JUNK42	
6010 MET ICP, Dissolved	Analytical	Method: EPA 6	010 Prepara	ation Metho	od: EPA	3010			
	Pace Ana	llytical Services	- Indianapoli	S					
ron, Dissolved	3780	ug/L	100	28.6	1	07/27/23 01:58	07/27/23 03:19	7439-89-6	
3260 MSV Indiana	Analytical	Method: EPA 5	5030/8260						
	Pace Ana	lytical Services	- Indianapoli	s					
Acetone	ND	ug/L	100	7.4	1		07/25/23 19:47	67-64-1	
Acrolein	ND	ug/L	50.0	21.9	1		07/25/23 19:47	107-02-8	
Acrylonitrile	ND	ug/L	100	2.3	1		07/25/23 19:47		
Benzene	ND	ug/L	5.0	0.41	1		07/25/23 19:47		
Bromobenzene	ND	ug/L	5.0	0.40	1		07/25/23 19:47		
Bromochloromethane	ND	ug/L	5.0	0.44	1		07/25/23 19:47		
Bromodichloromethane	ND	ug/L	5.0	0.62	1		07/25/23 19:47		
Bromoform	ND	ug/L	5.0	0.91	1		07/25/23 19:47		
Bromomethane	ND ND	ug/L	5.0	0.86	1		07/25/23 19:47		
2-Butanone (MEK)	ND ND	ug/L ug/L	25.0	4.7	1		07/25/23 19:47		
n-Butylbenzene	ND ND	ug/L ug/L	5.0	0.36	1		07/25/23 19:47		
•	ND ND	•	5.0	0.30	1		07/25/23 19:47		
sec-Butylbenzene		ug/L			1		07/25/23 19:47		
tert-Butylbenzene	ND	ug/L	5.0	0.28					
Carbon disulfide	ND	ug/L	10.0	0.91	1		07/25/23 19:47		
Carbon tetrachloride	ND	ug/L	5.0	0.47	1		07/25/23 19:47		
Chlorobenzene	ND	ug/L	5.0	0.30	1		07/25/23 19:47		
Chloroethane	ND	ug/L	5.0	0.50	1		07/25/23 19:47		
Chloroform	ND	ug/L	5.0	0.50	1		07/25/23 19:47		
Chloromethane	ND	ug/L	5.0	0.53	1		07/25/23 19:47		
2-Chlorotoluene	ND	ug/L	5.0	0.42	1		07/25/23 19:47		
4-Chlorotoluene	ND	ug/L	5.0	0.41	1		07/25/23 19:47		
Dibromochloromethane	ND	ug/L	5.0	0.61	1		07/25/23 19:47		
1,2-Dibromoethane (EDB)	ND	ug/L	5.0	0.68	1		07/25/23 19:47		
Dibromomethane	ND	ug/L	5.0	1.1	1		07/25/23 19:47		
1,2-Dichlorobenzene	ND	ug/L	5.0	0.46	1		07/25/23 19:47	95-50-1	
1,3-Dichlorobenzene	ND	ug/L	5.0	0.43	1		07/25/23 19:47	541-73-1	
1,4-Dichlorobenzene	ND	ug/L	5.0	0.40	1		07/25/23 19:47	106-46-7	

Project: GE Indy
Pace Project No.: 50349809

Date: 08/04/2023 05:01 PM

Sample: MW-428-071923	Lab ID:	50349809001	Collected	d: 07/19/23	3 14:50	Received: 07	7/20/23 16:45 I	Matrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
3260 MSV Indiana	Analytical I	Method: EPA 5	030/8260						
	•	tical Services		lis					
rans-1,4-Dichloro-2-butene	ND	ug/L	100	1.8	1		07/25/23 19:4	7 110-57-6	
Dichlorodifluoromethane	ND	ug/L	5.0	1.1	1		07/25/23 19:4		
1,1-Dichloroethane	ND	ug/L	5.0	0.42	1		07/25/23 19:4		
1,2-Dichloroethane	ND	ug/L	5.0	0.61	1		07/25/23 19:4		
I,1-Dichloroethene	ND	ug/L	5.0	0.55	1		07/25/23 19:4		
cis-1,2-Dichloroethene	ND	ug/L	5.0	0.67	1		07/25/23 19:4		
rans-1,2-Dichloroethene	ND	ug/L	5.0	0.51	1		07/25/23 19:4		
,2-Dichloropropane	ND	ug/L	5.0	0.64	1		07/25/23 19:4		
1,3-Dichloropropane	ND	ug/L	5.0	0.59	1		07/25/23 19:4		
2,2-Dichloropropane	ND	ug/L	5.0	0.49	1		07/25/23 19:4		
,1-Dichloropropene	ND ND	ug/L	5.0	0.49	1		07/25/23 19:4		
cis-1,3-Dichloropropene	ND ND	ug/L ug/L	5.0	0.37	1			7 10061-01-5	
	ND ND	-	5.0	0.32	1			7 10061-01-5	
rans-1,3-Dichloropropene Ethylbenzene	ND ND	ug/L	5.0 5.0	0.30	1		07/25/23 19:4		
•		ug/L			1				
Ethyl methacrylate	ND	ug/L	100	0.94			07/25/23 19:4		
lexachloro-1,3-butadiene	ND	ug/L	5.0	0.48	1		07/25/23 19:4		
n-Hexane	ND	ug/L	5.0	0.57	1		07/25/23 19:4		
2-Hexanone	ND	ug/L	25.0	3.0	1		07/25/23 19:4		
odomethane	ND	ug/L	10.0	0.28	1		07/25/23 19:4		
sopropylbenzene (Cumene)	ND	ug/L	5.0	0.29	1		07/25/23 19:4		
o-Isopropyltoluene	ND	ug/L	5.0	0.34	1		07/25/23 19:4		
Methylene Chloride	ND	ug/L	5.0	3.2	1		07/25/23 19:4		
-Methylnaphthalene	ND	ug/L	10.0	0.45	1		07/25/23 19:4		
2-Methylnaphthalene	ND	ug/L	10.0	0.46	1		07/25/23 19:4		
I-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	2.8	1		07/25/23 19:4		
Methyl-tert-butyl ether	ND	ug/L	4.0	0.56	1		07/25/23 19:4		
Naphthalene	ND	ug/L	1.2	0.44	1		07/25/23 19:4		
n-Propylbenzene	ND	ug/L	5.0	0.36	1		07/25/23 19:4		
Styrene	ND	ug/L	5.0	0.40	1		07/25/23 19:4		
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.41	1		07/25/23 19:4	7 630-20-6	
,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.65	1		07/25/23 19:4	7 79-34-5	
Tetrachloroethene	ND	ug/L	5.0	0.38	1		07/25/23 19:4	7 127-18-4	
Toluene	ND	ug/L	5.0	0.34	1		07/25/23 19:4	7 108-88-3	
,2,3-Trichlorobenzene	ND	ug/L	5.0	0.46	1		07/25/23 19:4	7 87-61-6	
,2,4-Trichlorobenzene	ND	ug/L	5.0	0.51	1		07/25/23 19:4	7 120-82-1	
,1,1-Trichloroethane	6.4	ug/L	5.0	0.57	1		07/25/23 19:4	7 71-55-6	
,1,2-Trichloroethane	ND	ug/L	5.0	0.81	1		07/25/23 19:4	7 79-00-5	
richloroethene	ND	ug/L	5.0	0.65	1		07/25/23 19:4	7 79-01-6	
Trichlorofluoromethane	ND	ug/L	5.0	0.70	1		07/25/23 19:4	7 75-69-4	
,2,3-Trichloropropane	ND	ug/L	5.0	1.2	1		07/25/23 19:4	7 96-18-4	
,2,4-Trimethylbenzene	ND	ug/L	5.0	0.41	1		07/25/23 19:4	7 95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.36	1		07/25/23 19:4	7 108-67-8	
/inyl acetate	ND	ug/L	50.0	0.84	1		07/25/23 19:4	7 108-05-4	
/inyl chloride	33.3	ug/L	2.0	0.53	1		07/25/23 19:4		
Kylene (Total)	ND	ug/L	10.0	0.48	1		07/25/23 19:4		

Project: GE Indy
Pace Project No.: 50349809

Date: 08/04/2023 05:01 PM

Sample: MW-428-071923	Lab ID:	50349809001	Collected	d: 07/19/2	3 14:50	Received: 07	7/20/23 16:45 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Anal	ytical Services	- Indianapo	lis					
Surrogates									
Dibromofluoromethane (S)	126	%.	82-128		1		07/25/23 19:47	1868-53-7	
4-Bromofluorobenzene (S)	112	%.	79-124		1		07/25/23 19:47	460-00-4	
Toluene-d8 (S)	100	%.	73-122		1		07/25/23 19:47	2037-26-5	
353.2 Nitrogen, NO2/NO3 unpres	Analytical	Method: EPA 3	53.2						
	Pace Anal	ytical Services	- Indianapo	lis					
Nitrogen, NO2 plus NO3	ND	mg/L	0.10	0.011	1		07/20/23 22:44		
Nitrogen, Nitrate	ND	mg/L	0.10	0.011	1		07/20/23 22:44	14797-55-8	
5310C TOC	Analytical	Method: SM 53	310C						
	Pace Anal	ytical Services	- Indianapo	lis					
Total Organic Carbon	5230	ug/L	1000	236	1		07/25/23 04:36	7440-44-0	

Project: GE Indy
Pace Project No.: 50349809

Date: 08/04/2023 05:01 PM

Sample: MW-418D-071923	Lab ID: 503	349809002	Collected	d: 07/19/23	12:20	Received: 07/	20/23 16:45 N	latrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
300.0 IC Anions 28 Days	Analytical Me	thod: EPA 30	0.00						
·	Pace Analytic	al Services -	Indianapol	is					
Sulfate	354	ug/L	250	190	1		07/28/23 00:01	14808-79-8	
Indicator Gases Water LHC	Analytical Me	thod: AM200	SAX						
	Pace Analytic	al Gulf Coas	t						
Methane	8900	ug/L	5.0	2.0	1		07/27/23 08:12	74-82-8	
Ethane	36	ug/L	1.0	0.17	1		07/27/23 08:12	2 74-84-0	
Ethene	53	ug/L	1.0	0.24	1		07/27/23 08:12	2 74-85-1	
n-Propane	ND	ug/L	1.0	0.29	1		07/27/23 08:12	2 74-98-6	
Propylene		ug/L	1.0	0.31	1		07/27/23 08:12	2 115-07-1	
Isobutane		ug/L	2.0	0.065	1		07/27/23 08:12		
n-Butane		ug/L	2.0	0.54	1		07/27/23 08:12		
6010 MET ICP, Dissolved	Analytical Me	thod: FPA 60	010 Prenar	ation Meth	nd: FPA	3010			
out met for, bissoived	Pace Analytic		•		Ju. 217				
Iron, Dissolved	14600	ug/L	100	28.6	1	07/27/23 01:58	07/27/23 03:26	7439-89-6	
8260 MSV Indiana	Analytical Me	thod: EPA 50	030/8260						
	Pace Analytic			is					
Acetone	ND	ug/L	100	8.9	1		07/24/23 16:37	67-64-1	
Acrolein		ug/L	50.0	12.7	1		07/24/23 16:37		
Acrylonitrile		ug/L	100	2.2	1		07/24/23 16:37		
Benzene		ug/L	5.0	0.39	1		07/24/23 16:37		
Bromobenzene		ug/L	5.0	0.50	1		07/24/23 16:37		
		-							
Bromochloromethane		ug/L	5.0	0.43	1		07/24/23 16:37		
Bromodichloromethane		ug/L	5.0	0.57	1		07/24/23 16:37		
Bromoform		ug/L	5.0	0.73	1		07/24/23 16:37		
Bromomethane		ug/L	5.0	0.57	1		07/24/23 16:37		
2-Butanone (MEK)	ND	ug/L	25.0	4.7	1		07/24/23 16:37	78-93-3	
n-Butylbenzene	ND	ug/L	5.0	0.38	1		07/24/23 16:37	' 104-51-8	
sec-Butylbenzene	ND	ug/L	5.0	0.32	1		07/24/23 16:37	135-98-8	
tert-Butylbenzene	ND	ug/L	5.0	0.35	1		07/24/23 16:37	98-06-6	
Carbon disulfide	ND	ug/L	10.0	0.83	1		07/24/23 16:37	75-15-0	
Carbon tetrachloride		ug/L	5.0	0.40	1		07/24/23 16:37	7 56-23-5	
Chlorobenzene		ug/L	5.0	0.36	1		07/24/23 16:37	108-90-7	
Chloroethane		ug/L	5.0	0.55	1		07/24/23 16:37		
Chloroform		ug/L	5.0	0.44	1		07/24/23 16:37		
Chloromethane		ug/L	5.0	0.50	1		07/24/23 16:37		
		•							
2-Chlorotoluene		ug/L	5.0	0.38	1		07/24/23 16:37		
4-Chlorotoluene		ug/L	5.0	0.40	1		07/24/23 16:37		
Dibromochloromethane		ug/L	5.0	0.56	1		07/24/23 16:37		
1,2-Dibromoethane (EDB)	ND	ug/L	5.0	0.55	1		07/24/23 16:37	106-93-4	
Dibromomethane	ND	ug/L	5.0	0.76	1		07/24/23 16:37	74-95-3	
1,2-Dichlorobenzene	ND	ug/L	5.0	0.45	1		07/24/23 16:37	95-50-1	
1,3-Dichlorobenzene		ug/L	5.0	0.39	1		07/24/23 16:37	7 541-73-1	
1,4-Dichlorobenzene		ug/L	5.0	0.43	1		07/24/23 16:37		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: GE Indy
Pace Project No.: 50349809

Date: 08/04/2023 05:01 PM

Sample: MW-418D-071923	Lab ID:	50349809002	Collected	d: 07/19/23	3 12:20	Received: 07	7/20/23 16:45	Matrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
3260 MSV Indiana	Analytical I	Method: EPA 50	030/8260						
200 mov malana	•	ytical Services		lis					
rans-1,4-Dichloro-2-butene	ND	ug/L	100	0.72	1		07/24/23 16:3	37 110-57-6	
Dichlorodifluoromethane	ND	ug/L	5.0	0.60	1		07/24/23 16:3		
1,1-Dichloroethane	ND	ug/L	5.0	0.46	1		07/24/23 16:3		
,2-Dichloroethane	ND	ug/L	5.0	0.54	1		07/24/23 16:3		
1,1-Dichloroethene	ND	ug/L	5.0	0.46	1		07/24/23 16:3		
cis-1,2-Dichloroethene	ND	ug/L	5.0	0.53	1		07/24/23 16:3		
rans-1,2-Dichloroethene	ND ND	ug/L	5.0	0.35	1		07/24/23 16:3		
,2-Dichloropropane	ND	ug/L	5.0	0.55	1		07/24/23 16:3		
1,3-Dichloropropane	ND	ug/L	5.0	0.49	1		07/24/23 16:3		
2,2-Dichloropropane	ND	ug/L	5.0	0.43	1		07/24/23 16:3		
1,1-Dichloropropene	ND ND	ug/L ug/L	5.0	0.62	1		07/24/23 16:3		
· ·	ND ND	-	5.0	0.50	1			37 10061-01-5	
cis-1,3-Dichloropropene	ND ND	ug/L		0.50	1			37 10061-01-3 37 10061-02-6	
rans-1,3-Dichloropropene		ug/L	5.0						
Ethylbenzene	ND	ug/L	5.0	0.35	1		07/24/23 16:3		
Ethyl methacrylate	ND	ug/L	100	0.64	1		07/24/23 16:3		
lexachloro-1,3-butadiene	ND	ug/L	5.0	0.46	1		07/24/23 16:3		
i-Hexane	ND	ug/L	5.0	0.46	1		07/24/23 16:3		
?-Hexanone	ND	ug/L	25.0	3.0	1		07/24/23 16:3		
odomethane	ND	ug/L	10.0	0.31	1		07/24/23 16:3		
sopropylbenzene (Cumene)	ND	ug/L	5.0	0.34	1		07/24/23 16:3		
-Isopropyltoluene	ND	ug/L	5.0	0.36	1		07/24/23 16:3		
Methylene Chloride	ND	ug/L	5.0	2.2	1		07/24/23 16:3		
-Methylnaphthalene	ND	ug/L	10.0	0.61	1		07/24/23 16:3		
2-Methylnaphthalene	ND	ug/L	10.0	0.44	1		07/24/23 16:3	37 91-57-6	
I-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	2.5	1		07/24/23 16:3	37 108-10-1	
Methyl-tert-butyl ether	ND	ug/L	4.0	0.48	1		07/24/23 16:3	37 1634-04-4	
Naphthalene	ND	ug/L	1.2	0.42	1		07/24/23 16:3	37 91-20-3	
n-Propylbenzene	ND	ug/L	5.0	0.34	1		07/24/23 16:3	37 103-65-1	
Styrene	ND	ug/L	5.0	0.40	1		07/24/23 16:3	37 100-42-5	
,1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.50	1		07/24/23 16:3	37 630-20-6	
,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.52	1		07/24/23 16:3	79-34-5	
Tetrachloroethene	ND	ug/L	5.0	0.32	1		07/24/23 16:3	37 127-18-4	
Toluene	ND	ug/L	5.0	0.34	1		07/24/23 16:3	7 108-88-3	
,2,3-Trichlorobenzene	ND	ug/L	5.0	0.38	1		07/24/23 16:3	87 - 87 - 61 - 6	
,2,4-Trichlorobenzene	ND	ug/L	5.0	0.45	1		07/24/23 16:3	37 120-82-1	
,1,1-Trichloroethane	ND	ug/L	5.0	0.47	1		07/24/23 16:3	37 71-55-6	
,1,2-Trichloroethane	ND	ug/L	5.0	0.78	1		07/24/23 16:3	79-00-5	
richloroethene	ND	ug/L	5.0	0.70	1		07/24/23 16:3	37 79-01-6	
richlorofluoromethane	ND	ug/L	5.0	0.62	1		07/24/23 16:3		
,2,3-Trichloropropane	ND	ug/L	5.0	0.82	1		07/24/23 16:3		
,2,4-Trimethylbenzene	ND	ug/L	5.0	0.35	1		07/24/23 16:3		
,3,5-Trimethylbenzene	ND	ug/L	5.0	0.30	1		07/24/23 16:3		
/inyl acetate	ND	ug/L	50.0	0.96	1		07/24/23 16:3		
/inyl chloride	190	ug/L	2.0	0.59	1		07/24/23 16:3		
Kylene (Total)	ND	ug/L ug/L	10.0	0.35	1			37 1330-20-7	

Project: GE Indy
Pace Project No.: 50349809

Date: 08/04/2023 05:01 PM

Sample: MW-418D-071923	Lab ID:	50349809002	Collected	d: 07/19/2	3 12:20	Received: 07	/20/23 16:45 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qual
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Anal	ytical Services	- Indianapo	is					
Surrogates									
Dibromofluoromethane (S)	103	%.	82-128		1		07/24/23 16:37	1868-53-7	
4-Bromofluorobenzene (S)	103	%.	79-124		1		07/24/23 16:37	460-00-4	
Toluene-d8 (S)	97	%.	73-122		1		07/24/23 16:37	2037-26-5	
353.2 Nitrogen, NO2/NO3 unpres	Analytical	Method: EPA 3	53.2						
-	Pace Anal	ytical Services	- Indianapo	is					
Nitrogen, NO2 plus NO3	ND	mg/L	0.10	0.011	1		07/20/23 22:37		
Nitrogen, Nitrate	ND	mg/L	0.10	0.011	1		07/20/23 22:37	14797-55-8	
5310C TOC	Analytical	Method: SM 53	310C						
	-	ytical Services		is					
Total Organic Carbon	4290	ug/L	4000	944	4		07/25/23 04:51	7440-44-0	

Project: GE Indy
Pace Project No.: 50349809

Date: 08/04/2023 05:01 PM

Sample: MW-331-072023	Lab ID:	50349809003	Collecte	d: 07/20/23	3 09:00	Received: 07	7/20/23 16:45 N	Matrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 50	030/8260						
	•	lytical Services -		olis					
Acetone	ND	ug/L	100	8.9	1		07/24/23 17:1	1 67-64-1	
Acrolein	ND	ug/L	50.0	12.7	1		07/24/23 17:1		
Acrylonitrile	ND	ug/L	100	2.2	1		07/24/23 17:1		
Benzene	ND	ug/L	5.0	0.39	1		07/24/23 17:1		
Bromobenzene	ND	ug/L	5.0	0.50	1		07/24/23 17:1		
Bromochloromethane	ND	ug/L	5.0	0.43	1		07/24/23 17:1		
Bromodichloromethane	ND	ug/L	5.0	0.43	1		07/24/23 17:1		
Bromoform	ND ND	ug/L	5.0	0.73	1		07/24/23 17:1		
Bromomethane	ND ND	ug/L ug/L	5.0	0.73	1		07/24/23 17:1		
	ND ND			4.7	1		07/24/23 17:1		
2-Butanone (MEK)		ug/L	25.0		1				
n-Butylbenzene	ND	ug/L	5.0	0.38			07/24/23 17:1		
sec-Butylbenzene	ND	ug/L	5.0	0.32	1		07/24/23 17:1		
tert-Butylbenzene	ND	ug/L	5.0	0.35	1		07/24/23 17:1		
Carbon disulfide	ND	ug/L	10.0	0.83	1		07/24/23 17:1		
Carbon tetrachloride	ND	ug/L	5.0	0.40	1		07/24/23 17:1		
Chlorobenzene	ND	ug/L	5.0	0.36	1		07/24/23 17:1		
Chloroethane	610	ug/L	50.0	5.0	10		07/25/23 20:2		
Chloroform	ND	ug/L	5.0	0.44	1		07/24/23 17:1		
Chloromethane	ND	ug/L	5.0	0.50	1		07/24/23 17:1		
2-Chlorotoluene	ND	ug/L	5.0	0.38	1		07/24/23 17:1		
4-Chlorotoluene	ND	ug/L	5.0	0.40	1		07/24/23 17:1	1 106-43-4	
Dibromochloromethane	ND	ug/L	5.0	0.56	1		07/24/23 17:1	1 124-48-1	
1,2-Dibromoethane (EDB)	ND	ug/L	5.0	0.55	1		07/24/23 17:1	1 106-93-4	
Dibromomethane	ND	ug/L	5.0	0.76	1		07/24/23 17:1	1 74-95-3	
1,2-Dichlorobenzene	ND	ug/L	5.0	0.45	1		07/24/23 17:1	1 95-50-1	
1,3-Dichlorobenzene	ND	ug/L	5.0	0.39	1		07/24/23 17:1	1 541-73-1	
1,4-Dichlorobenzene	ND	ug/L	5.0	0.43	1		07/24/23 17:1	1 106-46-7	
trans-1,4-Dichloro-2-butene	ND	ug/L	100	0.72	1		07/24/23 17:1	1 110-57-6	
Dichlorodifluoromethane	ND	ug/L	5.0	0.60	1		07/24/23 17:1	1 75-71-8	
1,1-Dichloroethane	6.2	ug/L	5.0	0.46	1		07/24/23 17:1	1 75-34-3	
1,2-Dichloroethane	ND	ug/L	5.0	0.54	1		07/24/23 17:1	1 107-06-2	
1,1-Dichloroethene	ND	ug/L	5.0	0.46	1		07/24/23 17:1	1 75-35-4	
cis-1,2-Dichloroethene	ND	ug/L	5.0	0.53	1		07/24/23 17:1		
rans-1,2-Dichloroethene	ND	ug/L	5.0	0.35	1		07/24/23 17:1		
1,2-Dichloropropane	ND	ug/L	5.0	0.71	1		07/24/23 17:1		
1,3-Dichloropropane	ND	ug/L	5.0	0.49	1		07/24/23 17:1		
2,2-Dichloropropane	ND	ug/L	5.0	0.62	1		07/24/23 17:1		
1,1-Dichloropropene	ND	ug/L	5.0	0.64	1		07/24/23 17:1		
cis-1,3-Dichloropropene	ND	ug/L	5.0	0.50	1			1 10061-01-5	
rans-1,3-Dichloropropene	ND ND	ug/L	5.0	0.51	1			1 10061-01-6	
Ethylbenzene	ND ND	ug/L ug/L	5.0	0.31	1		07/24/23 17:1		
Ethyl methacrylate		ug/L ug/L		0.33	1		07/24/23 17:1		
Emyr memacrylate Hexachloro-1,3-butadiene	ND ND	•	100	0.64	1		07/24/23 17:1		
•		ug/L	5.0						
n-Hexane	ND	ug/L	5.0	0.46	1		07/24/23 17:1		
2-Hexanone	ND	ug/L	25.0	3.0	1		07/24/23 17:1	1 591-78-6	

Project: GE Indy
Pace Project No.: 50349809

Date: 08/04/2023 05:01 PM

Sample: MW-331-072023	Lab ID:	50349809003	Collected	1: 07/20/23	3 09:00	Received: 07	7/20/23 16:45 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF ———	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Ana	lytical Services	- Indianapol	is					
lodomethane	ND	ug/L	10.0	0.31	1		07/24/23 17:11	74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	5.0	0.34	1		07/24/23 17:11	98-82-8	
p-Isopropyltoluene	ND	ug/L	5.0	0.36	1		07/24/23 17:11	99-87-6	
Methylene Chloride	ND	ug/L	5.0	2.2	1		07/24/23 17:11	75-09-2	
1-Methylnaphthalene	ND	ug/L	10.0	0.61	1		07/24/23 17:11	90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	0.44	1		07/24/23 17:11	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	2.5	1		07/24/23 17:11	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	4.0	0.48	1		07/24/23 17:11	1634-04-4	
Naphthalene	ND	ug/L	1.2	0.42	1		07/24/23 17:11	91-20-3	
n-Propylbenzene	ND	ug/L	5.0	0.34	1		07/24/23 17:11	103-65-1	
Styrene	ND	ug/L	5.0	0.40	1		07/24/23 17:11	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.50	1		07/24/23 17:11	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.52	1		07/24/23 17:11	79-34-5	
Tetrachloroethene	ND	ug/L	5.0	0.32	1		07/24/23 17:11	127-18-4	
Toluene	ND	ug/L	5.0	0.34	1		07/24/23 17:11	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	0.38	1		07/24/23 17:11	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	5.0	0.45	1		07/24/23 17:11		
1,1,1-Trichloroethane	ND	ug/L	5.0	0.47	1		07/24/23 17:11	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	5.0	0.78	1		07/24/23 17:11	79-00-5	
Trichloroethene	ND	ug/L	5.0	0.70	1		07/24/23 17:11	79-01-6	
Trichlorofluoromethane	ND	ug/L	5.0	0.62	1		07/24/23 17:11	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	5.0	0.82	1		07/24/23 17:11	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/L	5.0	0.35	1		07/24/23 17:11	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.30	1		07/24/23 17:11	108-67-8	
Vinyl acetate	ND	ug/L	50.0	0.96	1		07/24/23 17:11	108-05-4	
Vinyl chloride	2.5	ug/L	2.0	0.59	1		07/24/23 17:11	75-01-4	
Xylene (Total)	ND	ug/L	10.0	0.35	1		07/24/23 17:11	1330-20-7	
Surrogates		ŭ							
Dibromofluoromethane (S)	104	%.	82-128		1		07/24/23 17:11	1868-53-7	
4-Bromofluorobenzene (S)	104	%.	79-124		1		07/24/23 17:11	460-00-4	
Toluene-d8 (S)	98	%.	73-122		1		07/24/23 17:11	2037-26-5	

Project: GE Indy
Pace Project No.: 50349809

Date: 08/04/2023 05:01 PM

Sample: MW-311-072023	Lab ID:	50349809004	Collected	d: 07/20/23	3 09:30	Received: 07	/20/23 16:45	Matrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qua
3260 MSV Indiana	Analytical N	/lethod: EPA 50	030/8260						
	•	tical Services		lis					
Acetone	ND	ug/L	1000	88.9	10		07/24/23 17:4	45 67-64-1	
Acrolein	ND	ug/L	500	127	10		07/24/23 17:4		
Acrylonitrile	ND	ug/L	1000	22.1	10		07/24/23 17:4		
Benzene	ND	ug/L	50.0	3.9	10		07/24/23 17:4		
3romobenzene	ND	ug/L	50.0	5.0	10		07/24/23 17:4		
Bromochloromethane	ND	ug/L	50.0	4.3	10		07/24/23 17:4		
Bromodichloromethane	ND	ug/L	50.0	5.7	10		07/24/23 17:4		
Bromoform	ND	ug/L	50.0	7.3	10		07/24/23 17:4		
Bromomethane	ND	ug/L	50.0	5.7	10		07/24/23 17:4		
2-Butanone (MEK)	ND	ug/L	250	46.6	10		07/24/23 17:-		
n-Butylbenzene	ND ND	ug/L	50.0	3.8	10		07/24/23 17:4		
sec-Butylbenzene	ND ND	ug/L ug/L	50.0	3.2	10		07/24/23 17:4		
ert-Butylbenzene	ND	ug/L	50.0	3.5	10		07/24/23 17:4		
Carbon disulfide	ND	ug/L	100	8.3	10		07/24/23 17:4		
Carbon tetrachloride	ND ND	ug/L	50.0	4.0	10		07/24/23 17:4		
Chlorobenzene	ND ND	-	50.0	3.6	10		07/24/23 17:4		
Chloroethane		ug/L		5.5					
Chloroform	411 ND	ug/L	50.0 50.0	5.5 4.4	10 10		07/24/23 17:4 07/24/23 17:4		
		ug/L			10				
Chloromethane	ND	ug/L	50.0	5.0	10		07/24/23 17:4		
2-Chlorotoluene	ND	ug/L	50.0	3.8			07/24/23 17:4		
4-Chlorotoluene	ND	ug/L	50.0	4.0	10		07/24/23 17:4		
Dibromochloromethane	ND	ug/L	50.0	5.6	10		07/24/23 17:4		
1,2-Dibromoethane (EDB)	ND	ug/L	50.0	5.5	10		07/24/23 17:4		
Dibromomethane	ND	ug/L	50.0	7.6	10		07/24/23 17:4		
1,2-Dichlorobenzene	ND	ug/L	50.0	4.5	10		07/24/23 17:4		
1,3-Dichlorobenzene	ND	ug/L	50.0	3.9	10		07/24/23 17:4		
1,4-Dichlorobenzene	ND	ug/L	50.0	4.3	10		07/24/23 17:4		
rans-1,4-Dichloro-2-butene	ND	ug/L	1000	7.2	10		07/24/23 17:4		
Dichlorodifluoromethane	ND	ug/L	50.0	6.0	10		07/24/23 17:4		
1,1-Dichloroethane	ND	ug/L	50.0	4.6	10		07/24/23 17:4		
1,2-Dichloroethane	ND	ug/L	50.0	5.4	10		07/24/23 17:4		
I,1-Dichloroethene	ND	ug/L	50.0	4.6	10		07/24/23 17:4		
cis-1,2-Dichloroethene	ND	ug/L	50.0	5.3	10		07/24/23 17:4		
rans-1,2-Dichloroethene	ND	ug/L	50.0	3.5	10		07/24/23 17:4		
1,2-Dichloropropane	ND	ug/L	50.0	7.1	10		07/24/23 17:4		
,3-Dichloropropane	ND	ug/L	50.0	4.9	10		07/24/23 17:4		
2,2-Dichloropropane	ND	ug/L	50.0	6.2	10		07/24/23 17:4		
,1-Dichloropropene	ND	ug/L	50.0	6.4	10		07/24/23 17:4		
cis-1,3-Dichloropropene	ND	ug/L	50.0	5.0	10			45 10061-01-5	
rans-1,3-Dichloropropene	ND	ug/L	50.0	5.1	10			45 10061-02-6	
Ethylbenzene	ND	ug/L	50.0	3.5	10		07/24/23 17:4	45 100-41-4	
Ethyl methacrylate	ND	ug/L	1000	6.4	10		07/24/23 17:4		
Hexachloro-1,3-butadiene	ND	ug/L	50.0	4.6	10		07/24/23 17:4	45 87-68-3	
n-Hexane	ND	ug/L	50.0	4.6	10		07/24/23 17:4	45 110-54-3	
2-Hexanone	ND	ug/L	250	30.2	10		07/24/23 17:4	45 591-78-6	

Project: GE Indy
Pace Project No.: 50349809

Date: 08/04/2023 05:01 PM

Sample: MW-311-072023	Lab ID:	50349809004	Collected	d: 07/20/23	3 09:30	Received: 07	7/20/23 16:45 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Ana	lytical Services	- Indianapo	lis					
lodomethane	ND	ug/L	100	3.1	10		07/24/23 17:45	74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	50.0	3.4	10		07/24/23 17:45	98-82-8	
p-Isopropyltoluene	ND	ug/L	50.0	3.6	10		07/24/23 17:45	99-87-6	
Methylene Chloride	ND	ug/L	50.0	22.0	10		07/24/23 17:45	75-09-2	
1-Methylnaphthalene	ND	ug/L	100	6.1	10		07/24/23 17:45	90-12-0	
2-Methylnaphthalene	ND	ug/L	100	4.4	10		07/24/23 17:45	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	250	25.3	10		07/24/23 17:45	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	40.0	4.8	10		07/24/23 17:45	1634-04-4	
Naphthalene	ND	ug/L	12.0	4.2	10		07/24/23 17:45	91-20-3	
n-Propylbenzene	ND	ug/L	50.0	3.4	10		07/24/23 17:45	103-65-1	
Styrene	ND	ug/L	50.0	4.0	10		07/24/23 17:45	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	50.0	5.0	10		07/24/23 17:45	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	50.0	5.2	10		07/24/23 17:45	79-34-5	
Tetrachloroethene	ND	ug/L	50.0	3.2	10		07/24/23 17:45	127-18-4	
Toluene	ND	ug/L	50.0	3.4	10		07/24/23 17:45	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	50.0	3.8	10		07/24/23 17:45	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	50.0	4.5	10		07/24/23 17:45	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	50.0	4.7	10		07/24/23 17:45	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	50.0	7.8	10		07/24/23 17:45	79-00-5	
Trichloroethene	ND	ug/L	50.0	7.0	10		07/24/23 17:45	79-01-6	
Trichlorofluoromethane	ND	ug/L	50.0	6.2	10		07/24/23 17:45	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	50.0	8.2	10		07/24/23 17:45	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/L	50.0	3.5	10		07/24/23 17:45	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	50.0	3.0	10		07/24/23 17:45	108-67-8	
Vinyl acetate	ND	ug/L	500	9.6	10		07/24/23 17:45	108-05-4	
Vinyl chloride	ND	ug/L	20.0	5.9	10		07/24/23 17:45		
Xylene (Total)	ND	ug/L	100	3.5	10		07/24/23 17:45		
Surrogates		- 3. –			-				
Dibromofluoromethane (S)	101	%.	82-128		10		07/24/23 17:45	1868-53-7	D4
4-Bromofluorobenzene (S)	102	%.	79-124		10		07/24/23 17:45	460-00-4	
Toluene-d8 (S)	98	%.	73-122		10		07/24/23 17:45	2037-26-5	

Project: GE Indy
Pace Project No.: 50349809

Date: 08/04/2023 05:01 PM

Sample: W-9-072023	Lab ID:	50349809005	Collected:	07/20/23	10:15	Received: 07	7/20/23 16:45 N	latrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
ndicator Gases Water LHC	Analytica	Method: AM20	GAX						
	Pace Ana	lytical Gulf Coa	st						
Methane	20	ug/L	5.0	2.0	1		07/27/23 08:26	3 74-82-8	
Ethane	ND	ug/L	1.0	0.17	1		07/27/23 08:26		
Ethene	ND	ug/L	1.0	0.24	1		07/27/23 08:26		
n-Propane	ND	ug/L	1.0	0.29	1		07/27/23 08:26		
Propylene	ND	ug/L	1.0	0.31	1		07/27/23 08:26		
sobutane	ND	ug/L	2.0	0.065	1		07/27/23 08:26		
n-Butane	ND	ug/L	2.0	0.54	1		07/27/23 08:26		
8260 MSV Indiana		Method: EPA 5		c					
		•	•						
Acetone	ND	ug/L	100	8.9	1		07/24/23 18:53		
Acrolein	ND	ug/L	50.0	12.7	1		07/24/23 18:53	3 107-02-8	
Acrylonitrile	ND	ug/L	100	2.2	1		07/24/23 18:53	3 107-13-1	
Benzene	ND	ug/L	5.0	0.39	1		07/24/23 18:53	3 71-43-2	
Bromobenzene	ND	ug/L	5.0	0.50	1		07/24/23 18:53	3 108-86-1	
Bromochloromethane	ND	ug/L	5.0	0.43	1		07/24/23 18:53	3 74-97-5	
Bromodichloromethane	ND	ug/L	5.0	0.57	1		07/24/23 18:53	3 75-27-4	
Bromoform	ND	ug/L	5.0	0.73	1		07/24/23 18:53	3 75-25-2	
Bromomethane	ND	ug/L	5.0	0.57	1		07/24/23 18:53	3 74-83-9	
2-Butanone (MEK)	ND	ug/L	25.0	4.7	1		07/24/23 18:53	3 78-93-3	
n-Butylbenzene	ND	ug/L	5.0	0.38	1		07/24/23 18:53	3 104-51-8	
sec-Butylbenzene	ND	ug/L	5.0	0.32	1		07/24/23 18:53	3 135-98-8	
ert-Butylbenzene	ND	ug/L	5.0	0.35	1		07/24/23 18:53	3 98-06-6	
Carbon disulfide	ND	ug/L	10.0	0.83	1		07/24/23 18:53	3 75-15-0	
Carbon tetrachloride	ND	ug/L	5.0	0.40	1		07/24/23 18:53		
Chlorobenzene	ND	ug/L	5.0	0.36	1		07/24/23 18:53		
Chloroethane	ND	ug/L	5.0	0.55	1		07/24/23 18:53		
Chloroform	ND	ug/L	5.0	0.44	1		07/24/23 18:53		
Chloromethane	ND	ug/L	5.0	0.50	1		07/24/23 18:53		
2-Chlorotoluene	ND	ug/L	5.0	0.38	1		07/24/23 18:53		
I-Chlorotoluene	ND ND	ug/L	5.0	0.40	1		07/24/23 18:53		
Dibromochloromethane	ND ND	ug/L	5.0	0.56	1		07/24/23 18:53		
1,2-Dibromoethane (EDB)	ND ND	ug/L ug/L	5.0	0.55	1		07/24/23 18:53		
, ,	ND ND	-		0.33			07/24/23 18:53		
Dibromomethane		ug/L	5.0		1				
I,2-Dichlorobenzene	ND	ug/L	5.0	0.45	1		07/24/23 18:53		
,3-Dichlorobenzene	ND	ug/L	5.0	0.39	1		07/24/23 18:53		
,4-Dichlorobenzene	ND	ug/L	5.0	0.43	1		07/24/23 18:53		
rans-1,4-Dichloro-2-butene	ND	ug/L	100	0.72	1		07/24/23 18:53		
Dichlorodifluoromethane	ND	ug/L	5.0	0.60	1		07/24/23 18:53		
1,1-Dichloroethane	ND	ug/L	5.0	0.46	1		07/24/23 18:53		
1,2-Dichloroethane	ND	ug/L	5.0	0.54	1		07/24/23 18:53		
1,1-Dichloroethene	ND	ug/L	5.0	0.46	1		07/24/23 18:53		
cis-1,2-Dichloroethene	8.8	ug/L	5.0	0.53	1		07/24/23 18:53		
trans-1,2-Dichloroethene	ND	ug/L	5.0	0.35	1		07/24/23 18:53	3 156-60-5	
1,2-Dichloropropane	ND	ug/L	5.0	0.71	1		07/24/23 18:53	3 78-87-5	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: GE Indy
Pace Project No.: 50349809

Date: 08/04/2023 05:01 PM

Sample: W-9-072023	Lab ID:	50349809005	Collecte	d: 07/20/23	3 10:15	Received: 07	7/20/23 16:45	Matrix: Water	
Davarantara	Danulta	l laita	Report	MDI	DE	Duananad	A	CACNE	0
Parameters	Results	Units -	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Ana	lytical Services	- Indianapo	lis					
1,3-Dichloropropane	ND	ug/L	5.0	0.49	1		07/24/23 18:	53 142-28-9	
2,2-Dichloropropane	ND	ug/L	5.0	0.62	1		07/24/23 18:	53 594-20-7	
1,1-Dichloropropene	ND	ug/L	5.0	0.64	1		07/24/23 18:	53 563-58-6	
cis-1,3-Dichloropropene	ND	ug/L	5.0	0.50	1		07/24/23 18:	53 10061-01-5	
rans-1,3-Dichloropropene	ND	ug/L	5.0	0.51	1		07/24/23 18:	53 10061-02-6	
Ethylbenzene	ND	ug/L	5.0	0.35	1		07/24/23 18:	53 100-41-4	
Ethyl methacrylate	ND	ug/L	100	0.64	1		07/24/23 18:	53 97-63-2	
Hexachloro-1,3-butadiene	ND	ug/L	5.0	0.46	1		07/24/23 18:		
n-Hexane	ND	ug/L	5.0	0.46	1		07/24/23 18:		
2-Hexanone	ND	ug/L	25.0	3.0	1			53 591-78-6	
odomethane	ND	ug/L	10.0	0.31	1		07/24/23 18:		
sopropylbenzene (Cumene)	ND	ug/L	5.0	0.34	1		07/24/23 18:		
o-Isopropyltoluene	ND	ug/L	5.0	0.36	1		07/24/23 18:		
Methylene Chloride	ND	ug/L	5.0	2.2	1		07/24/23 18:		
-Methylnaphthalene	ND	ug/L	10.0	0.61	1		07/24/23 18:		
2-Methylnaphthalene	ND	ug/L	10.0	0.44	1		07/24/23 18:		
1-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	2.5	1		07/24/23 18:		
Methyl-tert-butyl ether	ND	ug/L	4.0	0.48	1			53 1634-04-4	
Naphthalene	ND	ug/L	1.2	0.42	1		07/24/23 18:		
n-Propylbenzene	ND	ug/L	5.0	0.42	1		07/24/23 18:		
Styrene	ND ND	ug/L	5.0	0.40	1			53 100-42-5	
1,1,1,2-Tetrachloroethane	ND ND	ug/L	5.0	0.40	1			53 630-20-6	
1,1,2,2-Tetrachloroethane	ND ND	ug/L ug/L	5.0	0.50	1		07/24/23 18:		
Tetrachloroethene	ND ND	-	5.0	0.32	1			53 127-18-4	
Foluene	ND ND	ug/L	5.0 5.0	0.32	1			53 127-16-4	
		ug/L							
1,2,3-Trichlorobenzene	ND	ug/L	5.0	0.38	1		07/24/23 18:		
1,2,4-Trichlorobenzene	ND	ug/L	5.0	0.45	1		07/24/23 18:		
I,1,1-Trichloroethane	ND	ug/L	5.0	0.47	1		07/24/23 18:		
I,1,2-Trichloroethane	ND	ug/L	5.0	0.78	1		07/24/23 18:		
Frichloroethene	ND	ug/L	5.0	0.70	1		07/24/23 18:		
Trichlorofluoromethane	ND	ug/L	5.0	0.62	1		07/24/23 18:		
1,2,3-Trichloropropane	ND	ug/L	5.0	0.82	1		07/24/23 18:		
,2,4-Trimethylbenzene	ND	ug/L	5.0	0.35	1		07/24/23 18:		
I,3,5-Trimethylbenzene	ND	ug/L	5.0	0.30	1			53 108-67-8	
/inyl acetate	ND	ug/L	50.0	0.96	1			53 108-05-4	
/inyl chloride	5.5	ug/L	2.0	0.59	1		07/24/23 18:		
Xylene (Total)	ND	ug/L	10.0	0.35	1		07/24/23 18:	53 1330-20-7	
Surrogates									
Dibromofluoromethane (S)	105	%.	82-128		1			53 1868-53-7	
1-Bromofluorobenzene (S)	104	%.	79-124		1			53 460-00-4	
Toluene-d8 (S)	99	%.	73-122		1		07/24/23 18:	53 2037-26-5	

Project: GE Indy
Pace Project No.: 50349809

Date: 08/04/2023 05:01 PM

Sample: MW-313-072023	Lab ID:	50349809006	Collected	d: 07/20/23	10:25	Received: 07	7/20/23 16:45 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	-	lytical Services		lis					
Acetone	ND	ug/L	100	8.9	1		07/24/23 19:27	67-64-1	
Acrolein	ND	ug/L	50.0	12.7	1		07/24/23 19:27	107-02-8	
Acrylonitrile	ND	ug/L	100	2.2	1		07/24/23 19:27	107-13-1	
Benzene	ND	ug/L	5.0	0.39	1		07/24/23 19:27	71-43-2	
Bromobenzene	ND	ug/L	5.0	0.50	1		07/24/23 19:27		
Bromochloromethane	ND	ug/L	5.0	0.43	1		07/24/23 19:27		
Bromodichloromethane	ND	ug/L	5.0	0.57	1		07/24/23 19:27		
Bromoform	ND	ug/L	5.0	0.73	1		07/24/23 19:27		
Bromomethane	ND	ug/L	5.0	0.57	1		07/24/23 19:27		
2-Butanone (MEK)	ND ND	ug/L	25.0	4.7	1		07/24/23 19:27		
, ,		-			1		07/24/23 19:27		
n-Butylbenzene	ND	ug/L	5.0	0.38					
sec-Butylbenzene	ND	ug/L	5.0	0.32	1		07/24/23 19:27		
ert-Butylbenzene	ND	ug/L	5.0	0.35	1		07/24/23 19:27		
Carbon disulfide	ND	ug/L	10.0	0.83	1		07/24/23 19:27		
Carbon tetrachloride	ND	ug/L	5.0	0.40	1		07/24/23 19:27		
Chlorobenzene	ND	ug/L	5.0	0.36	1		07/24/23 19:27		
Chloroethane	ND	ug/L	5.0	0.55	1		07/24/23 19:27		
Chloroform	ND	ug/L	5.0	0.44	1		07/24/23 19:27		
Chloromethane	ND	ug/L	5.0	0.50	1		07/24/23 19:27	74-87-3	
2-Chlorotoluene	ND	ug/L	5.0	0.38	1		07/24/23 19:27	95-49-8	
1-Chlorotoluene	ND	ug/L	5.0	0.40	1		07/24/23 19:27	106-43-4	
Dibromochloromethane	ND	ug/L	5.0	0.56	1		07/24/23 19:27	124-48-1	
1,2-Dibromoethane (EDB)	ND	ug/L	5.0	0.55	1		07/24/23 19:27	106-93-4	
Dibromomethane	ND	ug/L	5.0	0.76	1		07/24/23 19:27	74-95-3	
1,2-Dichlorobenzene	ND	ug/L	5.0	0.45	1		07/24/23 19:27	95-50-1	
1,3-Dichlorobenzene	ND	ug/L	5.0	0.39	1		07/24/23 19:27	541-73-1	
1,4-Dichlorobenzene	ND	ug/L	5.0	0.43	1		07/24/23 19:27	106-46-7	
rans-1,4-Dichloro-2-butene	ND	ug/L	100	0.72	1		07/24/23 19:27		
Dichlorodifluoromethane	ND	ug/L	5.0	0.60	1		07/24/23 19:27		
1,1-Dichloroethane	5.1	ug/L	5.0	0.46	1		07/24/23 19:27		
1,2-Dichloroethane	ND	ug/L	5.0	0.54	1		07/24/23 19:27		
1,1-Dichloroethene	ND	ug/L	5.0	0.46	1		07/24/23 19:27		
cis-1,2-Dichloroethene	728	ug/L	50.0	6.7	10		07/25/23 20:54		
rans-1,2-Dichloroethene	ND	ug/L	5.0	0.35	1		07/24/23 19:27		
1,2-Dichloropropane	ND	ug/L	5.0	0.33	1		07/24/23 19:27		
• •		•	5.0	0.49			07/24/23 19:27		
,3-Dichloropropane 2,2-Dichloropropane	ND	ug/L			1				
' ' '	ND	ug/L	5.0	0.62	1		07/24/23 19:27		
1,1-Dichloropropene	ND	ug/L	5.0	0.64	1		07/24/23 19:27		
cis-1,3-Dichloropropene	ND	ug/L	5.0	0.50	1		07/24/23 19:27		
rans-1,3-Dichloropropene	ND	ug/L	5.0	0.51	1		07/24/23 19:27		
Ethylbenzene	ND	ug/L	5.0	0.35	1		07/24/23 19:27		
Ethyl methacrylate	ND	ug/L	100	0.64	1		07/24/23 19:27		
Hexachloro-1,3-butadiene	ND	ug/L	5.0	0.46	1		07/24/23 19:27		
n-Hexane	ND	ug/L	5.0	0.46	1		07/24/23 19:27		
2-Hexanone	ND	ug/L	25.0	3.0	1		07/24/23 19:27	591-78-6	

Project: GE Indy
Pace Project No.: 50349809

Date: 08/04/2023 05:01 PM

Sample: MW-313-072023	Lab ID:	50349809006	Collected	d: 07/20/2	3 10:25	Received: 07	7/20/23 16:45 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF ———	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Ana	lytical Services	- Indianapo	lis					
lodomethane	ND	ug/L	10.0	0.31	1		07/24/23 19:27	74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	5.0	0.34	1		07/24/23 19:27	98-82-8	
p-Isopropyltoluene	ND	ug/L	5.0	0.36	1		07/24/23 19:27	99-87-6	
Methylene Chloride	ND	ug/L	5.0	2.2	1		07/24/23 19:27	75-09-2	
1-Methylnaphthalene	ND	ug/L	10.0	0.61	1		07/24/23 19:27	90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	0.44	1		07/24/23 19:27	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	2.5	1		07/24/23 19:27	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	4.0	0.48	1		07/24/23 19:27	1634-04-4	
Naphthalene	ND	ug/L	1.2	0.42	1		07/24/23 19:27	91-20-3	
n-Propylbenzene	ND	ug/L	5.0	0.34	1		07/24/23 19:27	103-65-1	
Styrene	ND	ug/L	5.0	0.40	1		07/24/23 19:27	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.50	1		07/24/23 19:27	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.52	1		07/24/23 19:27	79-34-5	
Tetrachloroethene	ND	ug/L	5.0	0.32	1		07/24/23 19:27	127-18-4	
Toluene	ND	ug/L	5.0	0.34	1		07/24/23 19:27	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	0.38	1		07/24/23 19:27	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	5.0	0.45	1		07/24/23 19:27	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	5.0	0.47	1		07/24/23 19:27	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	5.0	0.78	1		07/24/23 19:27	79-00-5	
Trichloroethene	ND	ug/L	5.0	0.70	1		07/24/23 19:27	79-01-6	
Trichlorofluoromethane	ND	ug/L	5.0	0.62	1		07/24/23 19:27	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	5.0	0.82	1		07/24/23 19:27	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/L	5.0	0.35	1		07/24/23 19:27	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.30	1		07/24/23 19:27	108-67-8	
Vinyl acetate	ND	ug/L	50.0	0.96	1		07/24/23 19:27	108-05-4	
Vinyl chloride	62.2	ug/L	2.0	0.59	1		07/24/23 19:27	75-01-4	
Xylene (Total)	ND	ug/L	10.0	0.35	1		07/24/23 19:27	1330-20-7	
Surrogates		ū							
Dibromofluoromethane (S)	107	%.	82-128		1		07/24/23 19:27	1868-53-7	
4-Bromofluorobenzene (S)	106	%.	79-124		1		07/24/23 19:27	460-00-4	
Toluene-d8 (S)	97	%.	73-122		1		07/24/23 19:27	2037-26-5	

Project: GE Indy
Pace Project No.: 50349809

Date: 08/04/2023 05:01 PM

Sample: MW-112-072023	Lab ID:	50349809007	Collected:	07/20/23	10:35	Received: 07	7/20/23 16:45 N	latrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Ana	lytical Services	- Indianapolis	3					
Acetone	ND	ug/L	500	44.4	5		07/24/23 20:01	67-64-1	
Acrolein	ND	ug/L	250	63.5	5		07/24/23 20:01		
Acrylonitrile	ND	ug/L	500	11.0	5		07/24/23 20:01		
Benzene	ND	ug/L	25.0	1.9	5		07/24/23 20:01		
Bromobenzene	ND	ug/L	25.0	2.5	5		07/24/23 20:01		
Bromochloromethane	ND	ug/L	25.0	2.1	5		07/24/23 20:01		
Bromodichloromethane	ND	ug/L	25.0	2.8	5		07/24/23 20:01		
Bromoform	ND	ug/L	25.0	3.7	5		07/24/23 20:01		
Bromomethane	ND	ug/L	25.0	2.9	5		07/24/23 20:01		
2-Butanone (MEK)	ND ND	ug/L	125	23.3	5		07/24/23 20:01		
n-Butylbenzene	ND ND	ug/L	25.0	1.9	5		07/24/23 20:01		
sec-Butylbenzene	ND ND	ug/L ug/L	25.0	1.6	5		07/24/23 20:01		
ert-Butylbenzene	ND ND	ug/L ug/L	25.0	1.7	5		07/24/23 20:01		
Carbon disulfide	ND ND	-	50.0	4.1	5		07/24/23 20:01		
Carbon disdilide Carbon tetrachloride		ug/L			5 5				
	ND	ug/L	25.0	2.0			07/24/23 20:01		
Chlorobenzene	ND	ug/L	25.0	1.8	5		07/24/23 20:01		
Chloroethane	ND	ug/L	25.0	2.7	5		07/24/23 20:01		
Chloroform	ND	ug/L	25.0	2.2	5		07/24/23 20:01		
Chloromethane	ND	ug/L	25.0	2.5	5		07/24/23 20:01		
2-Chlorotoluene	ND	ug/L	25.0	1.9	5		07/24/23 20:01		
1-Chlorotoluene	ND	ug/L	25.0	2.0	5		07/24/23 20:01		
Dibromochloromethane	ND	ug/L	25.0	2.8	5		07/24/23 20:01		
I,2-Dibromoethane (EDB)	ND	ug/L	25.0	2.7	5		07/24/23 20:01		
Dibromomethane	ND	ug/L	25.0	3.8	5		07/24/23 20:01		
1,2-Dichlorobenzene	ND	ug/L	25.0	2.2	5		07/24/23 20:01		
1,3-Dichlorobenzene	ND	ug/L	25.0	1.9	5		07/24/23 20:01		
1,4-Dichlorobenzene	ND	ug/L	25.0	2.2	5		07/24/23 20:01		
rans-1,4-Dichloro-2-butene	ND	ug/L	500	3.6	5		07/24/23 20:01		
Dichlorodifluoromethane	ND	ug/L	25.0	3.0	5		07/24/23 20:01		
1,1-Dichloroethane	ND	ug/L	25.0	2.3	5		07/24/23 20:01		
1,2-Dichloroethane	ND	ug/L	25.0	2.7	5		07/24/23 20:01		
1,1-Dichloroethene	ND	ug/L	25.0	2.3	5		07/24/23 20:01		
cis-1,2-Dichloroethene	369	ug/L	25.0	2.6	5		07/24/23 20:01		
rans-1,2-Dichloroethene	ND	ug/L	25.0	1.7	5		07/24/23 20:01		
,2-Dichloropropane	ND	ug/L	25.0	3.6	5		07/24/23 20:01	78-87-5	
,3-Dichloropropane	ND	ug/L	25.0	2.4	5		07/24/23 20:01	142-28-9	
2,2-Dichloropropane	ND	ug/L	25.0	3.1	5		07/24/23 20:01		
,1-Dichloropropene	ND	ug/L	25.0	3.2	5		07/24/23 20:01		
cis-1,3-Dichloropropene	ND	ug/L	25.0	2.5	5		07/24/23 20:01		
rans-1,3-Dichloropropene	ND	ug/L	25.0	2.5	5		07/24/23 20:01	10061-02-6	
Ethylbenzene	ND	ug/L	25.0	1.8	5		07/24/23 20:01	100-41-4	
Ethyl methacrylate	ND	ug/L	500	3.2	5		07/24/23 20:01	97-63-2	
Hexachloro-1,3-butadiene	ND	ug/L	25.0	2.3	5		07/24/23 20:01	87-68-3	
n-Hexane	ND	ug/L	25.0	2.3	5		07/24/23 20:01	110-54-3	
2-Hexanone	ND	ug/L	125	15.1	5		07/24/23 20:01	591-78-6	

Project: GE Indy
Pace Project No.: 50349809

Date: 08/04/2023 05:01 PM

Sample: MW-112-072023	Lab ID:	50349809007	Collecte	d: 07/20/23	3 10:35	Received: 07	7/20/23 16:45 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Ana	lytical Services	- Indianapo	lis					
lodomethane	ND	ug/L	50.0	1.6	5		07/24/23 20:01	74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	25.0	1.7	5		07/24/23 20:01	98-82-8	
p-Isopropyltoluene	ND	ug/L	25.0	1.8	5		07/24/23 20:01	99-87-6	
Methylene Chloride	ND	ug/L	25.0	11.0	5		07/24/23 20:01	75-09-2	
1-Methylnaphthalene	ND	ug/L	50.0	3.1	5		07/24/23 20:01	90-12-0	
2-Methylnaphthalene	ND	ug/L	50.0	2.2	5		07/24/23 20:01	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	125	12.6	5		07/24/23 20:01	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	20.0	2.4	5		07/24/23 20:01	1634-04-4	
Naphthalene	ND	ug/L	6.0	2.1	5		07/24/23 20:01		
n-Propylbenzene	ND	ug/L	25.0	1.7	5		07/24/23 20:01	103-65-1	
Styrene	ND	ug/L	25.0	2.0	5		07/24/23 20:01	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	25.0	2.5	5		07/24/23 20:01	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	25.0	2.6	5		07/24/23 20:01		
Tetrachloroethene	ND	ug/L	25.0	1.6	5		07/24/23 20:01		
Toluene	ND	ug/L	25.0	1.7	5		07/24/23 20:01	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	25.0	1.9	5		07/24/23 20:01	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	25.0	2.3	5		07/24/23 20:01	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	25.0	2.3	5		07/24/23 20:01		
1,1,2-Trichloroethane	ND	ug/L	25.0	3.9	5		07/24/23 20:01	79-00-5	
Trichloroethene	ND	ug/L	25.0	3.5	5		07/24/23 20:01		
Trichlorofluoromethane	ND	ug/L	25.0	3.1	5		07/24/23 20:01		
1,2,3-Trichloropropane	ND	ug/L	25.0	4.1	5		07/24/23 20:01		
1,2,4-Trimethylbenzene	ND	ug/L	25.0	1.7	5		07/24/23 20:01	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	25.0	1.5	5		07/24/23 20:01	108-67-8	
Vinyl acetate	ND	ug/L	250	4.8	5		07/24/23 20:01		
Vinyl chloride	511	ug/L	10.0	3.0	5		07/24/23 20:01		
Xylene (Total)	ND	ug/L	50.0	1.8	5		07/24/23 20:01		
Surrogates		- 3			-			 -	
Dibromofluoromethane (S)	102	%.	82-128		5		07/24/23 20:01	1868-53-7	D4
4-Bromofluorobenzene (S)	103	%.	79-124		5		07/24/23 20:01	460-00-4	
Toluene-d8 (S)	95	%.	73-122		5		07/24/23 20:01	2037-26-5	

Project: GE Indy
Pace Project No.: 50349809

Date: 08/04/2023 05:01 PM

Sample: MW-253-072023	Lab ID:	50349809008	Collected	d: 07/20/23	3 10:55	Received: 07	7/20/23 16:45 I	Matrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
3260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	•	ytical Services		lis					
Acetone	ND	ug/L	100	8.9	1		07/24/23 20:3	35 67-64-1	
Acrolein	ND	ug/L	50.0	12.7	1		07/24/23 20:3		
Acrylonitrile	ND	ug/L	100	2.2	1		07/24/23 20:3		
Benzene	ND	ug/L	5.0	0.39	1		07/24/23 20:3		
Bromobenzene	ND	ug/L	5.0	0.50	1		07/24/23 20:3		
Bromochloromethane	ND	ug/L	5.0	0.43	1		07/24/23 20:3		
Bromodichloromethane	ND	ug/L	5.0	0.57	1		07/24/23 20:3		
Bromoform	ND	ug/L	5.0	0.73	1		07/24/23 20:3		
Bromomethane	ND	ug/L	5.0	0.57	1		07/24/23 20:3		
2-Butanone (MEK)	ND	ug/L	25.0	4.7	1		07/24/23 20:3		
n-Butylbenzene	ND ND	ug/L ug/L	5.0	0.38	1		07/24/23 20:3		
sec-Butylbenzene	ND ND	ug/L ug/L	5.0	0.38	1		07/24/23 20:3		
ert-Butylbenzene	ND ND	ug/L ug/L	5.0	0.35	1		07/24/23 20:3		
Carbon disulfide	ND	ug/L	10.0	0.83	1		07/24/23 20:3		
Carbon tetrachloride	ND ND	ug/L ug/L	5.0	0.40	1		07/24/23 20:3		
Chlorobenzene	ND ND		5.0	0.40	1		07/24/23 20:3		
Chloroethane		ug/L	5.0 5.0	0.55					
Chloroform	ND ND	ug/L	5.0 5.0	0.55	1 1		07/24/23 20:3 07/24/23 20:3		
		ug/L							
Chloromethane	ND	ug/L	5.0	0.50	1		07/24/23 20:3		
2-Chlorotoluene	ND	ug/L	5.0	0.38	1		07/24/23 20:3		
1-Chlorotoluene	ND	ug/L	5.0	0.40	1		07/24/23 20:3		
Dibromochloromethane	ND	ug/L	5.0	0.56	1		07/24/23 20:3		
1,2-Dibromoethane (EDB)	ND	ug/L	5.0	0.55	1		07/24/23 20:3		
Dibromomethane	ND	ug/L	5.0	0.76	1		07/24/23 20:3		
1,2-Dichlorobenzene	ND	ug/L	5.0	0.45	1		07/24/23 20:3		
1,3-Dichlorobenzene	ND	ug/L	5.0	0.39	1		07/24/23 20:3		
1,4-Dichlorobenzene	ND	ug/L	5.0	0.43	1		07/24/23 20:3		
rans-1,4-Dichloro-2-butene	ND	ug/L	100	0.72	1		07/24/23 20:3		
Dichlorodifluoromethane	ND	ug/L	5.0	0.60	1		07/24/23 20:3		
1,1-Dichloroethane	ND	ug/L	5.0	0.46	1		07/24/23 20:3		
1,2-Dichloroethane	ND	ug/L	5.0	0.54	1		07/24/23 20:3		
I,1-Dichloroethene	ND	ug/L	5.0	0.46	1		07/24/23 20:3		
cis-1,2-Dichloroethene	ND	ug/L	5.0	0.53	1		07/24/23 20:3		
rans-1,2-Dichloroethene	ND	ug/L	5.0	0.35	1		07/24/23 20:3		
,2-Dichloropropane	ND	ug/L	5.0	0.71	1		07/24/23 20:3		
1,3-Dichloropropane	ND	ug/L	5.0	0.49	1		07/24/23 20:3		
2,2-Dichloropropane	ND	ug/L	5.0	0.62	1		07/24/23 20:3		
,1-Dichloropropene	ND	ug/L	5.0	0.64	1		07/24/23 20:3		
cis-1,3-Dichloropropene	ND	ug/L	5.0	0.50	1			35 10061-01-5	
rans-1,3-Dichloropropene	ND	ug/L	5.0	0.51	1		07/24/23 20:3	35 10061-02-6	
Ethylbenzene	ND	ug/L	5.0	0.35	1		07/24/23 20:3	35 100-41-4	
Ethyl methacrylate	ND	ug/L	100	0.64	1		07/24/23 20:3	35 97-63-2	
Hexachloro-1,3-butadiene	ND	ug/L	5.0	0.46	1		07/24/23 20:3	85 87-68-3	
n-Hexane	ND	ug/L	5.0	0.46	1		07/24/23 20:3	35 110-54-3	
2-Hexanone	ND	ug/L	25.0	3.0	1		07/24/23 20:3	5 591-78-6	

Project: GE Indy
Pace Project No.: 50349809

Date: 08/04/2023 05:01 PM

Sample: MW-253-072023	Lab ID:	50349809008	Collecte	d: 07/20/2	3 10:55	Received: 07	7/20/23 16:45 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Ana	lytical Services	- Indianapo	lis					
lodomethane	ND	ug/L	10.0	0.31	1		07/24/23 20:35	74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	5.0	0.34	1		07/24/23 20:35	98-82-8	
p-Isopropyltoluene	ND	ug/L	5.0	0.36	1		07/24/23 20:35	99-87-6	
Methylene Chloride	ND	ug/L	5.0	2.2	1		07/24/23 20:35	75-09-2	
1-Methylnaphthalene	ND	ug/L	10.0	0.61	1		07/24/23 20:35	90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	0.44	1		07/24/23 20:35	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	2.5	1		07/24/23 20:35	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	4.0	0.48	1		07/24/23 20:35	1634-04-4	
Naphthalene	ND	ug/L	1.2	0.42	1		07/24/23 20:35	91-20-3	
n-Propylbenzene	ND	ug/L	5.0	0.34	1		07/24/23 20:35	103-65-1	
Styrene	ND	ug/L	5.0	0.40	1		07/24/23 20:35	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.50	1		07/24/23 20:35	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.52	1		07/24/23 20:35		
Tetrachloroethene	ND	ug/L	5.0	0.32	1		07/24/23 20:35	127-18-4	
Toluene	ND	ug/L	5.0	0.34	1		07/24/23 20:35	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	0.38	1		07/24/23 20:35	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	5.0	0.45	1		07/24/23 20:35	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	5.0	0.47	1		07/24/23 20:35	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	5.0	0.78	1		07/24/23 20:35	79-00-5	
Trichloroethene	ND	ug/L	5.0	0.70	1		07/24/23 20:35	79-01-6	
Trichlorofluoromethane	ND	ug/L	5.0	0.62	1		07/24/23 20:35		
1,2,3-Trichloropropane	ND	ug/L	5.0	0.82	1		07/24/23 20:35		
1,2,4-Trimethylbenzene	ND	ug/L	5.0	0.35	1		07/24/23 20:35		
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.30	1		07/24/23 20:35		
Vinyl acetate	ND	ug/L	50.0	0.96	1		07/24/23 20:35		
Vinyl chloride	ND	ug/L	2.0	0.59	1		07/24/23 20:35		
Xylene (Total)	ND	ug/L	10.0	0.35	1		07/24/23 20:35		
Surrogates		- 3							
Dibromofluoromethane (S)	103	%.	82-128		1		07/24/23 20:35	1868-53-7	
4-Bromofluorobenzene (S)	105	%.	79-124		1		07/24/23 20:35	460-00-4	
Toluene-d8 (S)	99	%.	73-122		1		07/24/23 20:35	2037-26-5	

Project: GE Indy
Pace Project No.: 50349809

Date: 08/04/2023 05:01 PM

Sample: MW-251-072023	Lab ID:	50349809009	Collected	d: 07/20/23	3 11:05	Received: 07/2	20/23 16:45	Matrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 50	030/8260						
	•	ytical Services		lis					
Acetone	ND	ug/L	1000	88.9	10		07/24/23 21:0	9 67-64-1	
Acrolein	ND	ug/L	500	127	10		07/24/23 21:0		
Acrylonitrile	ND	ug/L	1000	22.1	10		07/24/23 21:0		
Benzene	ND	ug/L	50.0	3.9	10		07/24/23 21:0		
Bromobenzene	ND	ug/L	50.0	5.0	10		07/24/23 21:0		
Bromochloromethane	ND	ug/L	50.0	4.3	10		07/24/23 21:0		
Bromodichloromethane	ND	ug/L	50.0	5.7	10		07/24/23 21:0		
Bromoform	ND	ug/L	50.0	7.3	10		07/24/23 21:0		
Bromomethane	ND	ug/L	50.0	5.7	10		07/24/23 21:0		
2-Butanone (MEK)	ND ND	ug/L ug/L	250	46.6	10		07/24/23 21:0		
n-Butylbenzene	ND	ug/L	50.0	3.8	10		07/24/23 21:0		
sec-Butylbenzene	ND ND	ug/L ug/L	50.0	3.2	10		07/24/23 21:0		
ert-Butylbenzene	ND ND	ug/L ug/L	50.0	3.5	10		07/24/23 21:0		
Carbon disulfide	ND	ug/L	100	8.3	10		07/24/23 21:0		
Carbon tetrachloride	ND ND	ug/L ug/L	50.0	4.0	10		07/24/23 21:0		
Chlorobenzene	ND ND	ug/L ug/L	50.0	3.6	10		07/24/23 21:0		
Chloroethane	957	-	50.0	5.5	10		07/24/23 21:0		
Chloroform	ND	ug/L ug/L	50.0	4.4	10		07/24/23 21:0		
Chloromethane	ND ND	-	50.0	5.0	10		07/24/23 21:0		
2-Chlorotoluene	ND ND	ug/L	50.0	3.8	10		07/24/23 21:0		
		ug/L							
4-Chlorotoluene	ND	ug/L	50.0	4.0	10		07/24/23 21:0		
Dibromochloromethane	ND	ug/L	50.0	5.6	10		07/24/23 21:0		
1,2-Dibromoethane (EDB)	ND	ug/L	50.0	5.5	10 10		07/24/23 21:0		
Dibromomethane	ND	ug/L	50.0	7.6			07/24/23 21:0		
1,2-Dichlorobenzene	ND	ug/L	50.0	4.5	10		07/24/23 21:0		
1,3-Dichlorobenzene	ND	ug/L	50.0	3.9	10		07/24/23 21:0		
1,4-Dichlorobenzene	ND	ug/L	50.0	4.3	10		07/24/23 21:0		
rans-1,4-Dichloro-2-butene	ND	ug/L	1000	7.2	10		07/24/23 21:0		
Dichlorodifluoromethane	ND	ug/L	50.0	6.0	10		07/24/23 21:0		
1,1-Dichloroethane	159	ug/L	50.0	4.6	10		07/24/23 21:0		
1,2-Dichloroethane	78.6	ug/L	50.0	5.4	10		07/24/23 21:0		
I,1-Dichloroethene	ND	ug/L	50.0	4.6	10		07/24/23 21:0		
cis-1,2-Dichloroethene	15400	ug/L	500	52.6	100		07/24/23 21:4		
rans-1,2-Dichloroethene	166	ug/L	50.0	3.5	10		07/24/23 21:0		
1,2-Dichloropropane	ND	ug/L	50.0	7.1	10		07/24/23 21:0		
1,3-Dichloropropane	ND	ug/L	50.0	4.9	10		07/24/23 21:0		
2,2-Dichloropropane	ND	ug/L	50.0	6.2	10		07/24/23 21:0		
1,1-Dichloropropene	ND	ug/L	50.0	6.4	10		07/24/23 21:0		
cis-1,3-Dichloropropene	ND	ug/L	50.0	5.0	10			9 10061-01-5	
rans-1,3-Dichloropropene	ND	ug/L	50.0	5.1	10			9 10061-02-6	
Ethylbenzene	ND	ug/L	50.0	3.5	10		07/24/23 21:0		
Ethyl methacrylate	ND	ug/L	1000	6.4	10		07/24/23 21:0		
Hexachloro-1,3-butadiene	ND	ug/L	50.0	4.6	10		07/24/23 21:0		
n-Hexane	ND	ug/L	50.0	4.6	10		07/24/23 21:0		
2-Hexanone	ND	ug/L	250	30.2	10		07/24/23 21:0	9 591-78-6	

Project: GE Indy
Pace Project No.: 50349809

Date: 08/04/2023 05:01 PM

Sample: MW-251-072023	Lab ID:	50349809009	Collecte	d: 07/20/23	3 11:05	Received: 07	7/20/23 16:45 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Ana	lytical Services	- Indianapo	lis					
lodomethane	ND	ug/L	100	3.1	10		07/24/23 21:09	74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	50.0	3.4	10		07/24/23 21:09	98-82-8	
p-Isopropyltoluene	ND	ug/L	50.0	3.6	10		07/24/23 21:09	99-87-6	
Methylene Chloride	ND	ug/L	50.0	22.0	10		07/24/23 21:09	75-09-2	
1-Methylnaphthalene	ND	ug/L	100	6.1	10		07/24/23 21:09	90-12-0	
2-Methylnaphthalene	ND	ug/L	100	4.4	10		07/24/23 21:09	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	250	25.3	10		07/24/23 21:09	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	40.0	4.8	10		07/24/23 21:09	1634-04-4	
Naphthalene	ND	ug/L	12.0	4.2	10		07/24/23 21:09	91-20-3	
n-Propylbenzene	ND	ug/L	50.0	3.4	10		07/24/23 21:09	103-65-1	
Styrene	ND	ug/L	50.0	4.0	10		07/24/23 21:09	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	50.0	5.0	10		07/24/23 21:09	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	50.0	5.2	10		07/24/23 21:09		
Tetrachloroethene	ND	ug/L	50.0	3.2	10		07/24/23 21:09	127-18-4	
Toluene	ND	ug/L	50.0	3.4	10		07/24/23 21:09	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	50.0	3.8	10		07/24/23 21:09	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	50.0	4.5	10		07/24/23 21:09	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	50.0	4.7	10		07/24/23 21:09	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	50.0	7.8	10		07/24/23 21:09	79-00-5	
Trichloroethene	ND	ug/L	50.0	7.0	10		07/24/23 21:09	79-01-6	
Trichlorofluoromethane	ND	ug/L	50.0	6.2	10		07/24/23 21:09	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	50.0	8.2	10		07/24/23 21:09		
1,2,4-Trimethylbenzene	ND	ug/L	50.0	3.5	10		07/24/23 21:09	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	50.0	3.0	10		07/24/23 21:09	108-67-8	
Vinyl acetate	ND	ug/L	500	9.6	10		07/24/23 21:09	108-05-4	
Vinyl chloride	2530	ug/L	20.0	5.9	10		07/24/23 21:09	75-01-4	
Xylene (Total)	ND	ug/L	100	3.5	10		07/24/23 21:09	1330-20-7	
Surrogates		Ü							
Dibromofluoromethane (S)	112	%.	82-128		10		07/24/23 21:09		D4
4-Bromofluorobenzene (S)	104	%.	79-124		10		07/24/23 21:09	460-00-4	
Toluene-d8 (S)	99	%.	73-122		10		07/24/23 21:09	2037-26-5	

Project: GE Indy
Pace Project No.: 50349809

Date: 08/04/2023 05:01 PM

Sample: W-10-072023	Lab ID:	50349809010	Collected	d: 07/20/23	3 11:15	Received: 07	7/20/23 16:45 I	Matrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 50	030/8260						
	•	ytical Services -		lis					
Acetone	ND	ug/L	100	8.9	1		07/24/23 22:1	6 67-64-1	
Acrolein	ND	ug/L	50.0	12.7	1		07/24/23 22:1	6 107-02-8	
Acrylonitrile	ND	ug/L	100	2.2	1		07/24/23 22:1	6 107-13-1	
Benzene	ND	ug/L	5.0	0.39	1		07/24/23 22:1	6 71-43-2	
Bromobenzene	ND	ug/L	5.0	0.50	1		07/24/23 22:1		
Bromochloromethane	ND	ug/L	5.0	0.43	1		07/24/23 22:1	6 74-97-5	
Bromodichloromethane	ND	ug/L	5.0	0.57	1		07/24/23 22:1		
Bromoform	ND	ug/L	5.0	0.73	1		07/24/23 22:1		
Bromomethane	ND	ug/L	5.0	0.57	1		07/24/23 22:1		
2-Butanone (MEK)	ND	ug/L	25.0	4.7	1		07/24/23 22:1		
n-Butylbenzene	ND	ug/L	5.0	0.38	1		07/24/23 22:1		
sec-Butylbenzene	ND	ug/L	5.0	0.32	1		07/24/23 22:1		
ert-Butylbenzene	ND	ug/L	5.0	0.35	1		07/24/23 22:1		
Carbon disulfide	ND	ug/L	10.0	0.83	1		07/24/23 22:1		
Carbon tetrachloride	ND	ug/L	5.0	0.40	1		07/24/23 22:1		
Chlorobenzene	ND	ug/L	5.0	0.36	1		07/24/23 22:1		
Chloroethane	ND ND	ug/L	5.0	0.55	1		07/24/23 22:1		
Chloroform	ND ND	ug/L ug/L	5.0	0.33	1		07/24/23 22:1		
Chloromethane	ND ND	ug/L ug/L	5.0	0.50	1		07/24/23 22:1		
2-Chlorotoluene	ND ND	-	5.0	0.38	1		07/24/23 22:1		
4-Chlorotoluene	ND ND	ug/L	5.0	0.30	1		07/24/23 22:1		
Dibromochloromethane	ND ND	ug/L	5.0	0.40	1		07/24/23 22:1		
	ND ND	ug/L	5.0	0.55	1		07/24/23 22:1		
1,2-Dibromoethane (EDB)		ug/L			1				
Dibromomethane	ND	ug/L	5.0	0.76	1		07/24/23 22:1 07/24/23 22:1		
1,2-Dichlorobenzene	ND	ug/L	5.0	0.45					
1,3-Dichlorobenzene	ND	ug/L	5.0	0.39	1		07/24/23 22:1		
1,4-Dichlorobenzene	ND	ug/L	5.0	0.43	1		07/24/23 22:1		
rans-1,4-Dichloro-2-butene	ND	ug/L	100	0.72	1		07/24/23 22:1		
Dichlorodifluoromethane	ND	ug/L	5.0	0.60	1		07/24/23 22:1		
1,1-Dichloroethane	ND	ug/L	5.0	0.46	1		07/24/23 22:1		
1,2-Dichloroethane	ND	ug/L	5.0	0.54	1		07/24/23 22:1		
I,1-Dichloroethene	ND	ug/L	5.0	0.46	1		07/24/23 22:1		
cis-1,2-Dichloroethene	ND	ug/L	5.0	0.53	1		07/24/23 22:1		
rans-1,2-Dichloroethene	ND	ug/L	5.0	0.35	1		07/24/23 22:1		
1,2-Dichloropropane	ND	ug/L	5.0	0.71	1		07/24/23 22:1		
1,3-Dichloropropane	ND	ug/L	5.0	0.49	1		07/24/23 22:1		
2,2-Dichloropropane	ND	ug/L	5.0	0.62	1		07/24/23 22:1		
1,1-Dichloropropene	ND	ug/L	5.0	0.64	1		07/24/23 22:1		
cis-1,3-Dichloropropene	ND	ug/L	5.0	0.50	1			6 10061-01-5	
rans-1,3-Dichloropropene	ND	ug/L	5.0	0.51	1			6 10061-02-6	
Ethylbenzene	ND	ug/L	5.0	0.35	1		07/24/23 22:1	6 100-41-4	
Ethyl methacrylate	ND	ug/L	100	0.64	1		07/24/23 22:1		
Hexachloro-1,3-butadiene	ND	ug/L	5.0	0.46	1		07/24/23 22:1	6 87-68-3	
n-Hexane	ND	ug/L	5.0	0.46	1		07/24/23 22:1	6 110-54-3	
2-Hexanone	ND	ug/L	25.0	3.0	1		07/24/23 22:1	6 591-78-6	

Project: GE Indy
Pace Project No.: 50349809

Date: 08/04/2023 05:01 PM

Sample: W-10-072023	Lab ID:	50349809010	Collected	07/20/23	3 11:15	Received: 07	7/20/23 16:45 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA	5030/8260						
	Pace Ana	lytical Services	s - Indianapoli	s					
lodomethane	ND	ug/L	10.0	0.31	1		07/24/23 22:16	74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	5.0	0.34	1		07/24/23 22:16	98-82-8	
p-Isopropyltoluene	ND	ug/L	5.0	0.36	1		07/24/23 22:16	99-87-6	
Methylene Chloride	ND	ug/L	5.0	2.2	1		07/24/23 22:16	75-09-2	
1-Methylnaphthalene	ND	ug/L	10.0	0.61	1		07/24/23 22:16	90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	0.44	1		07/24/23 22:16	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	2.5	1		07/24/23 22:16	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	4.0	0.48	1		07/24/23 22:16	1634-04-4	
Naphthalene	ND	ug/L	1.2	0.42	1		07/24/23 22:16	91-20-3	
n-Propylbenzene	ND	ug/L	5.0	0.34	1		07/24/23 22:16	103-65-1	
Styrene	ND	ug/L	5.0	0.40	1		07/24/23 22:16	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.50	1		07/24/23 22:16	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.52	1		07/24/23 22:16	79-34-5	
Tetrachloroethene	ND	ug/L	5.0	0.32	1		07/24/23 22:16	127-18-4	
Toluene	ND	ug/L	5.0	0.34	1		07/24/23 22:16	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	0.38	1		07/24/23 22:16	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	5.0	0.45	1		07/24/23 22:16	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	5.0	0.47	1		07/24/23 22:16	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	5.0	0.78	1		07/24/23 22:16	79-00-5	
Trichloroethene	ND	ug/L	5.0	0.70	1		07/24/23 22:16	79-01-6	
Trichlorofluoromethane	ND	ug/L	5.0	0.62	1		07/24/23 22:16	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	5.0	0.82	1		07/24/23 22:16	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/L	5.0	0.35	1		07/24/23 22:16	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.30	1		07/24/23 22:16	108-67-8	
Vinyl acetate	ND	ug/L	50.0	0.96	1		07/24/23 22:16	108-05-4	
Vinyl chloride	ND	ug/L	2.0	0.59	1		07/24/23 22:16	75-01-4	
Xylene (Total)	ND	ug/L	10.0	0.35	1		07/24/23 22:16	1330-20-7	
Surrogates									
Dibromofluoromethane (S)	106	%.	82-128		1		07/24/23 22:16		
4-Bromofluorobenzene (S)	103	%.	79-124		1		07/24/23 22:16	460-00-4	
Toluene-d8 (S)	97	%.	73-122		1		07/24/23 22:16	2037-26-5	

Project: GE Indy
Pace Project No.: 50349809

Date: 08/04/2023 05:01 PM

Sample: MW-153-072023	Lab ID:	: 50349809011	Collected:	07/20/23 11:20		Received: 07	7/20/23 16:45 N	latrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Ana	lytical Services	- Indianapolis	8					
Acetone	ND	ug/L	100	8.9	1		07/24/23 22:50	0 67-64-1	
Acrolein	ND	ug/L	50.0	12.7	1		07/24/23 22:50		
Acrylonitrile	ND ND	ug/L	100	2.2	1		07/24/23 22:50		
Benzene	ND	ug/L	5.0	0.39	1		07/24/23 22:50		
Bromobenzene	ND	ug/L	5.0	0.50	1		07/24/23 22:50		
Bromochloromethane	ND	ug/L	5.0	0.43	1		07/24/23 22:50		
Bromodichloromethane	ND	ug/L	5.0	0.57	1		07/24/23 22:50		
Bromoform	ND	ug/L	5.0	0.73	1		07/24/23 22:50		
Bromomethane	ND	ug/L	5.0	0.57	1		07/24/23 22:50		
2-Butanone (MEK)	ND	ug/L	25.0	4.7	1		07/24/23 22:50		
n-Butylbenzene	ND ND	ug/L ug/L	5.0	0.38	1		07/24/23 22:50		
sec-Butylbenzene	ND	ug/L	5.0	0.32	1		07/24/23 22:50		
ert-Butylbenzene	ND ND	ug/L	5.0	0.35	1		07/24/23 22:50		
Carbon disulfide	ND	ug/L	10.0	0.83	1		07/24/23 22:50		
Carbon tetrachloride	ND ND	ug/L	5.0	0.40	1		07/24/23 22:50		
Chlorobenzene	ND ND	ug/L	5.0	0.40	1		07/24/23 22:50		
Chloroethane	ND ND	_	5.0	0.55	1		07/24/23 22:50		
Chloroform	ND ND	ug/L ug/L	5.0	0.55	1		07/24/23 22:50		
Chloromethane	ND ND	_	5.0	0.44	1		07/24/23 22:50		
		ug/L			1				
2-Chlorotoluene	ND	ug/L	5.0	0.38			07/24/23 22:50		
1-Chlorotoluene	ND	ug/L	5.0	0.40	1		07/24/23 22:50		
Dibromochloromethane	ND ND	ug/L	5.0	0.56	1		07/24/23 22:50		
1,2-Dibromoethane (EDB)	ND	ug/L	5.0	0.55	1		07/24/23 22:50		
Dibromomethane	ND	ug/L	5.0	0.76	1		07/24/23 22:50		
1,2-Dichlorobenzene	ND	ug/L	5.0	0.45	1		07/24/23 22:50		
1,3-Dichlorobenzene	ND	ug/L	5.0	0.39	1		07/24/23 22:50		
1,4-Dichlorobenzene	ND	ug/L	5.0	0.43	1		07/24/23 22:50		
rans-1,4-Dichloro-2-butene	ND	ug/L	100	0.72	1		07/24/23 22:50		
Dichlorodifluoromethane	ND	ug/L	5.0	0.60	1		07/24/23 22:50		
,1-Dichloroethane	ND	ug/L	5.0	0.46	1		07/24/23 22:50		
I,2-Dichloroethane	ND	ug/L	5.0	0.54	1		07/24/23 22:50		
,1-Dichloroethene	ND	ug/L	5.0	0.46	1		07/24/23 22:50		
cis-1,2-Dichloroethene	ND	ug/L	5.0	0.53	1		07/24/23 22:50		
rans-1,2-Dichloroethene	ND	ug/L	5.0	0.35	1		07/24/23 22:50		
,2-Dichloropropane	ND	ug/L	5.0	0.71	1		07/24/23 22:50		
,3-Dichloropropane	ND	ug/L	5.0	0.49	1		07/24/23 22:50		
2,2-Dichloropropane	ND	ug/L	5.0	0.62	1		07/24/23 22:50		
,1-Dichloropropene	ND	ug/L	5.0	0.64	1		07/24/23 22:50		
cis-1,3-Dichloropropene	ND	ug/L	5.0	0.50	1		07/24/23 22:50		
rans-1,3-Dichloropropene	ND	ug/L	5.0	0.51	1		07/24/23 22:50		
Ethylbenzene	ND	ug/L	5.0	0.35	1		07/24/23 22:50		
Ethyl methacrylate	ND	ug/L	100	0.64	1		07/24/23 22:50		
Hexachloro-1,3-butadiene	ND	ug/L	5.0	0.46	1		07/24/23 22:50		
n-Hexane	ND	ug/L	5.0	0.46	1		07/24/23 22:50		
2-Hexanone	ND	ug/L	25.0	3.0	1		07/24/23 22:50	591-78-6	

Project: GE Indy
Pace Project No.: 50349809

Date: 08/04/2023 05:01 PM

Sample: MW-153-072023	Lab ID:	50349809011	Collected	07/20/23	3 11:20	Received: 07	7/20/23 16:45 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	5030/8260						
	Pace Ana	lytical Services	- Indianapoli	s					
lodomethane	ND	ug/L	10.0	0.31	1		07/24/23 22:50	74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	5.0	0.34	1		07/24/23 22:50		
p-Isopropyltoluene	ND	ug/L	5.0	0.36	1		07/24/23 22:50		
Methylene Chloride	ND	ug/L	5.0	2.2	1		07/24/23 22:50	75-09-2	
1-Methylnaphthalene	ND	ug/L	10.0	0.61	1		07/24/23 22:50	90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	0.44	1		07/24/23 22:50	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	2.5	1		07/24/23 22:50	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	4.0	0.48	1		07/24/23 22:50	1634-04-4	
Naphthalene	ND	ug/L	1.2	0.42	1		07/24/23 22:50	91-20-3	
n-Propylbenzene	ND	ug/L	5.0	0.34	1		07/24/23 22:50	103-65-1	
Styrene	ND	ug/L	5.0	0.40	1		07/24/23 22:50		
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.50	1		07/24/23 22:50		
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.52	1		07/24/23 22:50		
Tetrachloroethene	ND	ug/L	5.0	0.32	1		07/24/23 22:50	127-18-4	
Toluene	ND	ug/L	5.0	0.34	1		07/24/23 22:50	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	0.38	1		07/24/23 22:50		
1,2,4-Trichlorobenzene	ND	ug/L	5.0	0.45	1		07/24/23 22:50		
1,1,1-Trichloroethane	ND	ug/L	5.0	0.47	1		07/24/23 22:50		
1,1,2-Trichloroethane	ND	ug/L	5.0	0.78	1		07/24/23 22:50		
Trichloroethene	ND	ug/L	5.0	0.70	1		07/24/23 22:50		
Trichlorofluoromethane	ND	ug/L	5.0	0.62	1		07/24/23 22:50		
1,2,3-Trichloropropane	ND	ug/L	5.0	0.82	1		07/24/23 22:50		
1,2,4-Trimethylbenzene	ND	ug/L	5.0	0.35	1		07/24/23 22:50		
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.30	1		07/24/23 22:50		
Vinyl acetate	ND	ug/L	50.0	0.96	1		07/24/23 22:50		
Vinyl chloride	ND	ug/L	2.0	0.59	1		07/24/23 22:50		
Xylene (Total)	ND	ug/L	10.0	0.35	1		07/24/23 22:50		
Surrogates					•			/	
Dibromofluoromethane (S)	105	%.	82-128		1		07/24/23 22:50	1868-53-7	
4-Bromofluorobenzene (S)	103	%.	79-124		1		07/24/23 22:50	460-00-4	
Toluene-d8 (S)	97	%.	73-122		1		07/24/23 22:50	2037-26-5	

Project: GE Indy
Pace Project No.: 50349809

Date: 08/04/2023 05:01 PM

Sample: W-8-072023	Lab ID:	50349809012	Collected	: 07/20/23	11:30	Received: 07	7/20/23 16:45 N	latrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Indicator Gases Water LHC	Analytica	Method: AM20	GAX						
	Pace Ana	lytical Gulf Coa	st						
Methane	ND	ug/L	5.0	2.0	1		07/27/23 08:38	3 74-82-8	
Ethane	ND	ug/L	1.0	0.17	1		07/27/23 08:38		
Ethene	ND	ug/L	1.0	0.24	1		07/27/23 08:38		
n-Propane	ND	ug/L	1.0	0.29	1		07/27/23 08:38		
Propylene	ND	ug/L	1.0	0.31	1		07/27/23 08:38		
sobutane	ND	ug/L	2.0	0.065	1		07/27/23 08:38		
n-Butane	ND	ug/L	2.0	0.54	1		07/27/23 08:38		
8260 MSV Indiana	Analytica	I Method: EPA 5	030/8260						
		lytical Services		s					
Acetone	ND	ug/L	100	8.9	1		07/24/23 23:24	67-64-1	
Acrolein	ND	ug/L	50.0	12.7	1		07/24/23 23:24	107-02-8	
Acrylonitrile	ND	ug/L	100	2.2	1		07/24/23 23:24	107-13-1	
Benzene	ND	ug/L	5.0	0.39	1		07/24/23 23:24	71-43-2	
Bromobenzene	ND	ug/L	5.0	0.50	1		07/24/23 23:24	108-86-1	
Bromochloromethane	ND	ug/L	5.0	0.43	1		07/24/23 23:24	74-97-5	
Bromodichloromethane	ND	ug/L	5.0	0.57	1		07/24/23 23:24	75-27-4	
Bromoform	ND	ug/L	5.0	0.73	1		07/24/23 23:24	75-25-2	
Bromomethane	ND	ug/L	5.0	0.57	1		07/24/23 23:24	74-83-9	
2-Butanone (MEK)	ND	ug/L	25.0	4.7	1		07/24/23 23:24		
n-Butylbenzene	ND	ug/L	5.0	0.38	1		07/24/23 23:24		
sec-Butylbenzene	ND	ug/L	5.0	0.32	1		07/24/23 23:24		
ert-Butylbenzene	ND	ug/L	5.0	0.35	1		07/24/23 23:24		
Carbon disulfide	ND	ug/L	10.0	0.83	1		07/24/23 23:24		
Carbon tetrachloride	ND	ug/L	5.0	0.40	1		07/24/23 23:24		
Chlorobenzene	ND	ug/L	5.0	0.36	1		07/24/23 23:24		
Chloroethane	ND	ug/L	5.0	0.55	1		07/24/23 23:24		
Chloroform	ND	ug/L	5.0	0.44	1		07/24/23 23:24		
Chloromethane	ND	ug/L	5.0	0.50	1		07/24/23 23:24		
2-Chlorotoluene	ND	ug/L	5.0	0.38	1		07/24/23 23:24		
4-Chlorotoluene	ND	ug/L	5.0	0.40	1		07/24/23 23:24		
Dibromochloromethane	ND	ug/L	5.0	0.56	1		07/24/23 23:24		
1,2-Dibromoethane (EDB)	ND ND	ug/L	5.0	0.55	1		07/24/23 23:24		
Dibromomethane	ND ND	ug/L	5.0	0.33	1		07/24/23 23:24		
1,2-Dichlorobenzene	ND ND	ug/L	5.0	0.76	1		07/24/23 23:24		
		•							
1,3-Dichlorobenzene	ND ND	ug/L	5.0	0.39	1		07/24/23 23:24		
1,4-Dichlorobenzene	ND ND	ug/L	5.0	0.43	1		07/24/23 23:24		
rans-1,4-Dichloro-2-butene	ND	ug/L	100	0.72	1		07/24/23 23:24		
Dichlorodifluoromethane	ND	ug/L	5.0	0.60	1		07/24/23 23:24		
1,1-Dichloroethane	ND	ug/L	5.0	0.46	1		07/24/23 23:24		
1,2-Dichloroethane	ND	ug/L	5.0	0.54	1		07/24/23 23:24		
1,1-Dichloroethene	ND	ug/L	5.0	0.46	1		07/24/23 23:24		
cis-1,2-Dichloroethene	ND	ug/L	5.0	0.53	1		07/24/23 23:24		
trans-1,2-Dichloroethene	ND	ug/L	5.0	0.35	1		07/24/23 23:24		
1,2-Dichloropropane	ND	ug/L	5.0	0.71	1		07/24/23 23:24	78-87-5	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: GE Indy
Pace Project No.: 50349809

Date: 08/04/2023 05:01 PM

Sample: W-8-072023	Lab ID:	50349809012	Collecte	d: 07/20/23	3 11:30	Received: 07	7/20/23 16:45	Matrix: Water	
			Report						
Parameters	Results _	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Ana	lytical Services	- Indianapo	lis					
1,3-Dichloropropane	ND	ug/L	5.0	0.49	1		07/24/23 23:2	24 142-28-9	
2,2-Dichloropropane	ND	ug/L	5.0	0.62	1		07/24/23 23:2	24 594-20-7	
1,1-Dichloropropene	ND	ug/L	5.0	0.64	1		07/24/23 23:2	24 563-58-6	
cis-1,3-Dichloropropene	ND	ug/L	5.0	0.50	1		07/24/23 23:2	24 10061-01-5	
trans-1,3-Dichloropropene	ND	ug/L	5.0	0.51	1		07/24/23 23:2	24 10061-02-6	
Ethylbenzene	ND	ug/L	5.0	0.35	1		07/24/23 23:2	24 100-41-4	
Ethyl methacrylate	ND	ug/L	100	0.64	1		07/24/23 23:2	24 97-63-2	
Hexachloro-1,3-butadiene	ND	ug/L	5.0	0.46	1		07/24/23 23:2		
n-Hexane	ND	ug/L	5.0	0.46	1		07/24/23 23:2		
2-Hexanone	ND	ug/L	25.0	3.0	1		07/24/23 23:2	24 591-78-6	
lodomethane	ND	ug/L	10.0	0.31	1		07/24/23 23:2		
Isopropylbenzene (Cumene)	ND	ug/L	5.0	0.34	1		07/24/23 23:2		
p-Isopropyltoluene	ND	ug/L	5.0	0.36	1		07/24/23 23:2		
Methylene Chloride	ND	ug/L	5.0	2.2	1		07/24/23 23:2		
I-Methylnaphthalene	ND	ug/L	10.0	0.61	1		07/24/23 23:2		
2-Methylnaphthalene	ND	ug/L	10.0	0.44	1		07/24/23 23:2		
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	2.5	1		07/24/23 23:2		
Methyl-tert-butyl ether	ND	ug/L	4.0	0.48	1			24 1634-04-4	
Naphthalene	ND	ug/L	1.2	0.42	1		07/24/23 23:2		
n-Propylbenzene	ND	ug/L	5.0	0.34	1		07/24/23 23:2		
Styrene	ND ND	ug/L	5.0	0.40	1		07/24/23 23:2		
1,1,1,2-Tetrachloroethane	ND ND	ug/L	5.0	0.40	1		07/24/23 23:2		
1,1,2,2-Tetrachloroethane	ND ND	ug/L ug/L	5.0	0.50	1		07/24/23 23:2		
Tetrachloroethene	ND ND	ug/L	5.0	0.32	1		07/24/23 23:2		
Toluene	ND ND	_	5.0 5.0	0.32	1		07/24/23 23:2		
		ug/L							
1,2,3-Trichlorobenzene	ND	ug/L	5.0	0.38	1 1		07/24/23 23:2		
1,2,4-Trichlorobenzene	ND	ug/L	5.0	0.45	1		07/24/23 23:2		
1,1,1-Trichloroethane	ND	ug/L	5.0	0.47			07/24/23 23:2		
1,1,2-Trichloroethane	ND	ug/L	5.0	0.78	1		07/24/23 23:2		
Frichloroethene	ND	ug/L	5.0	0.70	1		07/24/23 23:2		
Trichlorofluoromethane	ND	ug/L	5.0	0.62	1		07/24/23 23:2		
1,2,3-Trichloropropane	ND	ug/L	5.0	0.82	1		07/24/23 23:2		
I,2,4-Trimethylbenzene	ND	ug/L	5.0	0.35	1		07/24/23 23:2		
I,3,5-Trimethylbenzene	ND	ug/L	5.0	0.30	1		07/24/23 23:2		
/inyl acetate	ND	ug/L	50.0	0.96	1		07/24/23 23:2		
Vinyl chloride	ND	ug/L	2.0	0.59	1		07/24/23 23:2		
Xylene (Total)	ND	ug/L	10.0	0.35	1		07/24/23 23:2	24 1330-20-7	
Surrogates	40.	0.4	00.400				07/04/00 55 5		
Dibromofluoromethane (S)	101	%.	82-128		1			24 1868-53-7	
4-Bromofluorobenzene (S)	103	%.	79-124		1		07/24/23 23:2		
Toluene-d8 (S)	100	%.	73-122		1		07/24/23 23:2	24 2037-26-5	

Project: GE Indy
Pace Project No.: 50349809

Date: 08/04/2023 05:01 PM

Sample: MW-163-072023	Lab ID:	50349809013	Collected	d: 07/20/23	11:35	Received: 07	7/20/23 16:45 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL .	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Ana	lytical Services	- Indianapo	lis					
Acetone	ND	ug/L	500	44.4	5		07/24/23 23:58	67-64-1	
Acrolein	ND	ug/L	250	63.5	5		07/24/23 23:58	107-02-8	
Acrylonitrile	ND	ug/L	500	11.0	5		07/24/23 23:58	107-13-1	
Benzene	ND	ug/L	25.0	1.9	5		07/24/23 23:58	71-43-2	
Bromobenzene	ND	ug/L	25.0	2.5	5		07/24/23 23:58		
Bromochloromethane	ND	ug/L	25.0	2.1	5		07/24/23 23:58		
Bromodichloromethane	ND	ug/L	25.0	2.8	5		07/24/23 23:58		
Bromoform	ND	ug/L	25.0	3.7	5		07/24/23 23:58		
Bromomethane	ND	ug/L	25.0	2.9	5		07/24/23 23:58		
	ND ND	-	125	23.3	5		07/24/23 23:58		
2-Butanone (MEK)		ug/L			5 5				
n-Butylbenzene	ND	ug/L	25.0	1.9			07/24/23 23:58		
sec-Butylbenzene	ND	ug/L	25.0	1.6	5		07/24/23 23:58		
ert-Butylbenzene	ND	ug/L	25.0	1.7	5		07/24/23 23:58		
Carbon disulfide	ND	ug/L	50.0	4.1	5		07/24/23 23:58		
Carbon tetrachloride	ND	ug/L	25.0	2.0	5		07/24/23 23:58		
Chlorobenzene	ND	ug/L	25.0	1.8	5		07/24/23 23:58		
Chloroethane	ND	ug/L	25.0	2.7	5		07/24/23 23:58	75-00-3	
Chloroform	ND	ug/L	25.0	2.2	5		07/24/23 23:58	67-66-3	
Chloromethane	ND	ug/L	25.0	2.5	5		07/24/23 23:58	74-87-3	
2-Chlorotoluene	ND	ug/L	25.0	1.9	5		07/24/23 23:58	95-49-8	
1-Chlorotoluene	ND	ug/L	25.0	2.0	5		07/24/23 23:58	106-43-4	
Dibromochloromethane	ND	ug/L	25.0	2.8	5		07/24/23 23:58	124-48-1	
1,2-Dibromoethane (EDB)	ND	ug/L	25.0	2.7	5		07/24/23 23:58	106-93-4	
Dibromomethane	ND	ug/L	25.0	3.8	5		07/24/23 23:58	74-95-3	
1,2-Dichlorobenzene	ND	ug/L	25.0	2.2	5		07/24/23 23:58	95-50-1	
1,3-Dichlorobenzene	ND	ug/L	25.0	1.9	5		07/24/23 23:58	541-73-1	
1,4-Dichlorobenzene	ND	ug/L	25.0	2.2	5		07/24/23 23:58	106-46-7	
rans-1,4-Dichloro-2-butene	ND	ug/L	500	3.6	5		07/24/23 23:58		
Dichlorodifluoromethane	ND	ug/L	25.0	3.0	5		07/24/23 23:58		
1,1-Dichloroethane	ND	ug/L	25.0	2.3	5		07/24/23 23:58		
1,2-Dichloroethane	ND	ug/L	25.0	2.7	5		07/24/23 23:58		
1,1-Dichloroethene	ND	ug/L	25.0	2.3	5		07/24/23 23:58		
cis-1,2-Dichloroethene	7230	ug/L	25.0	26.3	50		07/25/23 00:32		
,		-	25.0	1.7			07/24/23 23:58		
rans-1,2-Dichloroethene	76.8	ug/L			5				
1,2-Dichloropropane	ND	ug/L	25.0	3.6	5		07/24/23 23:58		
I,3-Dichloropropane	ND	ug/L	25.0	2.4	5		07/24/23 23:58		
2,2-Dichloropropane	ND	ug/L	25.0	3.1	5		07/24/23 23:58		
I,1-Dichloropropene	ND	ug/L	25.0	3.2	5		07/24/23 23:58		
cis-1,3-Dichloropropene	ND	ug/L	25.0	2.5	5		07/24/23 23:58		
trans-1,3-Dichloropropene	ND	ug/L	25.0	2.5	5		07/24/23 23:58		
Ethylbenzene	ND	ug/L	25.0	1.8	5		07/24/23 23:58		
Ethyl methacrylate	ND	ug/L	500	3.2	5		07/24/23 23:58		
Hexachloro-1,3-butadiene	ND	ug/L	25.0	2.3	5		07/24/23 23:58	87-68-3	
n-Hexane	ND	ug/L	25.0	2.3	5		07/24/23 23:58	110-54-3	
2-Hexanone	ND	ug/L	125	15.1	5		07/24/23 23:58	591-78-6	

Project: GE Indy
Pace Project No.: 50349809

Date: 08/04/2023 05:01 PM

Sample: MW-163-072023	Lab ID:	50349809013	Collecte	d: 07/20/23	3 11:35	Received: 07	7/20/23 16:45 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Ana	lytical Services	- Indianapo	lis					
lodomethane	ND	ug/L	50.0	1.6	5		07/24/23 23:58	74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	25.0	1.7	5		07/24/23 23:58	98-82-8	
p-Isopropyltoluene	ND	ug/L	25.0	1.8	5		07/24/23 23:58	99-87-6	
Methylene Chloride	ND	ug/L	25.0	11.0	5		07/24/23 23:58	75-09-2	
1-Methylnaphthalene	ND	ug/L	50.0	3.1	5		07/24/23 23:58	90-12-0	
2-Methylnaphthalene	ND	ug/L	50.0	2.2	5		07/24/23 23:58	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	125	12.6	5		07/24/23 23:58	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	20.0	2.4	5		07/24/23 23:58	1634-04-4	
Naphthalene	ND	ug/L	6.0	2.1	5		07/24/23 23:58	91-20-3	
n-Propylbenzene	ND	ug/L	25.0	1.7	5		07/24/23 23:58	103-65-1	
Styrene	ND	ug/L	25.0	2.0	5		07/24/23 23:58	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	25.0	2.5	5		07/24/23 23:58	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	25.0	2.6	5		07/24/23 23:58		
Tetrachloroethene	ND	ug/L	25.0	1.6	5		07/24/23 23:58	127-18-4	
Toluene	ND	ug/L	25.0	1.7	5		07/24/23 23:58	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	25.0	1.9	5		07/24/23 23:58	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	25.0	2.3	5		07/24/23 23:58	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	25.0	2.3	5		07/24/23 23:58	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	25.0	3.9	5		07/24/23 23:58	79-00-5	
Trichloroethene	ND	ug/L	25.0	3.5	5		07/24/23 23:58	79-01-6	
Trichlorofluoromethane	ND	ug/L	25.0	3.1	5		07/24/23 23:58	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	25.0	4.1	5		07/24/23 23:58		
1,2,4-Trimethylbenzene	ND	ug/L	25.0	1.7	5		07/24/23 23:58	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	25.0	1.5	5		07/24/23 23:58	108-67-8	
Vinyl acetate	ND	ug/L	250	4.8	5		07/24/23 23:58		
Vinyl chloride	1610	ug/L	100	29.7	50		07/25/23 00:32		
Xylene (Total)	ND	ug/L	50.0	1.8	5		07/24/23 23:58		
Surrogates		- J			-				
Dibromofluoromethane (S)	108	%.	82-128		5		07/24/23 23:58	1868-53-7	D4
4-Bromofluorobenzene (S)	104	%.	79-124		5		07/24/23 23:58	460-00-4	
Toluene-d8 (S)	97	%.	73-122		5		07/24/23 23:58	2037-26-5	

Project: GE Indy
Pace Project No.: 50349809

Date: 08/04/2023 05:01 PM

Sample: MW-312-072023	Lab ID:	50349809014	Collecte	d: 07/20/23	11:40	Received: 07	7/20/23 16:45 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
3260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
		lytical Services		lis					
Acetone	ND	ug/L	100	8.9	1		07/25/23 01:05	67-64-1	
Acrolein	ND	ug/L	50.0	12.7	1		07/25/23 01:05	107-02-8	
Acrylonitrile	ND	ug/L	100	2.2	1		07/25/23 01:05	107-13-1	
Benzene	ND	ug/L	5.0	0.39	1		07/25/23 01:05	71-43-2	
Bromobenzene	ND	ug/L	5.0	0.50	1		07/25/23 01:05		
Bromochloromethane	ND	ug/L	5.0	0.43	1		07/25/23 01:05		
Bromodichloromethane	ND	ug/L	5.0	0.57	1		07/25/23 01:05		
Bromoform	ND	ug/L	5.0	0.73	1		07/25/23 01:05		
Bromomethane	ND	ug/L	5.0	0.57	1		07/25/23 01:05		
2-Butanone (MEK)	ND ND	ug/L	25.0	4.7	1		07/25/23 01:05		
, ,		-			1				
n-Butylbenzene	ND	ug/L	5.0	0.38			07/25/23 01:05		
sec-Butylbenzene	ND	ug/L	5.0	0.32	1		07/25/23 01:05		
ert-Butylbenzene	ND	ug/L	5.0	0.35	1		07/25/23 01:05		
Carbon disulfide	ND	ug/L	10.0	0.83	1		07/25/23 01:05		
Carbon tetrachloride	ND	ug/L	5.0	0.40	1		07/25/23 01:05		
Chlorobenzene	ND	ug/L	5.0	0.36	1		07/25/23 01:05		
Chloroethane	ND	ug/L	5.0	0.55	1		07/25/23 01:05	75-00-3	
Chloroform	ND	ug/L	5.0	0.44	1		07/25/23 01:05	67-66-3	
Chloromethane	ND	ug/L	5.0	0.50	1		07/25/23 01:05	74-87-3	
2-Chlorotoluene	ND	ug/L	5.0	0.38	1		07/25/23 01:05	95-49-8	
1-Chlorotoluene	ND	ug/L	5.0	0.40	1		07/25/23 01:05	106-43-4	
Dibromochloromethane	ND	ug/L	5.0	0.56	1		07/25/23 01:05	124-48-1	
1,2-Dibromoethane (EDB)	ND	ug/L	5.0	0.55	1		07/25/23 01:05	106-93-4	
Dibromomethane	ND	ug/L	5.0	0.76	1		07/25/23 01:05	74-95-3	
1,2-Dichlorobenzene	ND	ug/L	5.0	0.45	1		07/25/23 01:05	95-50-1	
1,3-Dichlorobenzene	ND	ug/L	5.0	0.39	1		07/25/23 01:05	541-73-1	
1,4-Dichlorobenzene	ND	ug/L	5.0	0.43	1		07/25/23 01:05		
rans-1,4-Dichloro-2-butene	ND	ug/L	100	0.72	1		07/25/23 01:05		
Dichlorodifluoromethane	ND	ug/L	5.0	0.60	1		07/25/23 01:05		
1,1-Dichloroethane	ND	ug/L	5.0	0.46	1		07/25/23 01:05		
1,2-Dichloroethane	ND ND	ug/L	5.0	0.40	1		07/25/23 01:05		
1,2-Dichloroethane	ND ND	•	5.0	0.34	1		07/25/23 01:05		
,		ug/L	5.0 5.0	0.46	1				
cis-1,2-Dichloroethene	61.8	ug/L					07/25/23 01:05		
rans-1,2-Dichloroethene	ND	ug/L	5.0	0.35	1		07/25/23 01:05		
I,2-Dichloropropane	ND	ug/L	5.0	0.71	1		07/25/23 01:05		
,3-Dichloropropane	ND	ug/L	5.0	0.49	1		07/25/23 01:05		
2,2-Dichloropropane	ND	ug/L	5.0	0.62	1		07/25/23 01:05		
1,1-Dichloropropene	ND	ug/L	5.0	0.64	1		07/25/23 01:05		
cis-1,3-Dichloropropene	ND	ug/L	5.0	0.50	1		07/25/23 01:05		
rans-1,3-Dichloropropene	ND	ug/L	5.0	0.51	1		07/25/23 01:05	10061-02-6	
Ethylbenzene	ND	ug/L	5.0	0.35	1		07/25/23 01:05	100-41-4	
Ethyl methacrylate	ND	ug/L	100	0.64	1		07/25/23 01:05	97-63-2	
Hexachloro-1,3-butadiene	ND	ug/L	5.0	0.46	1		07/25/23 01:05	87-68-3	
n-Hexane	ND	ug/L	5.0	0.46	1		07/25/23 01:05	110-54-3	
2-Hexanone	ND	ug/L	25.0	3.0	1		07/25/23 01:05		

Project: GE Indy
Pace Project No.: 50349809

Date: 08/04/2023 05:01 PM

Sample: MW-312-072023	Lab ID:	50349809014	Collected	d: 07/20/23	3 11:40	Received: 07	7/20/23 16:45 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Ana	lytical Services	- Indianapo	lis					
lodomethane	ND	ug/L	10.0	0.31	1		07/25/23 01:05	74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	5.0	0.34	1		07/25/23 01:05	98-82-8	
p-Isopropyltoluene	ND	ug/L	5.0	0.36	1		07/25/23 01:05	99-87-6	
Methylene Chloride	ND	ug/L	5.0	2.2	1		07/25/23 01:05	75-09-2	
1-Methylnaphthalene	ND	ug/L	10.0	0.61	1		07/25/23 01:05	90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	0.44	1		07/25/23 01:05	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	2.5	1		07/25/23 01:05	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	4.0	0.48	1		07/25/23 01:05	1634-04-4	
Naphthalene	ND	ug/L	1.2	0.42	1		07/25/23 01:05	91-20-3	
n-Propylbenzene	ND	ug/L	5.0	0.34	1		07/25/23 01:05	103-65-1	
Styrene	ND	ug/L	5.0	0.40	1		07/25/23 01:05	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.50	1		07/25/23 01:05	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.52	1		07/25/23 01:05		
Tetrachloroethene	ND	ug/L	5.0	0.32	1		07/25/23 01:05	127-18-4	
Toluene	ND	ug/L	5.0	0.34	1		07/25/23 01:05	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	0.38	1		07/25/23 01:05	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	5.0	0.45	1		07/25/23 01:05	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	5.0	0.47	1		07/25/23 01:05		
1,1,2-Trichloroethane	ND	ug/L	5.0	0.78	1		07/25/23 01:05		
Trichloroethene	23.1	ug/L	5.0	0.70	1		07/25/23 01:05		
Trichlorofluoromethane	ND	ug/L	5.0	0.62	1		07/25/23 01:05		
1,2,3-Trichloropropane	ND	ug/L	5.0	0.82	1		07/25/23 01:05		
1,2,4-Trimethylbenzene	ND	ug/L	5.0	0.35	1		07/25/23 01:05		
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.30	1		07/25/23 01:05		
Vinyl acetate	ND	ug/L	50.0	0.96	1		07/25/23 01:05		
Vinyl chloride	38.6	ug/L	2.0	0.59	1		07/25/23 01:05		
Xylene (Total)	ND	ug/L	10.0	0.35	1		07/25/23 01:05		
Surrogates		- 3							
Dibromofluoromethane (S)	107	%.	82-128		1		07/25/23 01:05	1868-53-7	
4-Bromofluorobenzene (S)	101	%.	79-124		1		07/25/23 01:05		
Toluene-d8 (S)	99	%.	73-122		1		07/25/23 01:05	2037-26-5	

Project: GE Indy
Pace Project No.: 50349809

Date: 08/04/2023 05:01 PM

Sample: MW-132-072023	Lab ID:	50349809015	Collected	d: 07/20/23	3 11:55	Received: 07	7/20/23 16:45 I	Matrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
3260 MSV Indiana	Analytical	Method: EPA 50	030/8260						
	•	ytical Services		lis					
Acetone	ND	ug/L	100	7.4	1		07/25/23 12:5	8 67-64-1	
Acrolein	ND	ug/L	50.0	21.9	1		07/25/23 12:5		
Acrylonitrile	ND	ug/L	100	2.3	1		07/25/23 12:5		
Benzene	ND	ug/L	5.0	0.41	1		07/25/23 12:5		
Bromobenzene	ND	ug/L	5.0	0.40	1		07/25/23 12:5		
Bromochloromethane	ND	ug/L	5.0	0.44	1		07/25/23 12:5		
Bromodichloromethane	ND	ug/L	5.0	0.62	1		07/25/23 12:5		
Bromoform	ND	ug/L	5.0	0.91	1		07/25/23 12:5		
Bromomethane	ND	ug/L	5.0	0.86	1		07/25/23 12:5		
2-Butanone (MEK)	ND ND	ug/L ug/L	25.0	4.7	1		07/25/23 12:5		
n-Butylbenzene	ND ND	ug/L ug/L	5.0	0.36	1		07/25/23 12:5		
sec-Butylbenzene	ND ND	ug/L ug/L	5.0	0.30	1		07/25/23 12:5		
ert-Butylbenzene	ND ND	ug/L ug/L	5.0	0.29	1		07/25/23 12:5		
Carbon disulfide	ND ND	•		0.28	1		07/25/23 12:5		
		ug/L	10.0	0.91	1				
Carbon tetrachloride	ND	ug/L	5.0				07/25/23 12:5		
Chlorobenzene	ND	ug/L	5.0	0.30	1		07/25/23 12:5		
Chloroethane	ND	ug/L	5.0	0.50	1		07/25/23 12:5		
Chloroform	ND	ug/L	5.0	0.50	1		07/25/23 12:5		
Chloromethane	ND	ug/L	5.0	0.53	1		07/25/23 12:5		
2-Chlorotoluene	ND	ug/L	5.0	0.42	1		07/25/23 12:5		
-Chlorotoluene	ND	ug/L	5.0	0.41	1		07/25/23 12:5		
Dibromochloromethane	ND	ug/L	5.0	0.61	1		07/25/23 12:5		
I,2-Dibromoethane (EDB)	ND	ug/L	5.0	0.68	1		07/25/23 12:5		
Dibromomethane	ND	ug/L	5.0	1.1	1		07/25/23 12:5		
1,2-Dichlorobenzene	ND	ug/L	5.0	0.46	1		07/25/23 12:5		
1,3-Dichlorobenzene	ND	ug/L	5.0	0.43	1		07/25/23 12:5	8 541-73-1	
1,4-Dichlorobenzene	ND	ug/L	5.0	0.40	1		07/25/23 12:5	8 106-46-7	
rans-1,4-Dichloro-2-butene	ND	ug/L	100	1.8	1		07/25/23 12:5	8 110-57-6	
Dichlorodifluoromethane	ND	ug/L	5.0	1.1	1		07/25/23 12:5		
1,1-Dichloroethane	56.8	ug/L	5.0	0.42	1		07/25/23 12:5	8 75-34-3	
,2-Dichloroethane	ND	ug/L	5.0	0.61	1		07/25/23 12:5	8 107-06-2	
,1-Dichloroethene	ND	ug/L	5.0	0.55	1		07/25/23 12:5	8 75-35-4	
cis-1,2-Dichloroethene	528	ug/L	50.0	6.7	10		07/25/23 13:3	3 156-59-2	
rans-1,2-Dichloroethene	38.9	ug/L	5.0	0.51	1		07/25/23 12:5	8 156-60-5	
,2-Dichloropropane	ND	ug/L	5.0	0.64	1		07/25/23 12:5	8 78-87-5	
,3-Dichloropropane	ND	ug/L	5.0	0.59	1		07/25/23 12:5	8 142-28-9	
2,2-Dichloropropane	ND	ug/L	5.0	0.49	1		07/25/23 12:5	8 594-20-7	
,1-Dichloropropene	ND	ug/L	5.0	0.57	1		07/25/23 12:5	8 563-58-6	
cis-1,3-Dichloropropene	ND	ug/L	5.0	0.32	1			8 10061-01-5	
rans-1,3-Dichloropropene	ND	ug/L	5.0	0.36	1			8 10061-02-6	
Ethylbenzene	ND	ug/L	5.0	0.40	1		07/25/23 12:5		
Ethyl methacrylate	ND	ug/L	100	0.94	1		07/25/23 12:5		
Hexachloro-1,3-butadiene	ND	ug/L	5.0	0.48	1		07/25/23 12:5		
n-Hexane	ND	ug/L	5.0	0.57	1		07/25/23 12:5		
2-Hexanone	ND ND	ug/L ug/L	25.0	3.0	1		07/25/23 12:5		

Project: GE Indy
Pace Project No.: 50349809

Date: 08/04/2023 05:01 PM

Sample: MW-132-072023	Lab ID:	50349809015	Collected	d: 07/20/23	3 11:55	Received: 07	7/20/23 16:45 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF ——	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Ana	lytical Services	- Indianapo	lis					
lodomethane	ND	ug/L	10.0	0.28	1		07/25/23 12:58	74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	5.0	0.29	1		07/25/23 12:58	98-82-8	
p-Isopropyltoluene	ND	ug/L	5.0	0.34	1		07/25/23 12:58	99-87-6	
Methylene Chloride	ND	ug/L	5.0	3.2	1		07/25/23 12:58	75-09-2	
1-Methylnaphthalene	ND	ug/L	10.0	0.45	1		07/25/23 12:58	90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	0.46	1		07/25/23 12:58	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	2.8	1		07/25/23 12:58	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	4.0	0.56	1		07/25/23 12:58	1634-04-4	
Naphthalene	ND	ug/L	1.2	0.44	1		07/25/23 12:58	91-20-3	
n-Propylbenzene	ND	ug/L	5.0	0.36	1		07/25/23 12:58	103-65-1	
Styrene	ND	ug/L	5.0	0.40	1		07/25/23 12:58	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.41	1		07/25/23 12:58	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.65	1		07/25/23 12:58	79-34-5	
Tetrachloroethene	ND	ug/L	5.0	0.38	1		07/25/23 12:58	127-18-4	
Toluene	ND	ug/L	5.0	0.34	1		07/25/23 12:58	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	0.46	1		07/25/23 12:58	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	5.0	0.51	1		07/25/23 12:58	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	5.0	0.57	1		07/25/23 12:58	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	5.0	0.81	1		07/25/23 12:58	79-00-5	
Trichloroethene	530	ug/L	50.0	6.5	10		07/25/23 13:33	79-01-6	
Trichlorofluoromethane	ND	ug/L	5.0	0.70	1		07/25/23 12:58	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	5.0	1.2	1		07/25/23 12:58	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/L	5.0	0.41	1		07/25/23 12:58	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.36	1		07/25/23 12:58	108-67-8	
Vinyl acetate	ND	ug/L	50.0	0.84	1		07/25/23 12:58	108-05-4	
Vinyl chloride	218	ug/L	2.0	0.53	1		07/25/23 12:58		
Xylene (Total)	ND	ug/L	10.0	0.48	1		07/25/23 12:58	1330-20-7	
Surrogates		Ü							
Dibromofluoromethane (S)	124	%.	82-128		1		07/25/23 12:58	1868-53-7	
4-Bromofluorobenzene (S)	112	%.	79-124		1		07/25/23 12:58	460-00-4	
Toluene-d8 (S)	99	%.	73-122		1		07/25/23 12:58	2037-26-5	

Project: GE Indy
Pace Project No.: 50349809

Date: 08/04/2023 05:01 PM

Pace Project No.: 50349809								
Sample: MW-41-072023	Lab ID:	50349809016	Collected	: 07/20/23	12:15	Received: 07/20/23 16:	45 Matrix: Water	
			Report					
Parameters	Results	Units	Limit	MDL	DF	Prepared Anal	yzed CAS No.	Qual
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260					
		lytical Services		is				
Acetone	ND	•	100	7.4	1	07/25/20	3 14:07 67-64-1	
Acrolein		ug/L			1		3 14:07	
	ND	ug/L	50.0	21.9 2.3	1		3 14:07 107-02-8 3 14:07 107-13-1	
Acrylonitrile	ND	ug/L	100					
Benzene	ND	ug/L	5.0	0.41	1		3 14:07 71-43-2	
Bromobenzene	ND	ug/L	5.0	0.40	1		3 14:07 108-86-1	
Bromochloromethane	ND	ug/L	5.0	0.44	1		3 14:07 74-97-5	
Bromodichloromethane	ND	ug/L	5.0	0.62	1		3 14:07 75-27-4	
Bromoform	ND	ug/L	5.0	0.91	1		3 14:07 75-25-2	
Bromomethane	ND	ug/L	5.0	0.86	1		3 14:07 74-83-9	
2-Butanone (MEK)	ND	ug/L	25.0	4.7	1		3 14:07 78-93-3	
n-Butylbenzene	ND	ug/L	5.0	0.36	1	07/25/23	3 14:07 104-51-8	
sec-Butylbenzene	ND	ug/L	5.0	0.29	1	07/25/23	3 14:07 135-98-8	
tert-Butylbenzene	ND	ug/L	5.0	0.28	1	07/25/23	3 14:07 98-06-6	
Carbon disulfide	ND	ug/L	10.0	0.91	1	07/25/23	3 14:07 75-15-0	
Carbon tetrachloride	ND	ug/L	5.0	0.47	1	07/25/23	3 14:07 56-23-5	
Chlorobenzene	ND	ug/L	5.0	0.30	1	07/25/23	3 14:07 108-90-7	
Chloroethane	ND	ug/L	5.0	0.50	1	07/25/23	3 14:07 75-00-3	
Chloroform	ND	ug/L	5.0	0.50	1	07/25/23	3 14:07 67-66-3	
Chloromethane	ND	ug/L	5.0	0.53	1	07/25/23	3 14:07 74-87-3	
2-Chlorotoluene	ND	ug/L	5.0	0.42	1	07/25/23	3 14:07 95-49-8	
4-Chlorotoluene	ND	ug/L	5.0	0.41	1		3 14:07 106-43-4	
Dibromochloromethane	ND	ug/L	5.0	0.61	1		3 14:07 124-48-1	
1,2-Dibromoethane (EDB)	ND	ug/L	5.0	0.68	1		3 14:07 106-93-4	
Dibromomethane	ND	ug/L	5.0	1.1	1		3 14:07 74-95-3	
1,2-Dichlorobenzene	ND	ug/L	5.0	0.46	1		3 14:07 95-50-1	
1,3-Dichlorobenzene	ND	ug/L	5.0	0.43	1		3 14:07 541-73-1	
1,4-Dichlorobenzene	ND ND	ug/L	5.0	0.40	1		3 14:07	
		•			1		3 14:07 100-40-7 3 14:07 110-57-6	
trans-1,4-Dichloro-2-butene	ND	ug/L	100	1.8				
Dichlorodifluoromethane	ND	ug/L	5.0	1.1	1		3 14:07 75-71-8	
1,1-Dichloroethane	ND	ug/L	5.0	0.42	1		3 14:07 75-34-3	
1,2-Dichloroethane	ND	ug/L	5.0	0.61	1		3 14:07 107-06-2	
1,1-Dichloroethene	ND	ug/L	5.0	0.55	1		3 14:07 75-35-4	
cis-1,2-Dichloroethene	ND	ug/L	5.0	0.67	1		3 14:07 156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	5.0	0.51	1		3 14:07 156-60-5	
1,2-Dichloropropane	ND	ug/L	5.0	0.64	1	07/25/23	3 14:07 78-87-5	
1,3-Dichloropropane	ND	ug/L	5.0	0.59	1	07/25/23	3 14:07 142-28-9	
2,2-Dichloropropane	ND	ug/L	5.0	0.49	1		3 14:07 594-20-7	
1,1-Dichloropropene	ND	ug/L	5.0	0.57	1	07/25/23	3 14:07 563-58-6	
cis-1,3-Dichloropropene	ND	ug/L	5.0	0.32	1	07/25/23	3 14:07 10061-01-5	
trans-1,3-Dichloropropene	ND	ug/L	5.0	0.36	1	07/25/23	3 14:07 10061-02-6	
Ethylbenzene	ND	ug/L	5.0	0.40	1	07/25/23	3 14:07 100-41-4	
Ethyl methacrylate	ND	ug/L	100	0.94	1	07/25/23	3 14:07 97-63-2	
Hexachloro-1,3-butadiene	ND	ug/L	5.0	0.48	1	07/25/23	3 14:07 87-68-3	
n-Hexane	ND	ug/L	5.0	0.57	1		3 14:07 110-54-3	
2-Hexanone	ND	ug/L	25.0	3.0	1		3 14:07 591-78-6	

Project: GE Indy
Pace Project No.: 50349809

Date: 08/04/2023 05:01 PM

Sample: MW-41-072023	Lab ID:	50349809016	Collected	d: 07/20/23	3 12:15	Received: 07	7/20/23 16:45 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Ana	lytical Services	- Indianapol	is					
lodomethane	ND	ug/L	10.0	0.28	1		07/25/23 14:07	74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	5.0	0.29	1		07/25/23 14:07	98-82-8	
p-Isopropyltoluene	ND	ug/L	5.0	0.34	1		07/25/23 14:07	99-87-6	
Methylene Chloride	ND	ug/L	5.0	3.2	1		07/25/23 14:07	75-09-2	
1-Methylnaphthalene	ND	ug/L	10.0	0.45	1		07/25/23 14:07	90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	0.46	1		07/25/23 14:07	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	2.8	1		07/25/23 14:07	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	4.0	0.56	1		07/25/23 14:07	1634-04-4	
Naphthalene	ND	ug/L	1.2	0.44	1		07/25/23 14:07	91-20-3	
n-Propylbenzene	ND	ug/L	5.0	0.36	1		07/25/23 14:07	103-65-1	
Styrene	ND	ug/L	5.0	0.40	1		07/25/23 14:07	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.41	1		07/25/23 14:07	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.65	1		07/25/23 14:07		
Tetrachloroethene	ND	ug/L	5.0	0.38	1		07/25/23 14:07	127-18-4	
Toluene	ND	ug/L	5.0	0.34	1		07/25/23 14:07	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	0.46	1		07/25/23 14:07	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	5.0	0.51	1		07/25/23 14:07	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	5.0	0.57	1		07/25/23 14:07	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	5.0	0.81	1		07/25/23 14:07	79-00-5	
Trichloroethene	ND	ug/L	5.0	0.65	1		07/25/23 14:07	79-01-6	
Trichlorofluoromethane	ND	ug/L	5.0	0.70	1		07/25/23 14:07	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	5.0	1.2	1		07/25/23 14:07		
1,2,4-Trimethylbenzene	ND	ug/L	5.0	0.41	1		07/25/23 14:07	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.36	1		07/25/23 14:07	108-67-8	
Vinyl acetate	ND	ug/L	50.0	0.84	1		07/25/23 14:07	108-05-4	
Vinyl chloride	ND	ug/L	2.0	0.53	1		07/25/23 14:07	75-01-4	
Xylene (Total)	ND	ug/L	10.0	0.48	1		07/25/23 14:07	1330-20-7	
Surrogates		Ü							
Dibromofluoromethane (S)	119	%.	82-128		1		07/25/23 14:07	1868-53-7	
4-Bromofluorobenzene (S)	114	%.	79-124		1		07/25/23 14:07	460-00-4	
Toluene-d8 (S)	99	%.	73-122		1		07/25/23 14:07	2037-26-5	

Project: GE Indy
Pace Project No.: 50349809

Date: 08/04/2023 05:01 PM

Sample: MW-333-072023	Lab ID:	50349809017	Collected	d: 07/20/23	3 12:35	Received: 07	7/20/23 16:45 I	Matrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
3260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	•	ytical Services		lis					
Acetone	ND	ug/L	100	7.4	1		07/25/23 14:4	1 67-64-1	
Acrolein	ND	ug/L	50.0	21.9	1		07/25/23 14:4	1 107-02-8	
Acrylonitrile	ND	ug/L	100	2.3	1		07/25/23 14:4	1 107-13-1	
Benzene	13.1	ug/L	5.0	0.41	1		07/25/23 14:4		
Bromobenzene	ND	ug/L	5.0	0.40	1		07/25/23 14:4		
Bromochloromethane	ND	ug/L	5.0	0.44	1		07/25/23 14:4		
Bromodichloromethane	ND	ug/L	5.0	0.62	1		07/25/23 14:4		
Bromoform	ND	ug/L	5.0	0.91	1		07/25/23 14:4		
Bromomethane	ND	ug/L	5.0	0.86	1		07/25/23 14:4		
2-Butanone (MEK)	ND	ug/L	25.0	4.7	1		07/25/23 14:4		
n-Butylbenzene	ND	ug/L	5.0	0.36	1		07/25/23 14:4		
sec-Butylbenzene	ND	ug/L	5.0	0.29	1		07/25/23 14:4		
ert-Butylbenzene	ND	ug/L	5.0	0.28	1		07/25/23 14:4		
Carbon disulfide	ND	ug/L	10.0	0.20	1		07/25/23 14:4		
Carbon tetrachloride	ND	ug/L	5.0	0.47	1		07/25/23 14:4		
Chlorobenzene	ND	ug/L ug/L	5.0	0.47	1		07/25/23 14:4		
Chloroethane	ND ND	_	5.0	0.50	1		07/25/23 14:4		
Chloroform	ND ND	ug/L ug/L	5.0	0.50	1		07/25/23 14:4		
Chloromethane	ND ND	_	5.0	0.53	1		07/25/23 14:4		
		ug/L		0.33	1				
2-Chlorotoluene	ND	ug/L	5.0	0.42			07/25/23 14:4		
4-Chlorotoluene	ND	ug/L	5.0		1		07/25/23 14:4		
Dibromochloromethane	ND	ug/L	5.0	0.61	1		07/25/23 14:4		
1,2-Dibromoethane (EDB)	ND	ug/L	5.0	0.68	1		07/25/23 14:4		
Dibromomethane	ND	ug/L	5.0	1.1	1		07/25/23 14:4		
1,2-Dichlorobenzene	ND	ug/L	5.0	0.46	1		07/25/23 14:4		
1,3-Dichlorobenzene	ND	ug/L	5.0	0.43	1		07/25/23 14:4		
1,4-Dichlorobenzene	ND	ug/L	5.0	0.40	1		07/25/23 14:4		
rans-1,4-Dichloro-2-butene	ND	ug/L	100	1.8	1		07/25/23 14:4		
Dichlorodifluoromethane	ND	ug/L	5.0	1.1	1		07/25/23 14:4		
1,1-Dichloroethane	ND	ug/L	5.0	0.42	1		07/25/23 14:4		
1,2-Dichloroethane	32.0	ug/L	5.0	0.61	1		07/25/23 14:4		
I,1-Dichloroethene	28.9	ug/L	5.0	0.55	1		07/25/23 14:4		
cis-1,2-Dichloroethene	10100	ug/L	500	52.6	100		07/26/23 21:2		
rans-1,2-Dichloroethene	162	ug/L	5.0	0.51	1		07/25/23 14:4		
1,2-Dichloropropane	ND	ug/L	5.0	0.64	1		07/25/23 14:4		
,3-Dichloropropane	ND	ug/L	5.0	0.59	1		07/25/23 14:4		
2,2-Dichloropropane	ND	ug/L	5.0	0.49	1		07/25/23 14:4		
,1-Dichloropropene	ND	ug/L	5.0	0.57	1		07/25/23 14:4		
cis-1,3-Dichloropropene	ND	ug/L	5.0	0.32	1			1 10061-01-5	
rans-1,3-Dichloropropene	ND	ug/L	5.0	0.36	1			1 10061-02-6	
Ethylbenzene	ND	ug/L	5.0	0.40	1		07/25/23 14:4	1 100-41-4	
Ethyl methacrylate	ND	ug/L	100	0.94	1		07/25/23 14:4	1 97-63-2	
Hexachloro-1,3-butadiene	ND	ug/L	5.0	0.48	1		07/25/23 14:4	1 87-68-3	
n-Hexane	ND	ug/L	5.0	0.57	1		07/25/23 14:4	1 110-54-3	
2-Hexanone	ND	ug/L	25.0	3.0	1		07/25/23 14:4	1 591-78-6	

Project: GE Indy
Pace Project No.: 50349809

Date: 08/04/2023 05:01 PM

Sample: MW-333-072023	Lab ID:	50349809017	Collected	d: 07/20/23	3 12:35	Received: 07	7/20/23 16:45 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF ——	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Ana	lytical Services	- Indianapo	lis					
lodomethane	ND	ug/L	10.0	0.28	1		07/25/23 14:41	74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	5.0	0.29	1		07/25/23 14:41	98-82-8	
p-Isopropyltoluene	ND	ug/L	5.0	0.34	1		07/25/23 14:41	99-87-6	
Methylene Chloride	ND	ug/L	5.0	3.2	1		07/25/23 14:41	75-09-2	
1-Methylnaphthalene	ND	ug/L	10.0	0.45	1		07/25/23 14:41	90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	0.46	1		07/25/23 14:41	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	2.8	1		07/25/23 14:41	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	4.0	0.56	1		07/25/23 14:41	1634-04-4	
Naphthalene	ND	ug/L	1.2	0.44	1		07/25/23 14:41	91-20-3	
n-Propylbenzene	ND	ug/L	5.0	0.36	1		07/25/23 14:41	103-65-1	
Styrene	ND	ug/L	5.0	0.40	1		07/25/23 14:41	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.41	1		07/25/23 14:41	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.65	1		07/25/23 14:41	79-34-5	
Tetrachloroethene	ND	ug/L	5.0	0.38	1		07/25/23 14:41	127-18-4	
Toluene	ND	ug/L	5.0	0.34	1		07/25/23 14:41	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	0.46	1		07/25/23 14:41	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	5.0	0.51	1		07/25/23 14:41	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	5.0	0.57	1		07/25/23 14:41	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	5.0	0.81	1		07/25/23 14:41	79-00-5	
Trichloroethene	ND	ug/L	5.0	0.65	1		07/25/23 14:41	79-01-6	
Trichlorofluoromethane	ND	ug/L	5.0	0.70	1		07/25/23 14:41	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	5.0	1.2	1		07/25/23 14:41	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/L	5.0	0.41	1		07/25/23 14:41	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.36	1		07/25/23 14:41	108-67-8	
Vinyl acetate	ND	ug/L	50.0	0.84	1		07/25/23 14:41	108-05-4	
Vinyl chloride	2340	ug/L	20.0	5.3	10		07/25/23 15:15	75-01-4	
Xylene (Total)	ND	ug/L	10.0	0.48	1		07/25/23 14:41	1330-20-7	
Surrogates		Ü							
Dibromofluoromethane (S)	126	%.	82-128		1		07/25/23 14:41	1868-53-7	
4-Bromofluorobenzene (S)	109	%.	79-124		1		07/25/23 14:41	460-00-4	
Toluene-d8 (S)	100	%.	73-122		1		07/25/23 14:41	2037-26-5	

Project: GE Indy
Pace Project No.: 50349809

Date: 08/04/2023 05:01 PM

Sample: MW-343-072023	Lab ID:	50349809018	Collected	d: 07/20/23	3 12:40	Received: 07	7/20/23 16:45	Matrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qua
3260 MSV Indiana	Analytical	Method: EPA 50	030/8260						
	•	ytical Services		lis					
Acetone	ND	ug/L	100	8.9	1		07/28/23 19:5	52 67-64-1	
Acrolein	ND	ug/L	50.0	12.7	1		07/28/23 19:5		
Acrylonitrile	ND	ug/L	100	2.2	1		07/28/23 19:5		
Benzene	ND	ug/L	5.0	0.39	1		07/28/23 19:5		
3romobenzene	ND	ug/L	5.0	0.50	1		07/28/23 19:5		
Bromochloromethane	ND	ug/L	5.0	0.43	1		07/28/23 19:5		
Bromodichloromethane	ND	ug/L	5.0	0.57	1		07/28/23 19:5		
Bromoform	ND	ug/L	5.0	0.73	1		07/28/23 19:5		
Bromomethane	ND	ug/L	5.0	0.57	1		07/28/23 19:5		
2-Butanone (MEK)	ND	ug/L ug/L	25.0	4.7	1		07/28/23 19:5		
n-Butylbenzene	ND	ug/L ug/L	5.0	0.38	1		07/28/23 19:5		
sec-Butylbenzene	ND ND	ug/L ug/L	5.0	0.38	1		07/28/23 19:5		
ert-Butylbenzene	ND ND	ug/L ug/L	5.0	0.35	1		07/28/23 19:5		
Carbon disulfide	ND	ug/L	10.0	0.83	1		07/28/23 19:5		
Carbon tetrachloride	ND	ug/L ug/L	5.0	0.40	1		07/28/23 19:5		
Chlorobenzene	ND ND	-	5.0	0.40	1		07/28/23 19:5		
Chloroethane		ug/L		0.55					
Chloroform	ND ND	ug/L	5.0 5.0	0.55 0.44	1 1		07/28/23 19:5 07/28/23 19:5		
		ug/L					07/28/23 19:5		
Chloromethane	ND	ug/L	5.0	0.50	1				
2-Chlorotoluene	ND	ug/L	5.0	0.38	1		07/28/23 19:5		
1-Chlorotoluene	ND	ug/L	5.0	0.40	1		07/28/23 19:5		
Dibromochloromethane	ND	ug/L	5.0	0.56	1		07/28/23 19:5		
1,2-Dibromoethane (EDB)	ND	ug/L	5.0	0.55	1		07/28/23 19:5		
Dibromomethane	ND	ug/L	5.0	0.76	1		07/28/23 19:5		
1,2-Dichlorobenzene	ND	ug/L	5.0	0.45	1		07/28/23 19:5		
1,3-Dichlorobenzene	ND	ug/L	5.0	0.39	1		07/28/23 19:5		
1,4-Dichlorobenzene	ND	ug/L	5.0	0.43	1		07/28/23 19:5		
rans-1,4-Dichloro-2-butene	ND	ug/L	100	0.72	1		07/28/23 19:5		
Dichlorodifluoromethane	ND	ug/L	5.0	0.60	1		07/28/23 19:5		
1,1-Dichloroethane	ND	ug/L	5.0	0.46	1		07/28/23 19:5		
1,2-Dichloroethane	ND	ug/L	5.0	0.54	1		07/28/23 19:5		
I,1-Dichloroethene	ND	ug/L	5.0	0.46	1		07/28/23 19:5		
cis-1,2-Dichloroethene	ND	ug/L	5.0	0.53	1		07/28/23 19:5		
rans-1,2-Dichloroethene	ND	ug/L	5.0	0.35	1		07/28/23 19:5		
,2-Dichloropropane	ND	ug/L	5.0	0.71	1		07/28/23 19:5		
1,3-Dichloropropane	ND	ug/L	5.0	0.49	1		07/28/23 19:5	52 142-28-9	
2,2-Dichloropropane	ND	ug/L	5.0	0.62	1		07/28/23 19:5		
,1-Dichloropropene	ND	ug/L	5.0	0.64	1		07/28/23 19:5		
cis-1,3-Dichloropropene	ND	ug/L	5.0	0.50	1		07/28/23 19:5	52 10061-01-5	
rans-1,3-Dichloropropene	ND	ug/L	5.0	0.51	1		07/28/23 19:5	52 10061-02-6	
Ethylbenzene	ND	ug/L	5.0	0.35	1		07/28/23 19:5	52 100-41-4	
Ethyl methacrylate	ND	ug/L	100	0.64	1		07/28/23 19:5	52 97-63-2	
Hexachloro-1,3-butadiene	ND	ug/L	5.0	0.46	1		07/28/23 19:5	52 87-68-3	
n-Hexane	ND	ug/L	5.0	0.46	1		07/28/23 19:5	52 110-54-3	
2-Hexanone	ND	ug/L	25.0	3.0	1		07/28/23 19:5	52 591-78-6	

Project: GE Indy
Pace Project No.: 50349809

Date: 08/04/2023 05:01 PM

Sample: MW-343-072023	Lab ID:	50349809018	Collected	d: 07/20/23	3 12:40	Received: 07	7/20/23 16:45 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF ——	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Ana	lytical Services	- Indianapo	lis					
lodomethane	ND	ug/L	10.0	0.31	1		07/28/23 19:52	74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	5.0	0.34	1		07/28/23 19:52	98-82-8	
p-Isopropyltoluene	ND	ug/L	5.0	0.36	1		07/28/23 19:52	99-87-6	
Methylene Chloride	ND	ug/L	5.0	2.2	1		07/28/23 19:52	75-09-2	
1-Methylnaphthalene	ND	ug/L	10.0	0.61	1		07/28/23 19:52	90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	0.44	1		07/28/23 19:52	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	2.5	1		07/28/23 19:52	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	4.0	0.48	1		07/28/23 19:52		
Naphthalene	ND	ug/L	1.2	0.42	1		07/28/23 19:52	91-20-3	
n-Propylbenzene	ND	ug/L	5.0	0.34	1		07/28/23 19:52	103-65-1	
Styrene	ND	ug/L	5.0	0.40	1		07/28/23 19:52	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.50	1		07/28/23 19:52	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.52	1		07/28/23 19:52		
Tetrachloroethene	ND	ug/L	5.0	0.32	1		07/28/23 19:52	127-18-4	
Toluene	ND	ug/L	5.0	0.34	1		07/28/23 19:52	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	0.38	1		07/28/23 19:52	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	5.0	0.45	1		07/28/23 19:52	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	5.0	0.47	1		07/28/23 19:52	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	5.0	0.78	1		07/28/23 19:52	79-00-5	
Trichloroethene	ND	ug/L	5.0	0.70	1		07/28/23 19:52	79-01-6	
Trichlorofluoromethane	ND	ug/L	5.0	0.62	1		07/28/23 19:52	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	5.0	0.82	1		07/28/23 19:52		
1,2,4-Trimethylbenzene	ND	ug/L	5.0	0.35	1		07/28/23 19:52	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.30	1		07/28/23 19:52		
Vinyl acetate	ND	ug/L	50.0	0.96	1		07/28/23 19:52		
Vinyl chloride	ND	ug/L	2.0	0.59	1		07/28/23 19:52		
Xylene (Total)	ND	ug/L	10.0	0.35	1		07/28/23 19:52		
Surrogates		- 3 -							
Dibromofluoromethane (S)	107	%.	82-128		1		07/28/23 19:52	1868-53-7	
4-Bromofluorobenzene (S)	106	%.	79-124		1		07/28/23 19:52	460-00-4	
Toluene-d8 (S)	103	%.	73-122		1		07/28/23 19:52	2037-26-5	

Project: GE Indy
Pace Project No.: 50349809

Date: 08/04/2023 05:01 PM

Sample: AD-400-072023	Lab ID:	50349809019	Collected	d: 07/20/23	3 12:00	Received: 07	7/20/23 16:45	Matrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 50	030/8260						
	•	ytical Services -		lis					
Acetone	ND	ug/L	100	7.4	1		07/25/23 16:2	23 67-64-1	
Acrolein	ND	ug/L	50.0	21.9	1		07/25/23 16:2	23 107-02-8	
Acrylonitrile	ND	ug/L	100	2.3	1		07/25/23 16:2	23 107-13-1	
Benzene	ND	ug/L	5.0	0.41	1		07/25/23 16:2	23 71-43-2	
Bromobenzene	ND	ug/L	5.0	0.40	1		07/25/23 16:2		
Bromochloromethane	ND	ug/L	5.0	0.44	1		07/25/23 16:2	23 74-97-5	
Bromodichloromethane	ND	ug/L	5.0	0.62	1		07/25/23 16:2		
Bromoform	ND	ug/L	5.0	0.91	1		07/25/23 16:2		
Bromomethane	ND	ug/L	5.0	0.86	1		07/25/23 16:2		
2-Butanone (MEK)	ND	ug/L	25.0	4.7	1		07/25/23 16:2		
n-Butylbenzene	ND	ug/L	5.0	0.36	1		07/25/23 16:2		
sec-Butylbenzene	ND	ug/L	5.0	0.29	1		07/25/23 16:2		
ert-Butylbenzene	ND	ug/L	5.0	0.28	1		07/25/23 16:2		
Carbon disulfide	ND	ug/L	10.0	0.91	1		07/25/23 16:2		
Carbon tetrachloride	ND	ug/L	5.0	0.47	1		07/25/23 16:2		
Chlorobenzene	ND	ug/L	5.0	0.30	1		07/25/23 16:2		
Chloroethane	ND	ug/L	5.0	0.50	1		07/25/23 16:2		
Chloroform	ND ND	ug/L ug/L	5.0	0.50	1		07/25/23 16:2		
Chloromethane	ND ND	ug/L ug/L	5.0	0.53	1		07/25/23 16:2		
2-Chlorotoluene	ND ND	_	5.0	0.33	1		07/25/23 16:2		
I-Chlorotoluene	ND ND	ug/L	5.0	0.42	1		07/25/23 16:2		
Dibromochloromethane	ND ND	ug/L	5.0	0.41	1		07/25/23 16:2		
	ND ND	ug/L	5.0	0.61	1		07/25/23 16:2		
1,2-Dibromoethane (EDB)		ug/L			1				
Dibromomethane	ND	ug/L	5.0	1.1	1		07/25/23 16:2		
1,2-Dichlorobenzene	ND	ug/L	5.0	0.46			07/25/23 16:2		
1,3-Dichlorobenzene	ND	ug/L	5.0	0.43	1		07/25/23 16:2		
1,4-Dichlorobenzene	ND	ug/L	5.0	0.40	1		07/25/23 16:2		
rans-1,4-Dichloro-2-butene	ND	ug/L	100	1.8	1		07/25/23 16:2		
Dichlorodifluoromethane	ND	ug/L	5.0	1.1	1		07/25/23 16:2		
1,1-Dichloroethane	ND	ug/L	5.0	0.42	1		07/25/23 16:2		
1,2-Dichloroethane	ND	ug/L	5.0	0.61	1		07/25/23 16:2		
I,1-Dichloroethene	ND	ug/L	5.0	0.55	1		07/25/23 16:2		
cis-1,2-Dichloroethene	ND	ug/L	5.0	0.67	1		07/25/23 16:2		
rans-1,2-Dichloroethene	ND	ug/L	5.0	0.51	1		07/25/23 16:2		
1,2-Dichloropropane	ND	ug/L	5.0	0.64	1		07/25/23 16:2		
,3-Dichloropropane	ND	ug/L	5.0	0.59	1		07/25/23 16:2		
2,2-Dichloropropane	ND	ug/L	5.0	0.49	1		07/25/23 16:2		
,1-Dichloropropene	ND	ug/L	5.0	0.57	1		07/25/23 16:2		
cis-1,3-Dichloropropene	ND	ug/L	5.0	0.32	1			23 10061-01-5	
rans-1,3-Dichloropropene	ND	ug/L	5.0	0.36	1			23 10061-02-6	
Ethylbenzene	ND	ug/L	5.0	0.40	1		07/25/23 16:2	23 100-41-4	
Ethyl methacrylate	ND	ug/L	100	0.94	1		07/25/23 16:2		
Hexachloro-1,3-butadiene	ND	ug/L	5.0	0.48	1		07/25/23 16:2	23 87-68-3	
n-Hexane	ND	ug/L	5.0	0.57	1		07/25/23 16:2	23 110-54-3	
2-Hexanone	ND	ug/L	25.0	3.0	1		07/25/23 16:2	23 591-78-6	

Project: GE Indy
Pace Project No.: 50349809

Date: 08/04/2023 05:01 PM

Sample: AD-400-072023	Lab ID:	50349809019	Collected	d: 07/20/2	3 12:00	Received: 07	7/20/23 16:45 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Ana	lytical Services	- Indianapo	lis					
lodomethane	ND	ug/L	10.0	0.28	1		07/25/23 16:23	74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	5.0	0.29	1		07/25/23 16:23	98-82-8	
p-lsopropyltoluene	ND	ug/L	5.0	0.34	1		07/25/23 16:23	99-87-6	
Methylene Chloride	ND	ug/L	5.0	3.2	1		07/25/23 16:23	75-09-2	
1-Methylnaphthalene	ND	ug/L	10.0	0.45	1		07/25/23 16:23	90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	0.46	1		07/25/23 16:23	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	2.8	1		07/25/23 16:23	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	4.0	0.56	1		07/25/23 16:23	1634-04-4	
Naphthalene	ND	ug/L	1.2	0.44	1		07/25/23 16:23	91-20-3	
n-Propylbenzene	ND	ug/L	5.0	0.36	1		07/25/23 16:23	103-65-1	
Styrene	ND	ug/L	5.0	0.40	1		07/25/23 16:23	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.41	1		07/25/23 16:23	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.65	1		07/25/23 16:23		
Tetrachloroethene	ND	ug/L	5.0	0.38	1		07/25/23 16:23	127-18-4	
Toluene	ND	ug/L	5.0	0.34	1		07/25/23 16:23	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	0.46	1		07/25/23 16:23	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	5.0	0.51	1		07/25/23 16:23		
1,1,1-Trichloroethane	ND	ug/L	5.0	0.57	1		07/25/23 16:23	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	5.0	0.81	1		07/25/23 16:23	79-00-5	
Trichloroethene	ND	ug/L	5.0	0.65	1		07/25/23 16:23	79-01-6	
Trichlorofluoromethane	ND	ug/L	5.0	0.70	1		07/25/23 16:23	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	5.0	1.2	1		07/25/23 16:23	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/L	5.0	0.41	1		07/25/23 16:23	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.36	1		07/25/23 16:23	108-67-8	
Vinyl acetate	ND	ug/L	50.0	0.84	1		07/25/23 16:23		
Vinyl chloride	ND	ug/L	2.0	0.53	1		07/25/23 16:23		
Xylene (Total)	ND	ug/L	10.0	0.48	1		07/25/23 16:23		
Surrogates		- 3							
Dibromofluoromethane (S)	119	%.	82-128		1		07/25/23 16:23	1868-53-7	
4-Bromofluorobenzene (S)	111	%.	79-124		1		07/25/23 16:23	460-00-4	
Toluene-d8 (S)	100	%.	73-122		1		07/25/23 16:23	2037-26-5	

Project: GE Indy
Pace Project No.: 50349809

Date: 08/04/2023 05:01 PM

Sample: MW-241-072023	Lab ID:	50349809020	Collected	l: 07/20/23	3 12:45	Received: 07	7/20/23 16:45	Matrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	•	lytical Services		is					
Acetone	ND	ug/L	100	7.4	1		07/25/23 16:5	57 67-64-1	
Acrolein	ND	ug/L	50.0	21.9	1		07/25/23 16:5		
Acrylonitrile	ND	ug/L	100	2.3	1		07/25/23 16:5		
Benzene	ND	ug/L	5.0	0.41	1		07/25/23 16:5		
Bromobenzene	ND	ug/L	5.0	0.40	1		07/25/23 16:5		
Bromochloromethane	ND	ug/L	5.0	0.44	1		07/25/23 16:5		
Bromodichloromethane	ND	ug/L	5.0	0.62	1		07/25/23 16:5		
Bromoform	ND	ug/L	5.0	0.91	1		07/25/23 16:5		
Bromomethane	ND	ug/L	5.0	0.86	1		07/25/23 16:5		
2-Butanone (MEK)	ND ND	ug/L ug/L	25.0	4.7	1		07/25/23 16:5		
n-Butylbenzene	ND ND	ug/L	5.0	0.36	1		07/25/23 16:5		
sec-Butylbenzene	ND ND	ug/L ug/L	5.0	0.30	1		07/25/23 16:5		
ert-Butylbenzene	ND ND	ug/L ug/L	5.0	0.28	1		07/25/23 16:5		
Carbon disulfide	ND ND	ug/L ug/L	10.0	0.20	1		07/25/23 16:5		
Carbon tetrachloride	ND ND	-	5.0	0.47	1		07/25/23 16:5		
		ug/L			1				
Chlorobenzene	ND	ug/L	5.0	0.30			07/25/23 16:5		
Chloroethane	ND	ug/L	5.0	0.50	1		07/25/23 16:5		
Chloroform	ND	ug/L	5.0	0.50	1		07/25/23 16:5		
Chloromethane	ND	ug/L	5.0	0.53	1		07/25/23 16:5		
2-Chlorotoluene	ND	ug/L	5.0	0.42	1		07/25/23 16:5		
I-Chlorotoluene	ND	ug/L	5.0	0.41	1		07/25/23 16:5		
Dibromochloromethane	ND	ug/L	5.0	0.61	1		07/25/23 16:5		
I,2-Dibromoethane (EDB)	ND	ug/L	5.0	0.68	1		07/25/23 16:5		
Dibromomethane	ND	ug/L	5.0	1.1	1		07/25/23 16:5		
1,2-Dichlorobenzene	ND	ug/L	5.0	0.46	1		07/25/23 16:5		
1,3-Dichlorobenzene	ND	ug/L	5.0	0.43	1		07/25/23 16:5		
1,4-Dichlorobenzene	ND	ug/L	5.0	0.40	1		07/25/23 16:5		
rans-1,4-Dichloro-2-butene	ND	ug/L	100	1.8	1		07/25/23 16:5		
Dichlorodifluoromethane	ND	ug/L	5.0	1.1	1		07/25/23 16:5		
I,1-Dichloroethane	ND	ug/L	5.0	0.42	1		07/25/23 16:5		
1,2-Dichloroethane	ND	ug/L	5.0	0.61	1		07/25/23 16:5	57 107-06-2	
1,1-Dichloroethene	ND	ug/L	5.0	0.55	1		07/25/23 16:5	57 75-35-4	
cis-1,2-Dichloroethene	ND	ug/L	5.0	0.67	1		07/25/23 16:5	57 156-59-2	
rans-1,2-Dichloroethene	ND	ug/L	5.0	0.51	1		07/25/23 16:5	57 156-60-5	
,2-Dichloropropane	ND	ug/L	5.0	0.64	1		07/25/23 16:5	57 78-87-5	
,3-Dichloropropane	ND	ug/L	5.0	0.59	1		07/25/23 16:5	57 142-28-9	
2,2-Dichloropropane	ND	ug/L	5.0	0.49	1		07/25/23 16:5	57 594-20-7	
,1-Dichloropropene	ND	ug/L	5.0	0.57	1		07/25/23 16:5	57 563-58-6	
cis-1,3-Dichloropropene	ND	ug/L	5.0	0.32	1		07/25/23 16:5	57 10061-01-5	
rans-1,3-Dichloropropene	ND	ug/L	5.0	0.36	1		07/25/23 16:5	57 10061-02-6	
Ethylbenzene	ND	ug/L	5.0	0.40	1		07/25/23 16:5	57 100-41-4	
Ethyl methacrylate	ND	ug/L	100	0.94	1		07/25/23 16:5	57 97-63-2	
Hexachloro-1,3-butadiene	ND	ug/L	5.0	0.48	1		07/25/23 16:5	57 87-68-3	
n-Hexane	ND	ug/L	5.0	0.57	1		07/25/23 16:5		
2-Hexanone	ND	ug/L	25.0	3.0	1		07/25/23 16:5		

Project: GE Indy
Pace Project No.: 50349809

Date: 08/04/2023 05:01 PM

Sample: MW-241-072023	Lab ID:	50349809020	Collecte	d: 07/20/2	3 12:45	Received: 07	7/20/23 16:45 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	5030/8260						
	Pace Anal	lytical Services	- Indianapo	lis					
lodomethane	ND	ug/L	10.0	0.28	1		07/25/23 16:57	74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	5.0	0.29	1		07/25/23 16:57	98-82-8	
p-lsopropyltoluene	ND	ug/L	5.0	0.34	1		07/25/23 16:57	99-87-6	
Methylene Chloride	ND	ug/L	5.0	3.2	1		07/25/23 16:57	75-09-2	
1-Methylnaphthalene	ND	ug/L	10.0	0.45	1		07/25/23 16:57	90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	0.46	1		07/25/23 16:57	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	2.8	1		07/25/23 16:57	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	4.0	0.56	1		07/25/23 16:57	1634-04-4	
Naphthalene	ND	ug/L	1.2	0.44	1		07/25/23 16:57	91-20-3	
n-Propylbenzene	ND	ug/L	5.0	0.36	1		07/25/23 16:57	103-65-1	
Styrene	ND	ug/L	5.0	0.40	1		07/25/23 16:57	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.41	1		07/25/23 16:57	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.65	1		07/25/23 16:57	79-34-5	
Tetrachloroethene	ND	ug/L	5.0	0.38	1		07/25/23 16:57	127-18-4	
Toluene	ND	ug/L	5.0	0.34	1		07/25/23 16:57	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	0.46	1		07/25/23 16:57	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	5.0	0.51	1		07/25/23 16:57	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	5.0	0.57	1		07/25/23 16:57	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	5.0	0.81	1		07/25/23 16:57	79-00-5	
Trichloroethene	ND	ug/L	5.0	0.65	1		07/25/23 16:57	79-01-6	
Trichlorofluoromethane	ND	ug/L	5.0	0.70	1		07/25/23 16:57	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	5.0	1.2	1		07/25/23 16:57	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/L	5.0	0.41	1		07/25/23 16:57	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.36	1		07/25/23 16:57	108-67-8	
Vinyl acetate	ND	ug/L	50.0	0.84	1		07/25/23 16:57	108-05-4	
Vinyl chloride	ND	ug/L	2.0	0.53	1		07/25/23 16:57	75-01-4	
Xylene (Total)	ND	ug/L	10.0	0.48	1		07/25/23 16:57		
Surrogates		Č							
Dibromofluoromethane (S)	121	%.	82-128		1		07/25/23 16:57	1868-53-7	
4-Bromofluorobenzene (S)	112	%.	79-124		1		07/25/23 16:57	460-00-4	
Toluene-d8 (S)	101	%.	73-122		1		07/25/23 16:57	2037-26-5	

Project: GE Indy
Pace Project No.: 50349809

Date: 08/04/2023 05:01 PM

Sample: MW-32-072023	Lab ID:	50349809021	Collected	d: 07/20/23	3 13:40	Received: 07	7/20/23 16:45	Matrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
3260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	•	ytical Services		lis					
Acetone	ND	ug/L	100	7.4	1		07/25/23 17:3	31 67-64-1	
Acrolein	ND	ug/L	50.0	21.9	1		07/25/23 17:3		
Acrylonitrile	ND	ug/L	100	2.3	1		07/25/23 17:3		
Benzene	ND	ug/L	5.0	0.41	1		07/25/23 17:3		
Bromobenzene	ND	ug/L	5.0	0.40	1		07/25/23 17:3		
Bromochloromethane	ND	ug/L	5.0	0.44	1		07/25/23 17:3		
Bromodichloromethane	ND	ug/L	5.0	0.62	1		07/25/23 17:3		
Bromoform	ND	ug/L	5.0	0.91	1		07/25/23 17:3		
Bromomethane	ND	ug/L	5.0	0.86	1		07/25/23 17:3		
2-Butanone (MEK)	ND	ug/L ug/L	25.0	4.7	1		07/25/23 17:3		
n-Butylbenzene	ND ND	ug/L ug/L	5.0	0.36	1		07/25/23 17:3		
sec-Butylbenzene	ND ND	ug/L ug/L	5.0	0.30	1		07/25/23 17:3		
ert-Butylbenzene	ND ND	ug/L ug/L	5.0	0.28	1		07/25/23 17:3		
Carbon disulfide	ND	ug/L	10.0	0.20	1		07/25/23 17:3		
Carbon tetrachloride	ND	ug/L ug/L	5.0	0.47	1		07/25/23 17:3		
Chlorobenzene	ND ND	-	5.0	0.47	1		07/25/23 17:3		
		ug/L		0.50					
Chloroethane	ND	ug/L	5.0		1 1		07/25/23 17:3		
Chloroform	ND	ug/L	5.0	0.50			07/25/23 17:3		
Chloromethane	ND	ug/L	5.0	0.53	1		07/25/23 17:3		
2-Chlorotoluene	ND	ug/L	5.0	0.42	1		07/25/23 17:3		
1-Chlorotoluene	ND	ug/L	5.0	0.41	1		07/25/23 17:3		
Dibromochloromethane	ND	ug/L	5.0	0.61	1		07/25/23 17:3		
I,2-Dibromoethane (EDB)	ND	ug/L	5.0	0.68	1		07/25/23 17:3		
Dibromomethane	ND	ug/L	5.0	1.1	1		07/25/23 17:3		
1,2-Dichlorobenzene	ND	ug/L	5.0	0.46	1		07/25/23 17:3		
1,3-Dichlorobenzene	ND	ug/L	5.0	0.43	1		07/25/23 17:3		
1,4-Dichlorobenzene	ND	ug/L	5.0	0.40	1		07/25/23 17:3		
rans-1,4-Dichloro-2-butene	ND	ug/L	100	1.8	1		07/25/23 17:3		
Dichlorodifluoromethane	ND	ug/L	5.0	1.1	1		07/25/23 17:3		
1,1-Dichloroethane	ND	ug/L	5.0	0.42	1		07/25/23 17:3		
1,2-Dichloroethane	ND	ug/L	5.0	0.61	1		07/25/23 17:3		
1,1-Dichloroethene	ND	ug/L	5.0	0.55	1		07/25/23 17:3		
cis-1,2-Dichloroethene	ND	ug/L	5.0	0.67	1		07/25/23 17:3		
rans-1,2-Dichloroethene	ND	ug/L	5.0	0.51	1		07/25/23 17:3		
,2-Dichloropropane	ND	ug/L	5.0	0.64	1		07/25/23 17:3		
,3-Dichloropropane	ND	ug/L	5.0	0.59	1		07/25/23 17:3	31 142-28-9	
2,2-Dichloropropane	ND	ug/L	5.0	0.49	1		07/25/23 17:3		
1,1-Dichloropropene	ND	ug/L	5.0	0.57	1		07/25/23 17:3		
cis-1,3-Dichloropropene	ND	ug/L	5.0	0.32	1			1 10061-01-5	
rans-1,3-Dichloropropene	ND	ug/L	5.0	0.36	1		07/25/23 17:3	1 10061-02-6	
Ethylbenzene	ND	ug/L	5.0	0.40	1		07/25/23 17:3	31 100-41-4	
Ethyl methacrylate	ND	ug/L	100	0.94	1		07/25/23 17:3	31 97-63-2	
Hexachloro-1,3-butadiene	ND	ug/L	5.0	0.48	1		07/25/23 17:3	81 87-68-3	
n-Hexane	ND	ug/L	5.0	0.57	1		07/25/23 17:3	31 110-54-3	
2-Hexanone	ND	ug/L	25.0	3.0	1		07/25/23 17:3	31 591-78-6	

Project: GE Indy
Pace Project No.: 50349809

Date: 08/04/2023 05:01 PM

Sample: MW-32-072023	Lab ID:	50349809021	Collecte	d: 07/20/2	3 13:40	Received: 07	7/20/23 16:45 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Anal	ytical Services	- Indianapo	lis					
lodomethane	ND	ug/L	10.0	0.28	1		07/25/23 17:31	74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	5.0	0.29	1		07/25/23 17:31	98-82-8	
p-Isopropyltoluene	ND	ug/L	5.0	0.34	1		07/25/23 17:31	99-87-6	
Methylene Chloride	ND	ug/L	5.0	3.2	1		07/25/23 17:31	75-09-2	
1-Methylnaphthalene	ND	ug/L	10.0	0.45	1		07/25/23 17:31	90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	0.46	1		07/25/23 17:31	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	2.8	1		07/25/23 17:31	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	4.0	0.56	1		07/25/23 17:31	1634-04-4	
Naphthalene	ND	ug/L	1.2	0.44	1		07/25/23 17:31	91-20-3	
n-Propylbenzene	ND	ug/L	5.0	0.36	1		07/25/23 17:31	103-65-1	
Styrene	ND	ug/L	5.0	0.40	1		07/25/23 17:31	100-42-5	
1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.41	1		07/25/23 17:31	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.65	1		07/25/23 17:31	79-34-5	
Tetrachloroethene	ND	ug/L	5.0	0.38	1		07/25/23 17:31	127-18-4	
Toluene	ND	ug/L	5.0	0.34	1		07/25/23 17:31	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	0.46	1		07/25/23 17:31	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	5.0	0.51	1		07/25/23 17:31	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	5.0	0.57	1		07/25/23 17:31	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	5.0	0.81	1		07/25/23 17:31	79-00-5	
Trichloroethene	ND	ug/L	5.0	0.65	1		07/25/23 17:31		
Trichlorofluoromethane	ND	ug/L	5.0	0.70	1		07/25/23 17:31		
1,2,3-Trichloropropane	ND	ug/L	5.0	1.2	1		07/25/23 17:31		
1,2,4-Trimethylbenzene	ND	ug/L	5.0	0.41	1		07/25/23 17:31	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.36	1		07/25/23 17:31		
Vinyl acetate	ND	ug/L	50.0	0.84	1		07/25/23 17:31		
Vinyl chloride	ND	ug/L	2.0	0.53	1		07/25/23 17:31		
Xylene (Total)	ND	ug/L	10.0	0.48	1		07/25/23 17:31		
Surrogates	. 15	~ 9 , –		00	•		2.720,20 .7.01		
Dibromofluoromethane (S)	120	%.	82-128		1		07/25/23 17:31	1868-53-7	
4-Bromofluorobenzene (S)	112	%.	79-124		1		07/25/23 17:31	460-00-4	
Toluene-d8 (S)	102	%.	73-122		1		07/25/23 17:31		

Project: GE Indy
Pace Project No.: 50349809

Date: 08/04/2023 05:01 PM

Pace Project No.: 50349809							
Sample: MW-33-072023	Lab ID:	50349809022	Collected	: 07/20/23	13:45	Received: 07/20/23 16:45 Matrix: Water	
			Report				
Parameters	Results	Units	Limit	MDL .	DF_	Prepared Analyzed CAS No.	Qual
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260				
		lytical Services		s			
Acetone	ND	•	100	7.4	1	07/25/23 18:05 67-64-1	
Acrolein		ug/L			1		
	ND	ug/L	50.0	21.9 2.3	1	07/25/23 18:05 107-02-8	
Acrylonitrile	ND	ug/L	100			07/25/23 18:05 107-13-1	
Benzene	ND	ug/L	5.0	0.41	1	07/25/23 18:05 71-43-2	
Bromobenzene	ND	ug/L	5.0	0.40	1	07/25/23 18:05 108-86-1	
Bromochloromethane	ND	ug/L	5.0	0.44	1	07/25/23 18:05 74-97-5	
Bromodichloromethane	ND	ug/L	5.0	0.62	1	07/25/23 18:05 75-27-4	
Bromoform	ND	ug/L	5.0	0.91	1	07/25/23 18:05 75-25-2	
Bromomethane	ND	ug/L	5.0	0.86	1	07/25/23 18:05 74-83-9	
2-Butanone (MEK)	ND	ug/L	25.0	4.7	1	07/25/23 18:05 78-93-3	
n-Butylbenzene	ND	ug/L	5.0	0.36	1	07/25/23 18:05 104-51-8	
sec-Butylbenzene	ND	ug/L	5.0	0.29	1	07/25/23 18:05 135-98-8	
tert-Butylbenzene	ND	ug/L	5.0	0.28	1	07/25/23 18:05 98-06-6	
Carbon disulfide	ND	ug/L	10.0	0.91	1	07/25/23 18:05 75-15-0	
Carbon tetrachloride	ND	ug/L	5.0	0.47	1	07/25/23 18:05 56-23-5	
Chlorobenzene	ND	ug/L	5.0	0.30	1	07/25/23 18:05 108-90-7	
Chloroethane	ND	ug/L	5.0	0.50	1	07/25/23 18:05 75-00-3	
Chloroform	ND	ug/L	5.0	0.50	1	07/25/23 18:05 67-66-3	
Chloromethane	ND	ug/L	5.0	0.53	1	07/25/23 18:05 74-87-3	
2-Chlorotoluene	ND	ug/L	5.0	0.42	1	07/25/23 18:05 95-49-8	
4-Chlorotoluene	ND	ug/L	5.0	0.41	1	07/25/23 18:05 106-43-4	
Dibromochloromethane	ND	ug/L	5.0	0.61	1	07/25/23 18:05 124-48-1	
1,2-Dibromoethane (EDB)	ND	ug/L	5.0	0.68	1	07/25/23 18:05 106-93-4	
Dibromomethane	ND	ug/L	5.0	1.1	1	07/25/23 18:05 74-95-3	
1,2-Dichlorobenzene	ND	ug/L	5.0	0.46	1	07/25/23 18:05 95-50-1	
1,3-Dichlorobenzene	ND	ug/L	5.0	0.43	1	07/25/23 18:05 541-73-1	
1,4-Dichlorobenzene	ND	ug/L	5.0	0.40	1	07/25/23 18:05 106-46-7	
trans-1,4-Dichloro-2-butene	ND ND	ug/L ug/L	100	1.8	1	07/25/23 18:05 110-57-6	
Dichlorodifluoromethane	ND ND	_	5.0	1.1	1	07/25/23 18:05 75-71-8	
		ug/L		0.42	1		
1,1-Dichloroethane	ND	ug/L	5.0			07/25/23 18:05 75-34-3	
1,2-Dichloroethane	ND	ug/L	5.0	0.61	1	07/25/23 18:05 107-06-2	
1,1-Dichloroethene	ND	ug/L	5.0	0.55	1	07/25/23 18:05 75-35-4	
cis-1,2-Dichloroethene	ND	ug/L	5.0	0.67	1	07/25/23 18:05 156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	5.0	0.51	1	07/25/23 18:05 156-60-5	
1,2-Dichloropropane	ND	ug/L	5.0	0.64	1	07/25/23 18:05 78-87-5	
1,3-Dichloropropane	ND	ug/L	5.0	0.59	1	07/25/23 18:05 142-28-9	
2,2-Dichloropropane	ND	ug/L	5.0	0.49	1	07/25/23 18:05 594-20-7	
1,1-Dichloropropene	ND	ug/L	5.0	0.57	1	07/25/23 18:05 563-58-6	
cis-1,3-Dichloropropene	ND	ug/L	5.0	0.32	1	07/25/23 18:05 10061-01-5	
trans-1,3-Dichloropropene	ND	ug/L	5.0	0.36	1	07/25/23 18:05 10061-02-6	
Ethylbenzene	ND	ug/L	5.0	0.40	1	07/25/23 18:05 100-41-4	
Ethyl methacrylate	ND	ug/L	100	0.94	1	07/25/23 18:05 97-63-2	
Hexachloro-1,3-butadiene	ND	ug/L	5.0	0.48	1	07/25/23 18:05 87-68-3	
n-Hexane	ND	ug/L	5.0	0.57	1	07/25/23 18:05 110-54-3	
2-Hexanone	ND	ug/L	25.0	3.0	1	07/25/23 18:05 591-78-6	

Project: GE Indy
Pace Project No.: 50349809

Date: 08/04/2023 05:01 PM

Sample: MW-33-072023	Lab ID:	50349809022	Collecte	d: 07/20/23	3 13:45	Received: 07	7/20/23 16:45 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Ana	lytical Services	- Indianapo	lis					
lodomethane	ND	ug/L	10.0	0.28	1		07/25/23 18:05	74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	5.0	0.29	1		07/25/23 18:05	98-82-8	
p-Isopropyltoluene	ND	ug/L	5.0	0.34	1		07/25/23 18:05	99-87-6	
Methylene Chloride	ND	ug/L	5.0	3.2	1		07/25/23 18:05	75-09-2	
1-Methylnaphthalene	ND	ug/L	10.0	0.45	1		07/25/23 18:05	90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	0.46	1		07/25/23 18:05	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	2.8	1		07/25/23 18:05	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	4.0	0.56	1		07/25/23 18:05	1634-04-4	
Naphthalene	ND	ug/L	1.2	0.44	1		07/25/23 18:05	91-20-3	
n-Propylbenzene	ND	ug/L	5.0	0.36	1		07/25/23 18:05	103-65-1	
Styrene	ND	ug/L	5.0	0.40	1		07/25/23 18:05	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.41	1		07/25/23 18:05	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.65	1		07/25/23 18:05	79-34-5	
Tetrachloroethene	ND	ug/L	5.0	0.38	1		07/25/23 18:05	127-18-4	
Toluene	ND	ug/L	5.0	0.34	1		07/25/23 18:05	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	0.46	1		07/25/23 18:05	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	5.0	0.51	1		07/25/23 18:05	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	5.0	0.57	1		07/25/23 18:05	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	5.0	0.81	1		07/25/23 18:05	79-00-5	
Trichloroethene	ND	ug/L	5.0	0.65	1		07/25/23 18:05	79-01-6	
Trichlorofluoromethane	ND	ug/L	5.0	0.70	1		07/25/23 18:05	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	5.0	1.2	1		07/25/23 18:05	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/L	5.0	0.41	1		07/25/23 18:05	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.36	1		07/25/23 18:05	108-67-8	
Vinyl acetate	ND	ug/L	50.0	0.84	1		07/25/23 18:05	108-05-4	
Vinyl chloride	ND	ug/L	2.0	0.53	1		07/25/23 18:05		
Xylene (Total)	ND	ug/L	10.0	0.48	1		07/25/23 18:05		
Surrogates		- 3 -							
Dibromofluoromethane (S)	122	%.	82-128		1		07/25/23 18:05	1868-53-7	
4-Bromofluorobenzene (S)	108	%.	79-124		1		07/25/23 18:05	460-00-4	
Toluene-d8 (S)	101	%.	73-122		1		07/25/23 18:05	2037-26-5	

Project: GE Indy
Pace Project No.: 50349809

Date: 08/04/2023 05:01 PM

Sample: Trip Blank-072023	Lab ID:	50349809023	Collected	d: 07/19/23	3 08:00	Received: 07	7/20/23 16:45 I	Matrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	•	lytical Services		lis					
Acetone	ND	ug/L	100	7.4	1		07/25/23 18:3	9 67-64-1	
Acrolein	ND	ug/L	50.0	21.9	1		07/25/23 18:3	9 107-02-8	
Acrylonitrile	ND	ug/L	100	2.3	1		07/25/23 18:3	9 107-13-1	
Benzene	ND	ug/L	5.0	0.41	1		07/25/23 18:3	9 71-43-2	
Bromobenzene	ND	ug/L	5.0	0.40	1		07/25/23 18:3	9 108-86-1	
Bromochloromethane	ND	ug/L	5.0	0.44	1		07/25/23 18:3	9 74-97-5	
Bromodichloromethane	ND	ug/L	5.0	0.62	1		07/25/23 18:3	9 75-27-4	
Bromoform	ND	ug/L	5.0	0.91	1		07/25/23 18:3	9 75-25-2	
Bromomethane	ND	ug/L	5.0	0.86	1		07/25/23 18:3	9 74-83-9	
2-Butanone (MEK)	ND	ug/L	25.0	4.7	1		07/25/23 18:3		
n-Butylbenzene	ND	ug/L	5.0	0.36	1		07/25/23 18:3		
sec-Butylbenzene	ND	ug/L	5.0	0.29	1		07/25/23 18:3	9 135-98-8	
ert-Butylbenzene	ND	ug/L	5.0	0.28	1		07/25/23 18:3	98-06-6	
Carbon disulfide	ND	ug/L	10.0	0.91	1		07/25/23 18:3	9 75-15-0	
Carbon tetrachloride	ND	ug/L	5.0	0.47	1		07/25/23 18:3	9 56-23-5	
Chlorobenzene	ND	ug/L	5.0	0.30	1		07/25/23 18:3		
Chloroethane	ND	ug/L	5.0	0.50	1		07/25/23 18:3	9 75-00-3	
Chloroform	ND	ug/L	5.0	0.50	1		07/25/23 18:3	9 67-66-3	
Chloromethane	ND	ug/L	5.0	0.53	1		07/25/23 18:3	9 74-87-3	
2-Chlorotoluene	ND	ug/L	5.0	0.42	1		07/25/23 18:3	95-49-8	
1-Chlorotoluene	ND	ug/L	5.0	0.41	1		07/25/23 18:3		
Dibromochloromethane	ND	ug/L	5.0	0.61	1		07/25/23 18:3	9 124-48-1	
,2-Dibromoethane (EDB)	ND	ug/L	5.0	0.68	1		07/25/23 18:3	9 106-93-4	
Dibromomethane	ND	ug/L	5.0	1.1	1		07/25/23 18:3	9 74-95-3	
1,2-Dichlorobenzene	ND	ug/L	5.0	0.46	1		07/25/23 18:3	95-50-1	
1,3-Dichlorobenzene	ND	ug/L	5.0	0.43	1		07/25/23 18:3		
1,4-Dichlorobenzene	ND	ug/L	5.0	0.40	1		07/25/23 18:3	9 106-46-7	
rans-1,4-Dichloro-2-butene	ND	ug/L	100	1.8	1		07/25/23 18:3	9 110-57-6	
Dichlorodifluoromethane	ND	ug/L	5.0	1.1	1		07/25/23 18:3	9 75-71-8	
1,1-Dichloroethane	ND	ug/L	5.0	0.42	1		07/25/23 18:3	9 75-34-3	
1,2-Dichloroethane	ND	ug/L	5.0	0.61	1		07/25/23 18:3	9 107-06-2	
1,1-Dichloroethene	ND	ug/L	5.0	0.55	1		07/25/23 18:3	9 75-35-4	
cis-1,2-Dichloroethene	ND	ug/L	5.0	0.67	1		07/25/23 18:3	9 156-59-2	
rans-1,2-Dichloroethene	ND	ug/L	5.0	0.51	1		07/25/23 18:3	9 156-60-5	
,2-Dichloropropane	ND	ug/L	5.0	0.64	1		07/25/23 18:3	9 78-87-5	
,3-Dichloropropane	ND	ug/L	5.0	0.59	1		07/25/23 18:3	9 142-28-9	
2,2-Dichloropropane	ND	ug/L	5.0	0.49	1		07/25/23 18:3	9 594-20-7	
,1-Dichloropropene	ND	ug/L	5.0	0.57	1		07/25/23 18:3		
cis-1,3-Dichloropropene	ND	ug/L	5.0	0.32	1		07/25/23 18:3	9 10061-01-5	
rans-1,3-Dichloropropene	ND	ug/L	5.0	0.36	1			9 10061-02-6	
Ethylbenzene	ND	ug/L	5.0	0.40	1		07/25/23 18:3		
Ethyl methacrylate	ND	ug/L	100	0.94	1		07/25/23 18:3	9 97-63-2	
Hexachloro-1,3-butadiene	ND	ug/L	5.0	0.48	1		07/25/23 18:3	9 87-68-3	
n-Hexane	ND	ug/L	5.0	0.57	1		07/25/23 18:3		
2-Hexanone	ND	ug/L	25.0	3.0	1		07/25/23 18:3		

Project: GE Indy
Pace Project No.: 50349809

Date: 08/04/2023 05:01 PM

Sample: Trip Blank-072023	Lab ID:	50349809023	Collected	d: 07/19/23	3 08:00	Received: 07	7/20/23 16:45 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Ana	lytical Services	- Indianapo	lis					
lodomethane	ND	ug/L	10.0	0.28	1		07/25/23 18:39	74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	5.0	0.29	1		07/25/23 18:39	98-82-8	
p-lsopropyltoluene	ND	ug/L	5.0	0.34	1		07/25/23 18:39	99-87-6	
Methylene Chloride	ND	ug/L	5.0	3.2	1		07/25/23 18:39	75-09-2	
1-Methylnaphthalene	ND	ug/L	10.0	0.45	1		07/25/23 18:39	90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	0.46	1		07/25/23 18:39	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	2.8	1		07/25/23 18:39	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	4.0	0.56	1		07/25/23 18:39	1634-04-4	
Naphthalene	ND	ug/L	1.2	0.44	1		07/25/23 18:39	91-20-3	
n-Propylbenzene	ND	ug/L	5.0	0.36	1		07/25/23 18:39	103-65-1	
Styrene	ND	ug/L	5.0	0.40	1		07/25/23 18:39	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.41	1		07/25/23 18:39	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.65	1		07/25/23 18:39	79-34-5	
Tetrachloroethene	ND	ug/L	5.0	0.38	1		07/25/23 18:39	127-18-4	
Toluene	ND	ug/L	5.0	0.34	1		07/25/23 18:39	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	0.46	1		07/25/23 18:39	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	5.0	0.51	1		07/25/23 18:39		
1,1,1-Trichloroethane	ND	ug/L	5.0	0.57	1		07/25/23 18:39	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	5.0	0.81	1		07/25/23 18:39	79-00-5	
Trichloroethene	ND	ug/L	5.0	0.65	1		07/25/23 18:39	79-01-6	
Trichlorofluoromethane	ND	ug/L	5.0	0.70	1		07/25/23 18:39	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	5.0	1.2	1		07/25/23 18:39		
1,2,4-Trimethylbenzene	ND	ug/L	5.0	0.41	1		07/25/23 18:39	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.36	1		07/25/23 18:39	108-67-8	
Vinyl acetate	ND	ug/L	50.0	0.84	1		07/25/23 18:39	108-05-4	
Vinyl chloride	ND	ug/L	2.0	0.53	1		07/25/23 18:39	75-01-4	
Xylene (Total)	ND	ug/L	10.0	0.48	1		07/25/23 18:39	1330-20-7	
Surrogates		Ü							
Dibromofluoromethane (S)	124	%.	82-128		1		07/25/23 18:39	1868-53-7	
4-Bromofluorobenzene (S)	116	%.	79-124		1		07/25/23 18:39	460-00-4	
Toluene-d8 (S)	110	%.	73-122		1		07/25/23 18:39	2037-26-5	

Project: GE Indy
Pace Project No.: 50349809

Date: 08/04/2023 05:01 PM

QC Batch: 745588
QC Batch Method: EPA 300.0

Analysis Method: EPA 300.0
Analysis Description: 300.0 IC Anions

Laboratory:

Pace Analytical Services - Indianapolis

Associated Lab Samples: 50349809001, 50349809002

METHOD BLANK: 3418084 Matrix: Water

Associated Lab Samples: 50349809001, 50349809002

Blank Reporting
Parameter Units Result Limit MDL Analyzed Qualifiers

Sulfate ug/L ND 250 190 07/27/23 23:21

LABORATORY CONTROL SAMPLE: 3418085

Spike LCS LCS % Rec Limits Parameter Units Conc. Result % Rec Qualifiers Sulfate 5000 4660 93 90-110 ug/L

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3418086 3418087

MSD MS 50349732002 Spike Spike MS MSD MS MSD % Rec Max Parameter Units **RPD** RPD Result Conc. Conc. Result Result % Rec % Rec Limits Qual 15 M0 Sulfate ug/L 793 mg/L 500000 500000 1170000 1170000 75 75 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3418088 3418089

MS MSD 52120691005 MSD MS MSD % Rec Spike Spike MS Max **RPD** RPD Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits Qual Sulfate 50.2 mg/L 50000 50000 95100 94900 90 89 0 15 ug/L 80-120

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy Pace Project No.: 50349809

Date: 08/04/2023 05:01 PM

QC Batch: 769638 Analysis Method: AM20GAX

QC Batch Method: AM20GAX Analysis Description: Indicator Gases Water LHC

> Pace Analytical Gulf Coast Laboratory:

Associated Lab Samples: 50349809001, 50349809002, 50349809005, 50349809012

METHOD BLANK: 2504236 Matrix: Water

Associated Lab Samples: 50349809001, 50349809002, 50349809005, 50349809012

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Methane	ug/L	ND	5.0	2.0	07/27/23 06:40	
Ethane	ug/L	ND	1.0	0.17	07/27/23 06:40	
Ethene	ug/L	ND	1.0	0.24	07/27/23 06:40	
n-Propane	ug/L	ND	1.0	0.29	07/27/23 06:40	
Propylene	ug/L	ND	1.0	0.31	07/27/23 06:40	
Isobutane	ug/L	ND	2.0	0.065	07/27/23 06:40	
n-Butane	ug/L	ND	2.0	0.54	07/27/23 06:40	

LABORATORY CONTROL SAMPLE	& LCSD: 2504237	•	25	504238						
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
Methane	ug/L	750	730	670	98	90	70-130	8	20	
Ethane	ug/L	38	31	29	82	77	70-130	5	20	
Ethene	ug/L	35	28	28	79	78	70-130	0	20	
n-Propane	ug/L	56	40	41	72	74	70-130	2	20	
Propylene	ug/L	53	36	36	68	68	70-130	1	20 L	0
Isobutane	ug/L	73	52	56	72	76	70-130	6	20	
n-Butane	ug/L	73	54	60	73	83	70-130	12	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50349809

Date: 08/04/2023 05:01 PM

QC Batch: 745454 Analysis Method: EPA 6010

QC Batch Method: EPA 3010 Analysis Description: 6010 MET Dissolved

Laboratory: Pace Analytical Services - Indianapolis

Associated Lab Samples: 50349809001, 50349809002

METHOD BLANK: 3417594 Matrix: Water

Associated Lab Samples: 50349809001, 50349809002

Blank Reporting
Parameter Units Result Limit MDL Analyzed Qualifiers

Iron, Dissolved ug/L ND 100 28.6 07/27/23 02:16

LABORATORY CONTROL SAMPLE: 3417595

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Iron, Dissolved ug/L 10000 9440 94 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3417596 3417597

MS MSD

50349682004 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Conc. Conc. Result Result % Rec % Rec **RPD** RPD Qual Result Limits Iron, Dissolved 35000 20 ug/L 27000 10000 10000 35900 80 88 75-125 2

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50349809

Date: 08/04/2023 05:01 PM

QC Batch: 744965 Analysis Method: EPA 5030/8260
QC Batch Method: EPA 5030/8260 Analysis Description: 8260 MSV

Laboratory: Pace Analytical Services - Indianapolis

Associated Lab Samples: 50349809002, 50349809003, 50349809004, 50349809005, 50349809006, 50349809007, 50349809008,

50349809009, 50349809010, 50349809011, 50349809012, 50349809013, 50349809014

METHOD BLANK: 3415555 Matrix: Water

Associated Lab Samples: 50349809002, 50349809003, 50349809004, 50349809005, 50349809006, 50349809007, 50349809008,

50349809009, 50349809010, 50349809011, 50349809012, 50349809013, 50349809014

	•	Blank	Reporting	•		
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	ND	5.0	0.50	07/24/23 14:54	
1,1,1-Trichloroethane	ug/L	ND	5.0	0.47	07/24/23 14:54	
1,1,2,2-Tetrachloroethane	ug/L	ND	5.0	0.52	07/24/23 14:54	
1,1,2-Trichloroethane	ug/L	ND	5.0	0.78	07/24/23 14:54	
1,1-Dichloroethane	ug/L	ND	5.0	0.46	07/24/23 14:54	
1,1-Dichloroethene	ug/L	ND	5.0	0.46	07/24/23 14:54	
1,1-Dichloropropene	ug/L	ND	5.0	0.64	07/24/23 14:54	
1,2,3-Trichlorobenzene	ug/L	ND	5.0	0.38	07/24/23 14:54	
1,2,3-Trichloropropane	ug/L	ND	5.0	0.82	07/24/23 14:54	
1,2,4-Trichlorobenzene	ug/L	ND	5.0	0.45	07/24/23 14:54	
1,2,4-Trimethylbenzene	ug/L	ND	5.0	0.35	07/24/23 14:54	
1,2-Dibromoethane (EDB)	ug/L	ND	5.0	0.55	07/24/23 14:54	
1,2-Dichlorobenzene	ug/L	ND	5.0	0.45	07/24/23 14:54	
1,2-Dichloroethane	ug/L	ND	5.0	0.54	07/24/23 14:54	
1,2-Dichloropropane	ug/L	ND	5.0	0.71	07/24/23 14:54	
1,3,5-Trimethylbenzene	ug/L	ND	5.0	0.30	07/24/23 14:54	
1,3-Dichlorobenzene	ug/L	ND	5.0	0.39	07/24/23 14:54	
1,3-Dichloropropane	ug/L	ND	5.0	0.49	07/24/23 14:54	
1,4-Dichlorobenzene	ug/L	ND	5.0	0.43	07/24/23 14:54	
1-Methylnaphthalene	ug/L	ND	10.0	0.61	07/24/23 14:54	
2,2-Dichloropropane	ug/L	ND	5.0	0.62	07/24/23 14:54	
2-Butanone (MEK)	ug/L	ND	25.0	4.7	07/24/23 14:54	
2-Chlorotoluene	ug/L	ND	5.0	0.38	07/24/23 14:54	
2-Hexanone	ug/L	ND	25.0	3.0	07/24/23 14:54	
2-Methylnaphthalene	ug/L	ND	10.0	0.44	07/24/23 14:54	
4-Chlorotoluene	ug/L	ND	5.0	0.40	07/24/23 14:54	
4-Methyl-2-pentanone (MIBK)	ug/L	ND	25.0	2.5	07/24/23 14:54	
Acetone	ug/L	ND	100	8.9	07/24/23 14:54	
Acrolein	ug/L	ND	50.0	12.7	07/24/23 14:54	
Acrylonitrile	ug/L	ND	100	2.2	07/24/23 14:54	
Benzene	ug/L	ND	5.0	0.39	07/24/23 14:54	
Bromobenzene	ug/L	ND	5.0	0.50	07/24/23 14:54	
Bromochloromethane	ug/L	ND	5.0	0.43	07/24/23 14:54	
Bromodichloromethane	ug/L	ND	5.0	0.57	07/24/23 14:54	
Bromoform	ug/L	ND	5.0	0.73	07/24/23 14:54	
Bromomethane	ug/L	ND	5.0	0.57	07/24/23 14:54	
Carbon disulfide	ug/L	ND	10.0	0.83	07/24/23 14:54	
Carbon tetrachloride	ug/L	ND	5.0	0.40	07/24/23 14:54	
Chlorobenzene	ug/L	ND	5.0	0.36	07/24/23 14:54	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy Pace Project No.: 50349809

Date: 08/04/2023 05:01 PM

METHOD BLANK: 3415555 Matrix: Water

Associated Lab Samples: Diami

50349809009, 50349809010, 50349809011, 50349809012, 50349809013, 50349809014

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Chloroethane	ug/L	ND	5.0	0.55	07/24/23 14:54	
Chloroform	ug/L	ND	5.0	0.44	07/24/23 14:54	
Chloromethane	ug/L	ND	5.0	0.50	07/24/23 14:54	
cis-1,2-Dichloroethene	ug/L	ND	5.0	0.53	07/24/23 14:54	
cis-1,3-Dichloropropene	ug/L	ND	5.0	0.50	07/24/23 14:54	
Dibromochloromethane	ug/L	ND	5.0	0.56	07/24/23 14:54	
Dibromomethane	ug/L	ND	5.0	0.76	07/24/23 14:54	
Dichlorodifluoromethane	ug/L	ND	5.0	0.60	07/24/23 14:54	
Ethyl methacrylate	ug/L	ND	100	0.64	07/24/23 14:54	
Ethylbenzene	ug/L	ND	5.0	0.35	07/24/23 14:54	
Hexachloro-1,3-butadiene	ug/L	ND	5.0	0.46	07/24/23 14:54	
Iodomethane	ug/L	ND	10.0	0.31	07/24/23 14:54	
Isopropylbenzene (Cumene)	ug/L	ND	5.0	0.34	07/24/23 14:54	
Methyl-tert-butyl ether	ug/L	ND	4.0	0.48	07/24/23 14:54	
Methylene Chloride	ug/L	ND	5.0	2.2	07/24/23 14:54	
n-Butylbenzene	ug/L	ND	5.0	0.38	07/24/23 14:54	
n-Hexane	ug/L	ND	5.0	0.46	07/24/23 14:54	
n-Propylbenzene	ug/L	ND	5.0	0.34	07/24/23 14:54	
Naphthalene	ug/L	ND	1.2	0.42	07/24/23 14:54	
p-Isopropyltoluene	ug/L	ND	5.0	0.36	07/24/23 14:54	
sec-Butylbenzene	ug/L	ND	5.0	0.32	07/24/23 14:54	
Styrene	ug/L	ND	5.0	0.40	07/24/23 14:54	
tert-Butylbenzene	ug/L	ND	5.0	0.35	07/24/23 14:54	
Tetrachloroethene	ug/L	ND	5.0	0.32	07/24/23 14:54	
Toluene	ug/L	ND	5.0	0.34	07/24/23 14:54	
trans-1,2-Dichloroethene	ug/L	ND	5.0	0.35	07/24/23 14:54	
trans-1,3-Dichloropropene	ug/L	ND	5.0	0.51	07/24/23 14:54	
trans-1,4-Dichloro-2-butene	ug/L	ND	100	0.72	07/24/23 14:54	
Trichloroethene	ug/L	ND	5.0	0.70	07/24/23 14:54	
Trichlorofluoromethane	ug/L	ND	5.0	0.62	07/24/23 14:54	
Vinyl acetate	ug/L	ND	50.0	0.96	07/24/23 14:54	
Vinyl chloride	ug/L	ND	2.0	0.59	07/24/23 14:54	
Xylene (Total)	ug/L	ND	10.0	0.35	07/24/23 14:54	
4-Bromofluorobenzene (S)	%.	105	79-124		07/24/23 14:54	
Dibromofluoromethane (S)	%.	102	82-128		07/24/23 14:54	1d
Toluene-d8 (S)	%.	98	73-122		07/24/23 14:54	

LABORATORY CONTROL SAMPLE:	3415556					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	50	47.6	95	81-130	
1,1,1-Trichloroethane	ug/L	50	52.2	104	76-127	
1,1,2,2-Tetrachloroethane	ug/L	50	49.1	98	70-126	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50349809

Date: 08/04/2023 05:01 PM

LABORATORY CONTROL SAMPLE:	3415556					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,2-Trichloroethane	ug/L		52.9	106	79-124	
1,1-Dichloroethane	ug/L	50	47.0	94	76-123	
1,1-Dichloroethene	ug/L	50	49.0	98	73-133	
1,1-Dichloropropene	ug/L	50	53.7	107	78-144	
1,2,3-Trichlorobenzene	ug/L	50	44.8	90	72-138	
1,2,3-Trichloropropane	ug/L	50	49.8	100	75-121	
1,2,4-Trichlorobenzene	ug/L	50	44.8	90	71-138	
1,2,4-Trimethylbenzene	ug/L	50	45.8	92	70-127	
1,2-Dibromoethane (EDB)	ug/L	50	53.3	107	80-126	
1,2-Dichlorobenzene	ug/L	50	46.1	92	79-123	
,2-Dichloroethane	ug/L	50	51.7	103	70-124	
,2-Dichloropropane	ug/L	50	51.6	103	74-128	
,3,5-Trimethylbenzene	ug/L	50	45.8	92	71-124	
,3-Dichlorobenzene	ug/L	50	46.5	93	77-124	
,3-Dichloropropane	ug/L	50	52.9	106	77-126	
,4-Dichlorobenzene	ug/L	50	47.3	95	77-120	
-Methylnaphthalene	ug/L	50	43.8	88	49-175	
2,2-Dichloropropane	ug/L	50	50.3	101	65-136	
2-Butanone (MEK)	ug/L	250	213	85	59-134	
2-Chlorotoluene	ug/L	50	48.2	96	74-121	
2-Hexanone	ug/L	250	224	90	63-134	
?-Methylnaphthalene	ug/L	50	45.2	90	52-170	
-Chlorotoluene	ug/L	50	46.5	93	78-123	
I-Methyl-2-pentanone (MIBK)	ug/L	250	233	93	67-133	
Acetone	ug/L	250	179	72	32-133	
Acrolein	ug/L	1000	1050	105	35-166	
Acrylonitrile	ug/L	250	237	95	69-137	
Benzene	ug/L	50	48.0	96	74-124	
Bromobenzene	ug/L	50	48.4	97	76-122	
Bromochloromethane	ug/L	50 50	47.9	96	66-127	
Bromodichloromethane	ug/L	50	52.5	105	80-126	
Bromoform	ug/L	50 50	45.9	92	75-128	
Bromomethane	ug/L	50	52.9	106	10-183	
Carbon disulfide	ug/L	50	48.7	97	68-123	
Carbon tetrachloride	ug/L	50 50	50.6	101	78-132	
Chlorobenzene	ug/L	50	48.2	96	77-121	
Chloroethane	ug/L	50 50	45.7	91	43-140	
Chloroform	ug/L ug/L	50	45.7 48.1	96	75-118	
Chloromethane	ug/L ug/L	50	46.1	93	45-130	
chloromethane cis-1,2-Dichloroethene	ug/L ug/L	50 50	46.4 48.0	93 96	76-125	
sis-1,2-Dichloropropene	ug/L ug/L	50	46.0 54.2	108	76-125 76-132	
Dibromochloromethane	_	50 50	54.2 49.5	99	76-132 79-130	
Dibromochioromethane Dibromomethane	ug/L				79-130 79-124	
Dibromomethane Dichlorodifluoromethane	ug/L	50 50	51.0 51.1	102		
	ug/L	50 50	51.1	102	10-124 73 137	
Ethyl methacrylate	ug/L	50 50	47.5J	95 05	73-137 74-125	
Ethylbenzene	ug/L	50 50	47.4	95		
Hexachloro-1,3-butadiene	ug/L	50	46.2	92	66-141	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: GE Indy
Pace Project No.: 50349809

Date: 08/04/2023 05:01 PM

LABORATORY CONTROL SAMPLE:	3415556					
5	11.7	Spike	LCS	LCS	% Rec	0 ""
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Iodomethane	ug/L	50	47.8	96	10-160	
Isopropylbenzene (Cumene)	ug/L	50	47.4	95	75-126	
Methyl-tert-butyl ether	ug/L	50	50.5	101	74-129	
Methylene Chloride	ug/L	50	54.5	109	77-126	
n-Butylbenzene	ug/L	50	50.5	101	72-131	
n-Hexane	ug/L	50	47.6	95	58-131	
n-Propylbenzene	ug/L	50	52.0	104	76-127	
Naphthalene	ug/L	50	44.0	88	70-132	
p-Isopropyltoluene	ug/L	50	48.4	97	76-126	
sec-Butylbenzene	ug/L	50	50.4	101	76-129	
Styrene	ug/L	50	45.7	91	81-129	
tert-Butylbenzene	ug/L	50	46.3	93	76-129	
Tetrachloroethene	ug/L	50	47.4	95	73-132	
Toluene	ug/L	50	44.0	88	72-119	
trans-1,2-Dichloroethene	ug/L	50	48.3	97	74-125	
trans-1,3-Dichloropropene	ug/L	50	51.5	103	75-132	
trans-1,4-Dichloro-2-butene	ug/L	50	49.1J	98	66-152	
Trichloroethene	ug/L	50	53.8	108	75-127	
Trichlorofluoromethane	ug/L	50	56.3	113	64-136	
Vinyl acetate	ug/L	200	298	149	62-159	
Vinyl chloride	ug/L	50	50.5	101	48-133	
Xylene (Total)	ug/L	150	136	90	73-123	
4-Bromofluorobenzene (S)	%.			97	79-124	
Dibromofluoromethane (S)	%.			95	82-128	
Toluene-d8 (S)	%.			101	73-122	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50349809

Date: 08/04/2023 05:01 PM

QC Batch: 745150 Analysis Method: EPA 5030/8260
QC Batch Method: EPA 5030/8260 Analysis Description: 8260 MSV

Laboratory: Pace Analytical Services - Indianapolis

Associated Lab Samples: 50349809001, 50349809015, 50349809016, 50349809017, 50349809019, 50349809020, 50349809021,

50349809022, 50349809023

METHOD BLANK: 3416307 Matrix: Water

Associated Lab Samples: 50349809001, 50349809015, 50349809016, 50349809017, 50349809019, 50349809020, 50349809021,

50349809022, 50349809023

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	ND	5.0	0.41	07/25/23 12:24	
1,1,1-Trichloroethane	ug/L	ND	5.0	0.57	07/25/23 12:24	
1,1,2,2-Tetrachloroethane	ug/L	ND	5.0	0.65	07/25/23 12:24	
1,1,2-Trichloroethane	ug/L	ND	5.0	0.81	07/25/23 12:24	
1,1-Dichloroethane	ug/L	ND	5.0	0.42	07/25/23 12:24	
1,1-Dichloroethene	ug/L	ND	5.0	0.55	07/25/23 12:24	
1,1-Dichloropropene	ug/L	ND	5.0	0.57	07/25/23 12:24	
1,2,3-Trichlorobenzene	ug/L	ND	5.0	0.46	07/25/23 12:24	
1,2,3-Trichloropropane	ug/L	ND	5.0	1.2	07/25/23 12:24	
1,2,4-Trichlorobenzene	ug/L	ND	5.0	0.51	07/25/23 12:24	
1,2,4-Trimethylbenzene	ug/L	ND	5.0	0.41	07/25/23 12:24	
1,2-Dibromoethane (EDB)	ug/L	ND	5.0	0.68	07/25/23 12:24	
1,2-Dichlorobenzene	ug/L	ND	5.0	0.46	07/25/23 12:24	
1,2-Dichloroethane	ug/L	ND	5.0	0.61	07/25/23 12:24	
1,2-Dichloropropane	ug/L	ND	5.0	0.64	07/25/23 12:24	
1,3,5-Trimethylbenzene	ug/L	ND	5.0	0.36	07/25/23 12:24	
1,3-Dichlorobenzene	ug/L	ND	5.0	0.43	07/25/23 12:24	
1,3-Dichloropropane	ug/L	ND	5.0	0.59	07/25/23 12:24	
1,4-Dichlorobenzene	ug/L	ND	5.0	0.40	07/25/23 12:24	
1-Methylnaphthalene	ug/L	ND	10.0	0.45	07/25/23 12:24	
2,2-Dichloropropane	ug/L	ND	5.0	0.49	07/25/23 12:24	
2-Butanone (MEK)	ug/L	ND	25.0	4.7	07/25/23 12:24	
2-Chlorotoluene	ug/L	ND	5.0	0.42	07/25/23 12:24	
2-Hexanone	ug/L	ND	25.0	3.0	07/25/23 12:24	
2-Methylnaphthalene	ug/L	ND	10.0	0.46	07/25/23 12:24	
4-Chlorotoluene	ug/L	ND	5.0	0.41	07/25/23 12:24	
4-Methyl-2-pentanone (MIBK)	ug/L	ND	25.0	2.8	07/25/23 12:24	
Acetone	ug/L	ND	100	7.4	07/25/23 12:24	
Acrolein	ug/L	ND	50.0	21.9	07/25/23 12:24	
Acrylonitrile	ug/L	ND	100	2.3	07/25/23 12:24	
Benzene	ug/L	ND	5.0	0.41	07/25/23 12:24	
Bromobenzene	ug/L	ND	5.0	0.40	07/25/23 12:24	
Bromochloromethane	ug/L	ND	5.0	0.44	07/25/23 12:24	
Bromodichloromethane	ug/L	ND	5.0	0.62	07/25/23 12:24	
Bromoform	ug/L	ND	5.0	0.91	07/25/23 12:24	
Bromomethane	ug/L	ND	5.0	0.86	07/25/23 12:24	
Carbon disulfide	ug/L	ND	10.0	0.91	07/25/23 12:24	
Carbon tetrachloride	ug/L	ND	5.0	0.47	07/25/23 12:24	
Chlorobenzene	ug/L	ND	5.0	0.30	07/25/23 12:24	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy Pace Project No.: 50349809

Date: 08/04/2023 05:01 PM

METHOD BLANK: 3416307 Matrix: Water

50349809001, 50349809015, 50349809016, 50349809017, 50349809019, 50349809020, 50349809021,Associated Lab Samples: Diami.

50349809022, 50349809023

303490	009022, 30349009023	Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
						- Qualificity
Chloroethane	ug/L	ND	5.0	0.50	07/25/23 12:24	
Chloroform	ug/L	ND	5.0	0.50	07/25/23 12:24	
Chloromethane	ug/L	ND	5.0	0.53	07/25/23 12:24	
cis-1,2-Dichloroethene	ug/L	ND	5.0	0.67	07/25/23 12:24	
cis-1,3-Dichloropropene	ug/L	ND	5.0	0.32	07/25/23 12:24	
Dibromochloromethane	ug/L	ND	5.0	0.61	07/25/23 12:24	
Dibromomethane	ug/L	ND	5.0	1.1	07/25/23 12:24	
Dichlorodifluoromethane	ug/L	ND	5.0	1.1	07/25/23 12:24	
Ethyl methacrylate	ug/L	ND	100	0.94	07/25/23 12:24	
Ethylbenzene	ug/L	ND	5.0	0.40	07/25/23 12:24	
Hexachloro-1,3-butadiene	ug/L	ND	5.0	0.48	07/25/23 12:24	
Iodomethane	ug/L	ND	10.0	0.28	07/25/23 12:24	
Isopropylbenzene (Cumene)	ug/L	ND	5.0	0.29	07/25/23 12:24	
Methyl-tert-butyl ether	ug/L	ND	4.0	0.56	07/25/23 12:24	
Methylene Chloride	ug/L	ND	5.0	3.2	07/25/23 12:24	
n-Butylbenzene	ug/L	ND	5.0	0.36	07/25/23 12:24	
n-Hexane	ug/L	ND	5.0	0.57	07/25/23 12:24	
n-Propylbenzene	ug/L	ND	5.0	0.36	07/25/23 12:24	
Naphthalene	ug/L	ND	1.2	0.44	07/25/23 12:24	
p-Isopropyltoluene	ug/L	ND	5.0	0.34	07/25/23 12:24	
sec-Butylbenzene	ug/L	ND	5.0	0.29	07/25/23 12:24	
Styrene	ug/L	ND	5.0	0.40	07/25/23 12:24	
tert-Butylbenzene	ug/L	ND	5.0	0.28	07/25/23 12:24	
Tetrachloroethene	ug/L	ND	5.0	0.38	07/25/23 12:24	
Toluene	ug/L	ND	5.0	0.34	07/25/23 12:24	
trans-1,2-Dichloroethene	ug/L	ND	5.0	0.51	07/25/23 12:24	
trans-1,3-Dichloropropene	ug/L	ND	5.0	0.36	07/25/23 12:24	
trans-1,4-Dichloro-2-butene	ug/L	ND	100	1.8	07/25/23 12:24	
Trichloroethene	ug/L	ND	5.0	0.65	07/25/23 12:24	
Trichlorofluoromethane	ug/L	ND	5.0	0.70	07/25/23 12:24	
Vinyl acetate	ug/L	ND	50.0	0.84	07/25/23 12:24	
Vinyl chloride	ug/L	ND	2.0	0.53	07/25/23 12:24	
Xylene (Total)	ug/L	ND	10.0	0.48	07/25/23 12:24	
4-Bromofluorobenzene (S)	%.	110	79-124	00	07/25/23 12:24	
Dibromofluoromethane (S)	%.	120	82-128		07/25/23 12:24	
Toluene-d8 (S)	%.	97	73-122		07/25/23 12:24	
	70.	01	10 122		5., 20, 20 12.2T	

LABORATORY CONTROL SAMPLE:	3416308					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	50	45.0	90	81-130	
1,1,1-Trichloroethane	ug/L	50	49.8	100	76-127	
1,1,2,2-Tetrachloroethane	ug/L	50	47.9	96	70-126	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50349809

Date: 08/04/2023 05:01 PM

LABORATORY CONTROL SAMPLE:	3416308					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifier
,1,2-Trichloroethane	ug/L	50	52.6	105	79-124	
,1-Dichloroethane	ug/L	50	45.7	91	76-123	
,1-Dichloroethene	ug/L	50	46.6	93	73-133	
I,1-Dichloropropene	ug/L	50	54.1	108	78-144	
,2,3-Trichlorobenzene	ug/L	50	42.1	84	72-138	
,2,3-Trichloropropane	ug/L	50	46.5	93	75-121	
,2,4-Trichlorobenzene	ug/L	50	41.3	83	71-138	
,2,4-Trimethylbenzene	ug/L	50	44.6	89	70-127	
,2-Dibromoethane (EDB)	ug/L	50	47.6	95	80-126	
,2-Dichlorobenzene	ug/L	50	44.7	89	79-123	
,2-Dichloroethane	ug/L	50	49.6	99	70-124	
,2-Dichloropropane	ug/L	50	52.2	104	74-128	
,3,5-Trimethylbenzene	ug/L	50	44.8	90	71-124	
,3-Dichlorobenzene	ug/L	50	43.7	87	77-124	
,3-Dichloropropane	ug/L	50	54.7	109	77-126	
,4-Dichlorobenzene	ug/L	50	45.0	90	77-120	
-Methylnaphthalene	ug/L	50	52.1	104	49-175	
,2-Dichloropropane	ug/L	50	47.5	95	65-136	
-Butanone (MEK)	ug/L	250	218	87	59-134	
-Chlorotoluene	ug/L	50	46.9	94	74-121	
-Hexanone	ug/L	250	212	85	63-134	
-Methylnaphthalene	ug/L	50	43.8	88	52-170	
-Chlorotoluene	ug/L	50	45.8	92	78-123	
-Methyl-2-pentanone (MIBK)	ug/L	250	233	93	67-133	
Acetone	ug/L	250	197	79	32-133	
crolein	ug/L	1000	978	98	35-166	
crylonitrile	ug/L	250	231	92	69-137	
Senzene	ug/L	50	46.7	93	74-124	
Bromobenzene	ug/L	50	47.0	94	76-122	
romochloromethane	ug/L	50	43.2	86	66-127	
Bromodichloromethane	ug/L	50	52.5	105	80-126	
Bromoform	ug/L	50	45.3	91	75-128	
Bromomethane	ug/L	50	43.9	88	10-183	
Carbon disulfide	ug/L	50	46.4	93	68-123	
Carbon tetrachloride	ug/L	50	47.6	95	78-132	
Chlorobenzene	ug/L	50	45.0	90	77-121	
Chloroethane	ug/L	50	42.3	85	43-140	
Chloroform	ug/L	50	46.5	93	75-118	
Chloromethane	ug/L	50	41.8	84	45-130	
is-1,2-Dichloroethene	ug/L	50	45.4	91	76-125	
is-1,3-Dichloropropene	ug/L	50	54.4	109	76-132	
Dibromochloromethane	ug/L	50	49.3	99	79-130	
Dibromomethane	ug/L	50	49.8	100	79-124	
Dichlorodifluoromethane	ug/L	50	40.8	82	10-124	
thyl methacrylate	ug/L	50	46.1J	92	73-137	
Ithylbenzene	ug/L	50	45.1	90	74-125	
Hexachloro-1,3-butadiene	ug/L	50	43.2	86	66-141	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: GE Indy
Pace Project No.: 50349809

Date: 08/04/2023 05:01 PM

ABORATORY CONTROL SAMPLE:	3416308					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
domethane	ug/L	50	39.6	79	10-160	
ppropylbenzene (Cumene)	ug/L	50	44.7	89	75-126	
thyl-tert-butyl ether	ug/L	50	52.3	105	74-129	
hylene Chloride	ug/L	50	54.7	109	77-126	
ıtylbenzene	ug/L	50	47.7	95	72-131	
exane	ug/L	50	44.8	90	58-131	
ropylbenzene	ug/L	50	49.2	98	76-127	
ohthalene	ug/L	50	42.4	85	70-132	
opropyltoluene	ug/L	50	45.2	90	76-126	
-Butylbenzene	ug/L	50	46.7	93	76-129	
rene	ug/L	50	43.7	87	81-129	
-Butylbenzene	ug/L	50	46.4	93	76-129	
achloroethene	ug/L	50	44.0	88	73-132	
ene	ug/L	50	41.4	83	72-119	
s-1,2-Dichloroethene	ug/L	50	46.4	93	74-125	
s-1,3-Dichloropropene	ug/L	50	53.6	107	75-132	
s-1,4-Dichloro-2-butene	ug/L	50	51.3J	103	66-152	
hloroethene	ug/L	50	52.9	106	75-127	
hlorofluoromethane	ug/L	50	49.3	99	64-136	
d acetate	ug/L	200	317	158	62-159	
/l chloride	ug/L	50	45.5	91	48-133	
ene (Total)	ug/L	150	129	86	73-123	
romofluorobenzene (S)	%.			96	79-124	
romofluoromethane (S)	%.			97	82-128	
uene-d8 (S)	%.			101	73-122	

MATRIX SPIKE & MATRIX SI	PIKE DUPL	ICATE: 3416	MSD	3416310)								
		50349806001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1,1,1,2-Tetrachloroethane	ug/L	ND	50	50	47.1	48.3	94	97	60-150	2	20	
1,1,1-Trichloroethane	ug/L	ND	50	50	49.3	50.6	99	101	63-138	3	20	
1,1,2,2-Tetrachloroethane	ug/L	ND	50	50	45.3	48.1	91	96	58-146	6	20	
1,1,2-Trichloroethane	ug/L	ND	50	50	53.2	55.0	106	110	63-142	3	20	
1,1-Dichloroethane	ug/L	ND	50	50	43.3	44.1	87	88	64-138	2	20	
1,1-Dichloroethene	ug/L	ND	50	50	45.5	46.7	91	93	65-139	3	20	
1,1-Dichloropropene	ug/L	ND	50	50	52.8	54.3	106	109	68-155	3	20	
1,2,3-Trichlorobenzene	ug/L	ND	50	50	39.9	40.2	80	80	32-141	1	20	
1,2,3-Trichloropropane	ug/L	ND	50	50	45.1	47.1	90	94	54-144	4	20	
1,2,4-Trichlorobenzene	ug/L	ND	50	50	36.6	37.2	73	74	31-140	2	20	
1,2,4-Trimethylbenzene	ug/L	ND	50	50	43.9	44.2	88	88	34-144	1	20	
1,2-Dibromoethane (EDB)	ug/L	ND	50	50	46.8	47.9	94	96	64-139	2	20	
1,2-Dichlorobenzene	ug/L	ND	50	50	44.3	45.5	89	91	50-136	3	20	
1,2-Dichloroethane	ug/L	ND	50	50	47.3	48.3	95	97	55-146	2	20	
1,2-Dichloropropane	ug/L	ND	50	50	49.6	51.2	99	102	66-134	3	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50349809

Date: 08/04/2023 05:01 PM

MATRIX SPIKE & MATRIX SF	PIKE DUPI	LICATE: 3416			3416310							
			MS	MSD								
Parameter	Units	50349806001 Result	Spike Conc.	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qu
1,3,5-Trimethylbenzene	ug/L	ND	50	50	44.4	44.9	89	90	29-151	1	20	
,3-Dichlorobenzene	ug/L	ND	50	50	43.1	43.4	86	87	47-133	1		
,3-Dichloropropane	ug/L	ND	50	50	54.3	56.2	109	112	61-144	3		
,4-Dichlorobenzene	ug/L	ND	50	50	43.0	43.5	86	87	50-131	1		
-Methylnaphthalene	ug/L	ND	50	50	47.2	48.3	94	97	20-176	2		
2,2-Dichloropropane	ug/L	ND	50	50	44.9	45.6	90	91	33-146	1		
-Butanone (MEK)	ug/L	ND	250	250	185	190	74	76	45-155	3		
2-Chlorotoluene	ug/L	ND	50	50	46.6	47.0	93	94	43-142	1		
:-Hexanone	ug/L	ND	250	250	202	210	81	84	48-157	4		
-Methylnaphthalene	ug/L	ND	50	50	39.3	40.6	79	81	21-175	3		
-Chlorotoluene	ug/L	ND	50	50	44.3	45.3	89	91	47-137	2		
-Methyl-2-pentanone MIBK)	ug/L	ND	250	250	216	229	86	92	53-156	6		
cetone	ug/L	ND	250	250	160	144	64	57	16-162	11	20	
crolein	ug/L	ND	1000	1000	805	833	81	83	39-184	3	20	
crylonitrile	ug/L	ND	250	250	200	206	80	83	58-140	3	20	
Benzene	ug/L	ND	50	50	46.1	47.0	92	94	65-137	2	20	
Bromobenzene	ug/L	ND	50	50	46.9	46.7	94	93	56-137	0	20	
romochloromethane	ug/L	ND	50	50	40.9	41.4	82	83	56-139	1	20	
romodichloromethane	ug/L	ND	50	50	50.2	51.6	100	103	61-149	3	20	
romoform	ug/L	ND	50	50	42.9	45.1	86	90	51-138	5	20	
romomethane	ug/L	ND	50	50	44.3	43.2	89	86	10-169	3		
Carbon disulfide	ug/L	ND	50	50	43.1	43.2	86	86	55-126	0	20	
Carbon tetrachloride	ug/L	ND	50	50	47.9	49.3	96	99	65-156	3	20	
Chlorobenzene	ug/L	ND	50	50	46.5	47.0	93	94	54-135	1	20	
Chloroethane	ug/L	ND	50	50	42.3	39.8	85	80	46-142	6	20	
Chloroform	ug/L	ND	50	50	45.3	46.2	91	92	64-133	2	20	
Chloromethane	ug/L	ND	50	50	40.4	40.0	81	80	30-139	1	20	
is-1,2-Dichloroethene	ug/L	ND	50	50	44.7	45.3	89	91	59-141	1	20	
is-1,3-Dichloropropene	ug/L	ND	50	50	52.8	54.8	106	110	57-141	4	20	
Dibromochloromethane	ug/L	ND	50	50	49.2	51.3	98	103	59-147	4	20	
Dibromomethane	ug/L	ND	50	50	47.3	48.9	95	98	64-142	3		
Dichlorodifluoromethane	ug/L	ND	50	50	42.4	41.4	85	83	10-144	3		
thyl methacrylate	ug/L	ND	50	50	46.4J	47.5J	93	95	58-147		20	
ithylbenzene	ug/L	ND	50	50	46.8	47.0	94	94	50-143	0		
lexachloro-1,3-butadiene	ug/L	ND	50	50	42.2	42.5	84	85	16-155	1	20	
odomethane	ug/L	ND	50	50	40.6	42.6	81	85	10-154	5		
sopropylbenzene Cumene)	ug/L	ND	50	50	46.3	47.0	93	94	36-151	2		
Methyl-tert-butyl ether	ug/L	ND	50	50	48.1	50.8	96	102	66-138	5	20	
lethylene Chloride	ug/L	ND	50	50	51.2	51.3	102	103	53-126	0	20	
-Butylbenzene	ug/L	ND	50	50	44.9	45.4	90	91	31-142	1	20	
-Hexane	ug/L	ND	50	50	44.8	46.4	90	93	53-129	4	20	
-Propylbenzene	ug/L	ND	50	50	48.2	49.1	96	98	39-145	2	20	
laphthalene	ug/L	ND	50	50	40.2	41.6	80	83	51-135	3	20	
o-Isopropyltoluene	ug/L	ND	50	50	44.3	44.7	89	89	38-145	1		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50349809

Date: 08/04/2023 05:01 PM

MATRIX SPIKE & MATRIX SP	LICATE: 3416	309 MS	MSD	3416310								
		50349806001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qua
sec-Butylbenzene	ug/L	ND	50	50	46.7	48.3	93	97	33-153	3	20	
Styrene	ug/L	ND	50	50	43.9	44.4	88	89	57-141	1	20	
tert-Butylbenzene	ug/L	ND	50	50	46.3	47.4	93	95	45-145	2	20	
Tetrachloroethene	ug/L	ND	50	50	46.9	47.8	94	96	43-149	2	20	
Toluene	ug/L	ND	50	50	42.5	43.5	85	87	57-137	2	20	
rans-1,2-Dichloroethene	ug/L	ND	50	50	44.9	45.9	90	92	63-133	2	20	
trans-1,3-Dichloropropene	ug/L	ND	50	50	51.2	52.8	102	106	56-140	3	20	
trans-1,4-Dichloro-2-butene	ug/L	ND	50	50	45.7J	46.2J	91	92	36-169		20	
Trichloroethene	ug/L	ND	50	50	52.8	53.0	106	106	52-145	0	20	
Trichlorofluoromethane	ug/L	ND	50	50	52.4	52.7	105	105	52-144	0	20	
Vinyl acetate	ug/L	ND	200	200	261	261	130	131	27-179	0	20	
Vinyl chloride	ug/L	ND	50	50	44.5	43.9	89	88	43-139	1	20	
Xylene (Total)	ug/L	ND	150	150	133	134	88	90	52-137	1	20	
4-Bromofluorobenzene (S)	%.						104	102	79-124			
Dibromofluoromethane (S)	%.						98	98	82-128			
Toluene-d8 (S)	%.						106	109	73-122			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50349809

Date: 08/04/2023 05:01 PM

QC Batch: 745975 Analysis Method: EPA 5030/8260
QC Batch Method: EPA 5030/8260 Analysis Description: 8260 MSV

Laboratory: Pace Analytical Services - Indianapolis

Associated Lab Samples: 50349809018

METHOD BLANK: 3419985 Matrix: Water

Associated Lab Samples: 50349809018

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	ND	5.0	0.50	07/28/23 13:34	
1,1,1-Trichloroethane	ug/L	ND	5.0	0.47	07/28/23 13:34	
1,1,2,2-Tetrachloroethane	ug/L	ND	5.0	0.52	07/28/23 13:34	
1,1,2-Trichloroethane	ug/L	ND	5.0	0.78	07/28/23 13:34	
1,1-Dichloroethane	ug/L	ND	5.0	0.46	07/28/23 13:34	
1,1-Dichloroethene	ug/L	ND	5.0	0.46	07/28/23 13:34	
1,1-Dichloropropene	ug/L	ND	5.0	0.64	07/28/23 13:34	
1,2,3-Trichlorobenzene	ug/L	ND	5.0	0.38	07/28/23 13:34	
1,2,3-Trichloropropane	ug/L	ND	5.0	0.82	07/28/23 13:34	
1,2,4-Trichlorobenzene	ug/L	ND	5.0	0.45	07/28/23 13:34	
1,2,4-Trimethylbenzene	ug/L	ND	5.0	0.35	07/28/23 13:34	
1,2-Dibromoethane (EDB)	ug/L	ND	5.0	0.55	07/28/23 13:34	
1,2-Dichlorobenzene	ug/L	ND	5.0	0.45	07/28/23 13:34	
1,2-Dichloroethane	ug/L	ND	5.0	0.54	07/28/23 13:34	
1,2-Dichloropropane	ug/L	ND	5.0	0.71	07/28/23 13:34	
1,3,5-Trimethylbenzene	ug/L	ND	5.0	0.30	07/28/23 13:34	
1,3-Dichlorobenzene	ug/L	ND	5.0	0.39	07/28/23 13:34	
1,3-Dichloropropane	ug/L	ND	5.0	0.49	07/28/23 13:34	
1,4-Dichlorobenzene	ug/L	ND	5.0	0.43	07/28/23 13:34	
1-Methylnaphthalene	ug/L	ND	10.0	0.61	07/28/23 13:34	
2,2-Dichloropropane	ug/L	ND	5.0	0.62	07/28/23 13:34	
2-Butanone (MEK)	ug/L	ND	25.0	4.7	07/28/23 13:34	
2-Chlorotoluene	ug/L	ND	5.0	0.38	07/28/23 13:34	
2-Hexanone	ug/L	ND	25.0	3.0	07/28/23 13:34	
2-Methylnaphthalene	ug/L	ND	10.0	0.44	07/28/23 13:34	
4-Chlorotoluene	ug/L	ND	5.0	0.40	07/28/23 13:34	
4-Methyl-2-pentanone (MIBK)	ug/L	ND	25.0	2.5	07/28/23 13:34	
Acetone	ug/L	ND	100	8.9	07/28/23 13:34	
Acrolein	ug/L	ND	50.0	12.7	07/28/23 13:34	
Acrylonitrile	ug/L	ND	100	2.2	07/28/23 13:34	
Benzene	ug/L	ND	5.0	0.39	07/28/23 13:34	
Bromobenzene	ug/L	ND	5.0	0.50	07/28/23 13:34	
Bromochloromethane	ug/L	ND	5.0	0.43	07/28/23 13:34	
Bromodichloromethane	ug/L	ND	5.0	0.57	07/28/23 13:34	
Bromoform	ug/L	ND	5.0	0.73	07/28/23 13:34	
Bromomethane	ug/L	ND	5.0	0.57	07/28/23 13:34	
Carbon disulfide	ug/L	ND	10.0	0.83	07/28/23 13:34	
Carbon tetrachloride	ug/L	ND	5.0	0.40	07/28/23 13:34	
Chlorobenzene	ug/L	ND	5.0	0.36	07/28/23 13:34	
Chloroethane	ug/L	ND	5.0	0.55	07/28/23 13:34	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50349809

Date: 08/04/2023 05:01 PM

METHOD BLANK: 3419985 Matrix: Water

Associated Lab Samples: 50349809018

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Chloroform	ug/L	ND ND	5.0	0.44	07/28/23 13:34	
Chloromethane	ug/L	ND	5.0	0.50	07/28/23 13:34	
cis-1,2-Dichloroethene	ug/L	ND	5.0	0.53	07/28/23 13:34	
cis-1,3-Dichloropropene	ug/L	ND	5.0	0.50	07/28/23 13:34	
Dibromochloromethane	ug/L	ND	5.0	0.56	07/28/23 13:34	
Dibromomethane	ug/L	ND	5.0	0.76	07/28/23 13:34	
Dichlorodifluoromethane	ug/L	ND	5.0	0.60	07/28/23 13:34	
Ethyl methacrylate	ug/L	ND	100	0.64	07/28/23 13:34	
Ethylbenzene	ug/L	ND	5.0	0.35	07/28/23 13:34	
Hexachloro-1,3-butadiene	ug/L	ND	5.0	0.46	07/28/23 13:34	
Iodomethane	ug/L	ND	10.0	0.31	07/28/23 13:34	
Isopropylbenzene (Cumene)	ug/L	ND	5.0	0.34	07/28/23 13:34	
Methyl-tert-butyl ether	ug/L	ND	4.0	0.48	07/28/23 13:34	
Methylene Chloride	ug/L	ND	5.0	2.2	07/28/23 13:34	
n-Butylbenzene	ug/L	ND	5.0	0.38	07/28/23 13:34	
n-Hexane	ug/L	ND	5.0	0.46	07/28/23 13:34	
n-Propylbenzene	ug/L	ND	5.0	0.34	07/28/23 13:34	
Naphthalene	ug/L	ND	1.2	0.42	07/28/23 13:34	
p-Isopropyltoluene	ug/L	ND	5.0	0.36	07/28/23 13:34	
sec-Butylbenzene	ug/L	ND	5.0	0.32	07/28/23 13:34	
Styrene	ug/L	ND	5.0	0.40	07/28/23 13:34	
tert-Butylbenzene	ug/L	ND	5.0	0.35	07/28/23 13:34	
Tetrachloroethene	ug/L	ND	5.0	0.32	07/28/23 13:34	
Toluene	ug/L	ND	5.0	0.34	07/28/23 13:34	
trans-1,2-Dichloroethene	ug/L	ND	5.0	0.35	07/28/23 13:34	
trans-1,3-Dichloropropene	ug/L	ND	5.0	0.51	07/28/23 13:34	
trans-1,4-Dichloro-2-butene	ug/L	ND	100	0.72	07/28/23 13:34	
Trichloroethene	ug/L	ND	5.0	0.70	07/28/23 13:34	
Trichlorofluoromethane	ug/L	ND	5.0	0.62	07/28/23 13:34	
Vinyl acetate	ug/L	ND	50.0	0.96	07/28/23 13:34	
Vinyl chloride	ug/L	ND	2.0	0.59	07/28/23 13:34	
Xylene (Total)	ug/L	ND	10.0	0.35	07/28/23 13:34	
4-Bromofluorobenzene (S)	%.	104	79-124		07/28/23 13:34	
Dibromofluoromethane (S)	%.	107	82-128		07/28/23 13:34	1d
Toluene-d8 (S)	%.	102	73-122		07/28/23 13:34	

LABORATORY CONTROL SAMPLE:	3419986					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	50	47.3	95	81-130	
1,1,1-Trichloroethane	ug/L	50	52.2	104	76-127	
1,1,2,2-Tetrachloroethane	ug/L	50	48.1	96	70-126	
1,1,2-Trichloroethane	ug/L	50	53.8	108	79-124	
1,1-Dichloroethane	ug/L	50	46.9	94	76-123	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50349809

Date: 08/04/2023 05:01 PM

ABORATORY CONTROL SAMPLE:	3419986					
	11.2	Spike	LCS	LCS	% Rec	0 ""
Parameter	Units	Conc	Result	% Rec	Limits	Qualifier
,1-Dichloroethene	ug/L	50	48.4	97	73-133	
,1-Dichloropropene	ug/L	50	54.7	109	78-144	
,2,3-Trichlorobenzene	ug/L	50	43.1	86	72-138	
,2,3-Trichloropropane	ug/L	50	49.2	98	75-121	
,2,4-Trichlorobenzene	ug/L	50	43.7	87	71-138	
,2,4-Trimethylbenzene	ug/L	50	45.7	91	70-127	
,2-Dibromoethane (EDB)	ug/L	50	54.8	110	80-126	
,2-Dichlorobenzene	ug/L	50	46.6	93	79-123	
,2-Dichloroethane	ug/L	50	53.1	106	70-124	
,2-Dichloropropane	ug/L	50	50.5	101	74-128	
,3,5-Trimethylbenzene	ug/L	50	46.6	93	71-124	
,3-Dichlorobenzene	ug/L	50	47.2	94	77-124	
,3-Dichloropropane	ug/L	50	53.8	108	77-126	
,4-Dichlorobenzene	ug/L	50	48.3	97	77-120	
-Methylnaphthalene	ug/L	50	41.2	82	49-175	
,2-Dichloropropane	ug/L	50	49.7	99	65-136	
-Butanone (MEK)	ug/L	250	215	86	59-134	
-Chlorotoluene	ug/L	50	47.9	96	74-121	
-Hexanone	ug/L	250	230	92	63-134	
-Methylnaphthalene	ug/L	50	44.7	89	52-170	
-Chlorotoluene	ug/L	50	46.3	93	78-123	
-Methyl-2-pentanone (MIBK)	ug/L	250	236	95	67-133	
cetone	ug/L	250	178	71	32-133	
crolein	ug/L	1000	1030	103	35-166	
crylonitrile	ug/L	250	237	95	69-137	
enzene	ug/L	50	47.9	96	74-124	
Bromobenzene	ug/L	50	49.6	99	76-122	
romochloromethane	ug/L	50	48.1	96	66-127	
Bromodichloromethane	ug/L	50	52.1	104	80-126	
romoform	ug/L	50	44.8	90	75-128	
romomethane	ug/L	50 50	53.6	107	10-183	
Carbon disulfide	ug/L	50 50	48.5	97	68-123	
Carbon tetrachloride	ug/L	50 50	51.8	104	78-132	
Chlorobenzene	ug/L ug/L	50 50	49.1	98	76-132 77-121	
Chloroethane	ug/L ug/L	50	49.1 47.2	94	43-140	
Chloroform	ug/L ug/L	50 50	47.2 49.7	99	75-118	
Chloromethane	_	50 50	49.7 46.1	99 92	45-130	
	ug/L	50 50			76-125	
is-1,2-Dichloroethene	ug/L		48.1 55.1	96 110		
is-1,3-Dichloropropene Dibromochloromethane	ug/L	50 50	55.1 50.1	110 100	76-132 79-130	
ribromocniorometnane ribromomethane	ug/L					
	ug/L	50 50	50.2	100	79-124 10-124	
Dichlorodifluoromethane	ug/L	50 50	48.3	97	10-124	
thyl methacrylate	ug/L	50	48.3J	97	73-137	
thylbenzene	ug/L	50	48.2	96	74-125	
lexachloro-1,3-butadiene odomethane	ug/L	50	45.7	91	66-141	
anomothono	ug/L	50	50.9	102	10-160	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50349809

Date: 08/04/2023 05:01 PM

LABORATORY CONTROL SAMPLE:	3419986					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Methyl-tert-butyl ether	ug/L	50	50.9	102	74-129	
Methylene Chloride	ug/L	50	59.1	118	77-126	
n-Butylbenzene	ug/L	50	51.9	104	72-131	
n-Hexane	ug/L	50	46.2	92	58-131	
n-Propylbenzene	ug/L	50	51.6	103	76-127	
Naphthalene	ug/L	50	42.2	84	70-132	
p-Isopropyltoluene	ug/L	50	48.7	97	76-126	
sec-Butylbenzene	ug/L	50	49.6	99	76-129	
Styrene	ug/L	50	46.8	94	81-129	
tert-Butylbenzene	ug/L	50	47.0	94	76-129	
Tetrachloroethene	ug/L	50	49.1	98	73-132	
Toluene	ug/L	50	44.8	90	72-119	
trans-1,2-Dichloroethene	ug/L	50	49.5	99	74-125	
trans-1,3-Dichloropropene	ug/L	50	52.8	106	75-132	
trans-1,4-Dichloro-2-butene	ug/L	50	49.3J	99	66-152	
Trichloroethene	ug/L	50	53.6	107	75-127	
Trichlorofluoromethane	ug/L	50	56.1	112	64-136	
Vinyl acetate	ug/L	200	292	146	62-159	
Vinyl chloride	ug/L	50	50.2	100	48-133	
Xylene (Total)	ug/L	150	142	95	73-123	
4-Bromofluorobenzene (S)	%.			99	79-124	
Dibromofluoromethane (S)	%.			102	82-128	
Toluene-d8 (S)	%.			107	73-122	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50349809

QC Batch: 744582

QC Batch Method: EPA 353.2

Analysis Method: EPA 353.2

Analysis Description:

353.2 Nitrate + Nitrite, Unpres.

Laboratory:

Pace Analytical Services - Indianapolis

Associated Lab Samples: 50349809001, 50349809002

METHOD BLANK: 3414082

Nitrogen, NO2 plus NO3

Date: 08/04/2023 05:01 PM

Matrix: Water

Associated Lab Samples: 50349809001, 50349809002

Blank Reporting
Parameter Units Result Limit

ND

mg/L

 Parameter
 Units
 Result
 Limit
 MDL
 Analyzed
 Qualifiers

 Nitrogen, Nitrate
 mg/L
 ND
 0.10
 0.011
 07/20/23 22:13

 Nitrogen, NO2 plus NO3
 mg/L
 ND
 0.10
 0.011
 07/20/23 22:13

LABORATORY CONTROL SAMPLE: 3414083

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Nitrogen, Nitrate 0.98 98 90-110 mg/L 1 mg/L Nitrogen, NO2 plus NO3 2 2.0 100 90-110

2

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3414084 3414085 MS MSD 50349697002 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual Nitrogen, Nitrate mg/L ND 1 1 1.1 1.1 100 100 90-110 20

2

2.1

2.1

101

101

90-110

20

0

3414086 MATRIX SPIKE SAMPLE: 50349697008 MS MS Spike % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers ND Nitrogen, Nitrate mg/L 0.89 89 90-110 1 ND Nitrogen, NO2 plus NO3 2 94 90-110 mg/L 1.9

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

SM 5310C

Project: GE Indy Pace Project No.: 50349809

Date: 08/04/2023 05:01 PM

QC Batch: 744952 Analysis Method:

QC Batch Method: SM 5310C Analysis Description: 5310C Total Organic Carbon

Laboratory: Pace Analytical Services - Indianapolis

Associated Lab Samples: 50349809001, 50349809002

METHOD BLANK: 3415529 Matrix: Water

Associated Lab Samples: 50349809001, 50349809002

> Blank Reporting MDL Qualifiers Parameter Units Result Limit Analyzed

Total Organic Carbon ND 1000 236 07/25/23 19:28 ug/L

LABORATORY CONTROL SAMPLE: 3415530

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units ug/L **Total Organic Carbon** 10000 9550 96 90-110

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3415531 3415532

ug/L

MSD MS 50349810006 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Conc. Result **RPD** RPD Result Conc. Result % Rec % Rec Limits Qual **Total Organic Carbon** 11400 20 ug/L 1.8 mg/L 10000 10000 11300 96 95 80-120

MATRIX SPIKE SAMPLE: 3415533 50349810008 MS MS % Rec Spike Qualifiers Parameter Units Result Conc. Result % Rec Limits 1.9 mg/L Total Organic Carbon 10000 11700 98 80-120

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: GE Indy
Pace Project No.: 50349809

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 08/04/2023 05:01 PM

- 1d A matrix spike/matrix spike duplicate could not be performed for this batch due to insufficient sample volume.
- D4 Sample was diluted due to the presence of high levels of target analytes.
- LO Analyte recovery in the laboratory control sample (LCS) was outside QC limits.
- M0 Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.

METHOD CROSS REFERENCE TABLE

Project: GE Indy
Pace Project No.: 50349809

Parameter	Matrix	Analytical Method	Preparation Method
6010 MET ICP, Dissolved	Water	SW-846 6010B	SW-846 3010A

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: GE Indy
Pace Project No.: 50349809

Date: 08/04/2023 05:01 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
50349809001	MW-428-071923	EPA 300.0	745588		
50349809002	MW-418D-071923	EPA 300.0	745588		
50349809001	MW-428-071923	AM20GAX	769638		
50349809002	MW-418D-071923	AM20GAX	769638		
50349809005	W-9-072023	AM20GAX	769638		
50349809012	W-8-072023	AM20GAX	769638		
50349809001	MW-428-071923	EPA 3010	745454	EPA 6010	745455
50349809002	MW-418D-071923	EPA 3010	745454	EPA 6010	745455
50349809001	MW-428-071923	EPA 5030/8260	745150		
50349809002	MW-418D-071923	EPA 5030/8260	744965		
50349809003	MW-331-072023	EPA 5030/8260	744965		
50349809004	MW-311-072023	EPA 5030/8260	744965		
50349809005	W-9-072023	EPA 5030/8260	744965		
50349809006	MW-313-072023	EPA 5030/8260	744965		
50349809007	MW-112-072023	EPA 5030/8260	744965		
50349809008	MW-253-072023	EPA 5030/8260	744965		
50349809009	MW-251-072023	EPA 5030/8260	744965		
50349809010	W-10-072023	EPA 5030/8260	744965		
50349809011	MW-153-072023	EPA 5030/8260	744965		
50349809012	W-8-072023	EPA 5030/8260	744965		
50349809013	MW-163-072023	EPA 5030/8260	744965		
50349809014	MW-312-072023	EPA 5030/8260	744965		
50349809015	MW-132-072023	EPA 5030/8260	745150		
50349809016	MW-41-072023	EPA 5030/8260	745150		
50349809017	MW-333-072023	EPA 5030/8260	745150		
50349809018	MW-343-072023	EPA 5030/8260	745975		
50349809019	AD-400-072023	EPA 5030/8260	745150		
50349809020	MW-241-072023	EPA 5030/8260	745150		
50349809021	MW-32-072023	EPA 5030/8260	745150		
50349809022	MW-33-072023	EPA 5030/8260	745150		
50349809023	Trip Blank-072023	EPA 5030/8260	745150		
50349809001	MW-428-071923	EPA 353.2	744582		
50349809002	MW-418D-071923	EPA 353.2	744582		
50349809001	MW-428-071923	SM 5310C	744952		
50349809002	MW-418D-071923	SM 5310C	744952		

WWW.PACELABS.COM

WO#:50349809

al Request Document

DATE Signed:

Il relevant fields must be completed accurately.

Submitting a sample via this chain of custody constitute and at https://info.pacelabs.com/hubfs/pas-standard-terms.pdf. Section A Section B Required Project Informa Required Client Information: Page: Chase Fo. Report To: Company: Ramboll OH Attention: Accounts Payable Address 8805 Governor's Hill Drive Suite 205 Copy To: Company Name: Ramboll OH Address Cincinnati, OH 45249 Regulatory Agency chase.forman@ramboll.com Purchase Order #: 1940006425 Pace Quote mail: (740)403-1387 Project Name: GE Indy Pace Project Manager: heather.patterson@pacelabs.com. State / Location Requested Due Date Project # Pace Profile #: 9761-8 Standard IN Requested Analysis Filtered (Y/N) C=COMP) XIN COLLECTED Preservatives MATRIX Drinking Water Dissolved Gases by AM20GAX Water (G=GRAB Waste Water Product 300.0 SAMPLE ID Soil/Solid (see START **END** Nitrate by 353.2 One Character per box. Wipe Residual Chlor MATRIX CODE SAMPLE TYPE **VOC by 8260** Sulfate by (A-Z, 0-9/, -) Other Na2S203 Sample Ids must be unique Tissue ITEM HN03 NaOH # OF HC. DATE TIME DATE TIME WT, 3 5 3 3 8 9 5 10 11 RELINQUISHED BY / AFFILIATION SAMPLE CONDITIONS ADDITIONAL COMMENTS DATE TIME ACCEPTED BY / AFFILIATION DATE TIME HW123 45 6 AM20GAX for M/E/E/propane/propene/butane to Pace® Gulf Coast NITRATE by 353.2 SHORT HOLD SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER: Custody Sealed Cooler (YAZ) SSApples Intact (YAZ) TEMP Se (X/N) SIGNATURE of SAMPLER:

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately. Submitting a sample via this chain of custody constitutes acknowledgment and acceptance of the Pace Terms and Conditions found at https://info.pacelabs.com/hubfs/pas-standard-terms.pdf.

Section A Required Client Information:	Section B Required Pr	roject In	formation	·	ioni ana c	acceptance		ction C		ation:	u 001	iditio	10 10	4114 4	тиср	0.7711	ю.ро	ocial	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		ограс		Pag		7	Of (2
Company: Ramboll OH	Report To:		se Forma					ention:		Accou	nts P	avab	le										· ug				
Address: 8805 Governor's Hill Drive Suite 205	Сору То:						Co	mpany		e: Ra																	
Cincinnati, OH 45249							Ad	dress:														Ye. of the	R	tegulato	ry Agency		NATION OF
Email: chase.forman@ramboll.com	Purchase Or		194000	6425			Pa	ce Quo	ote:																		
Phone: (740)403-1387 Fax:	Project Nam	e: (GE Indy				_			lanager		heat	her.p	patte	rson	@pa	cela	bs.c	om,				1000	State / I	Location		100
Requested Due Date: Standard	Project #:						Pa	ce Prof	file #:	97	61-	8													IN		
														250		R	eques	sted A	Analys	sis Filte	ered (Y	(/N)	e Maria				
MATRIX Drinking	CODE Water DW	codes to left)	C=COMP)	COLL	ECTED		NO.		F	Prese	rvativ	es	-	N/X		~	1	-			\perp	\coprod					
SAMPLE ID SAMPLE ID One Character per box. (A-Z, 0-9 /, -) Sample lds must be unique Water Water Water Water Water Other Tissue	P	(see valid	SAMPLE TYPE (G=GRAB C=COMP) SAMPLE TYPE (G=GRAB C=COMP)	TART	DATE	ND	AI COLI	Unpreserved	H2SO4	HN03 HCI	NaOH	Na2S2O3	Methanol	Analyses Test	2	Dissolved Gases by AM20GAX	Metals, Field Filtered Fe	Nitrate by 353.2	Sulfate by 300.0					Residual Chlorine (Y/N)			
111/1/3 -077000		WT (_		7.20-2	10		3,		- A	-		\top		V				+	\top	\top	\top	\sqcap	\top	01	13	
1 1000000000000000000000000000000000000		WT (7	_	V+ 40-6	3 1135			1	13	1)	-	+	\dashv	1		\vdash	+	+	++	+	+	\vdash	┨╏	01	<u> </u>	
2 MW-312-072023			11 \(1	[148]	9	3		3	5				IX										\mathcal{O}	14	
M1 1 100 070603			11 1/4	4/			-			7			\top	7		1			\top					7 [Ol	15	
3 M-126-07-07-)	$+\!\!\!\!\!+$	+	+		1155			\sqcup		4_	\vdash	4	_	X	_	Ш	_	_	\perp	\perp	\perp	\vdash	- 1	<u> </u>	7	
4 MM-41-072020			11 1	/		1215	1	3		13				1	X	1								11	(2	16	
1111110012000	1	+++	+	1/	+	100	_		\vdash	_	+-	\vdash	+	\dashv		1	\vdash	+	+	+	+	+	\vdash	-1 t	61	+	
5 MW-777-07-WC	\supset			\		1235	- 3	5		3					X									┚╹	01	7	
M1 - 342 177772		Π		\ \		1000	-	3		3	T	П	\top			1			\top					11	0	8	
6 MW- 393-0+2023		+++	+-	- N	-	1,640		2	A	whi	1	\vdash	+	\dashv	4	*	\vdash	-	+	+	\vdash	+	++	\dashv \vdash			
7 AD -400-042523				ΛΙ		1200	(ال	الع	1	3	J.K		- 1		1)									11	0	(9	
8 MW-241-072023		$\dagger \dagger \dagger$	117			1245	7	3		C	3	П	\top	٦	X					\top	\sqcap		\Box	71	02	20	
9 MW-32-072023		III	11/			1340	0	3	П	2	3		1	٦	×								П	71	0	21	
10 MW-33-072023		1//,	11/			1345	7	3	П	7	5	\Box	\top	\exists	X								\sqcap	71	Ó	7.2	/
11 Trip Blank-07702	3	W	20/			_	9		\Box	3	3	\Box	1		5				1		\Box	\top		7	0	23	?
12		1					\top				\top	\Box		٦	ŕ	T								7 /			
ADDITIONAL COMMENTS	18 19 19 18 18 18 18 18 18 18 18 18 18 18 18 18	RELING	QUISHED BY	Y / AFFILIAT	TION	DATE		TIME				ACCE	PTEC) BY / /	AFFILI	IATIO	N			DATE	E	TIME	E		SAMPLE	CONDITION	IS
AM20GAX for M/E/E/propane/propene/butane to Pace® Gul	Coast Ma	H	Mari	IAN		7-70-	23	176	n	0	-1	2							-	1120	123	164	5	1,6	u	N	1
NITRATE by 353.2 SHORT HOLD		-V)	CIMUM	VV VI		7 (1)	$\tilde{}$												1		\top		1		1		Y
MITTALE BY 353.2 SHOKE HOLD							+												+		\dashv		\neg				
							+		\dashv										\dashv		\dashv		\dashv				
				SAMPL	ER NAME	AND SIGN	ATUF	RE		3,7	100		la de la companya de									7 (3)			5		
				PF	RINT Name	e of SAMPL	ER:	Mar	4	Sto	21	PH												P in C	eived	Cooler	nples
				SI	GNATURE	of SAMPL	ER:	MA	YH	- 3	W.	4	11	1	T	DA	TE Si	gned	: 7	-10)-1	13		TEMP	Rec Kec	Seal	agē 78

Pace

SAMPLE CONDITION UPON RECEIPT FORM

Date/Time and Initials of person examining contents	: 7/201	23 164	5 CRN		_			
1. Courier: ☐ FED EX ☐ UPS ☐ CLIENT ☐ PACE	□ NOW/J	ETT 🗆 C	OTHER	5. Packing Material:	☑ Bubble Wrap	Bubble	e Bags	
2. Custody Seal on Cooler/Box Present: Yes	No				None	Other		
(If yes)Seals Intact: \square Yes \square No (leave blank	if no seals	were prese	nt)					
3. Thermometer: 12345678 ABCD	E FGH			6. Ice Type: Wet	☐ Blue ☐ None	,		
4. Cooler Temperature(s):				7. If temp. is over 6°C or u				□ No
(Initial/Corrected) RECORD TEMPS OF ALL COOLERS RECEI				comments section below.	p should be above free	zing to 6°C		
Airo	Yes	No No	whiten out in the d	omments section below.		Yes	No	N/A
USDA Regulated Soils? (HI, ID, NY, WA, OR,CA, NM, TX,	165	140	All containers need	ling acid/base preservation h	aaya baan nH	165	140	14/7
OK, AR, LA, TN, AL, MS, NC, SC, GA, FL, or Puerto Rico)		/	CHECKED?: Excel	otions: VOA, coliform, LLHg, septum cap or preserved wit	O&G, RAD CHEM, and			
Short Hold Time Analysis (48 hours or less)? Analysis: んしとしゃっろ	/		Circle: (1NO3 (22) (12SO4 Any non-conformance count form	NaOH (>10) NaOH/Z e to pH recommendations will be	nAc (>9) e noted on the container	/		
Time 5035A TC placed in Freezer or Short Holds To Lab	Time:	1:22	, Residual Chlorine	Check (SVOC 625 Pest/PCE	3 608)	Present	Absent	N/A
Rush TAT Requested (4 days or less):			Residual Chlorine	Check (Total/Amenable/Free	e Cyanide)			/
Custody Signatures Present?	/		Headspace Wiscon	sin Sulfide?				1
Containers Intact?:	/		Headspace in VOA See Containter Cou	Vials (>6mm):		Present	Absent	No VOA Vials Sent
Sample Label (IDs/Dates/Times) Match COC?: Except TCs, which only require sample ID	/		Trip Blank Present?)				
Extra labels on Terracore Vials? (soils only)			Trip Blank Custody	Seals?:				
COMMENTS:								

Page 79 of 81

Sample Container Count

** Place a RED dot on containers

that are out of conformance **

			MeOH (only)					l																				Nitric	Sulfuric	Sodium Hydroxide	Sodium Hydroxide/ ZnAc
			SBS							AMB	ER G	LASS						PL	AST	IC					OTH	HER		Red	Yellow	Green	Black
COC Line Item	WGFU	WGKU BG1U		DG9H	VOA VIAL HS >6mm	0690 0690	VG9T	AGOU	AG1H	AG1U	AG3U	AG3S	AG3SF	AG3B	BP1U	BP1N	BP2U	врзи	BP3N	врзг	BP3S	врзв	BP3Z	ССЗН	CG3F	Syringe Kit	Matrix	HNO3 <2	H2SO4 <2	NaOH >10	NaOH/Zn Ac >9
1				5								ı						١		1							WT	V	~	,	
2				5						,		1						ı		1								/	/		
3				3																											
4				3																											
5				5																											
6				3																											
7				3																											
8				3																											
9				3																											
10				3																											
11				3																											
12				5																							1				- Control

Container Codes

	Glass										
DG9H	40mL HCl amber voa vial	BG1T	glass								
DG9P	40mL TSP amber vial	BG1U	1L unpreserved glass								
DG9S	40mL H2SO4 amber vial	CG3U	250mL Unpres Clear Glass								
DG9T	40mL Na Thio amber vial	AG0U	100mL unpres amber glass								
DG9U	40mL unpreserved amber vial	AG1H	1L HCl amber glass								
VG9H	40mL HCl clear vial	AG1S	1L H2SO4 amber glass								
VG9T	40mL Na Thio. clear vial	AG1T	1L Na Thiosulfate amber glass								
VG9U	40mL unpreserved clear vial	AG1U	1liter unpres amber glass								
I	40mL w/hexane wipe vial	AG2N	500mL HNO3 amber glass								
WGKU	8oz unpreserved clear jar	AG2S	500mL H2SO4 amber glass								
WGFU	4oz clear soil jar	AG2U	500mL unpres amber glass								
JGFU	4oz unpreserved amber wide	AG3S	250mL H2SO4 amber glass								
CG3H	250mL clear glass HCl	AG3SF	250mL H2SO4 amb glass -field filtered								
CG3F	250mL clear glass HCl, Field Filter	AG3U	250mL unpres amber glass								
BG1H	1L HCl clear glass	AG3B	250mL NaOH amber glass								
BG1S	1L H2SO4 clear glass										

	Plastic											
BP1B	1L NaOH plastic	BP4U	125mL unpreserved plastic									
BP1N	1L HNO3 plastic	BP4N	125mL HNO3 plastic									
BP1S	1L H2SO4 plastic	BP4S	125mL H2SO4 plastic									
BP1U	1L unpreserved plastic		Miscellaneous									
BP1Z	1L NaOH, Zn, Ac		Miscellaneous									
BP2N	500mL HNO3 plastic	Syring	ge Kit LL Cr+6 sampling kit									
BP2C	500mL NaOH plastic	ZPLC	Ziploc Bag									
BP2S	500mL H2SO4 plastic	R	Terracore Kit									
BP2U	500mL unpreserved plastic	SP5T	120mL Coliform Sodium Thiosulfate									
BP2Z	500mL NaOH, Zn Ac	GN	General Container									
врзв	250mL NaOH plastic	U	Summa Can (air sample)									
BP3N	250mL HNO3 plastic	WT	Water									
BP3F	250mL HNO3 plastic-field filtered	SL	Solid									
BP3U	250mL unpreserved plastic	OL:	Oil									
BP3S	250mL H2SO4 plastic	NAL	Non-aqueous liquid									
BP3Z	250mL NaOH, ZnAc plastic	WP	Wipe									
BP3R	250mL Unpres. FF SO4/OH buffer											

** Place a RED dot on containers

that are out of conformance **

			MeOH (only)		l	I				AMB	ER G	LASS						PL	.AST	IC					ОТН	HER				Sodium Hydroxide	Sodium Hydroxide/ ZnAc
			DI	\wedge																								Red	Yellow	Green	Black
COC Line Item	WGFU	WGKU BG1U	R	H690 H690 H690	VOA VIAL HS >6mm	VG9U	VG9T	AGOU	AG1H	AG1U	AG3U	AG3S	AG3SF	AG3B	BP1U	BP1N	BP2U	врзи	BP3N	врзғ	BP3S	врзв	BP3Z	свзн	CG3F	Syringe Kit	Matrix	HNO3 <2	H2SO4 <2	NaOH >10	NaOH/Zn Ac >9
1				3																							W			4	
2				3																											
3				3																							Ш				
4		,		3																											
5				3																											
6				3																											
7				2																											
8				3																											
9				3																											
10				3																											
11				3																							•				
12																															

Container Codes

		-	
	Glas	SS	
DG9H	40mL HCl amber voa vial	BG1T	glass
DG9P	40mL TSP amber vial	BG1U	1L unpreserved glass
DG9S	40mL H2SO4 amber vial	CG3U	250mL Unpres Clear Glass
DG9T	40mL Na Thio amber vial	AG0U	100mL unpres amber glass
DG9U	40mL unpreserved amber vial	AG1H	1L HCl amber glass
VG9H	40mL HCl clear vial	AG1S	1L H2SO4 amber glass
VG9T	40mL Na Thio. clear vial	AG1T	1L Na Thiosulfate amber glass
VG9U	40mL unpreserved clear vial	AG1U	1liter unpres amber glass
I	40mL w/hexane wipe vial	AG2N	500mL HNO3 amber glass
WGKU	8oz unpreserved clear jar	AG2S	500mL H2SO4 amber glass
WGFU	4oz clear soil jar	AG2U	500mL unpres amber glass
JGFU	4oz unpreserved amber wide	AG3S	250mL H2SO4 amber glass
CG3H	250mL clear glass HCl	AG3SF	250mL H2SO4 amb glass -field filtered
CG3F	250mL clear glass HCl, Field Filter	AG3U	250mL unpres amber glass
BG1H	1L HCl clear glass	AG3B	250mL NaOH amber glass
BG1S	1L H2SO4 clear glass		

at Contract of				
			Pla	astic
BP1B	1L NaOH plastic	BP4U	125ml	unpreserved plastic
BP1N	1L HNO3 plastic	BP4N	125ml	L HNO3 plastic
BP1S	1L H2SO4 plastic	BP4S	125ml	L H2SO4 plastic
BP1U	1L unpreserved plastic			Miscellaneous
BP1Z	1L NaOH, Zn, Ac			Miscellalieous
BP2N	500mL HNO3 plastic	Syring	ge Kit	LL Cr+6 sampling kit
BP2C	500mL NaOH plastic	ZPLC	Ziploc	Bag
BP2S	500mL H2SO4 plastic	R	Terrac	core Kit
BP2U	500mL unpreserved plastic	SP5T	120ml	L Coliform Sodium Thiosulfate
BP2Z	500mL NaOH, Zn Ac	GN	Gener	al Container
врзв	250mL NaOH plastic	U	Summ	na Can (air sample)
BP3N	250mL HNO3 plastic	WT	Water	
BP3F	250mL HNO3 plastic-field filtered	SL	Solid	
BP3U	250mL unpreserved plastic	OL:	Oil	· ·
BP3S	250mL H2SO4 plastic	NAL	Non-a	queous liquid
BP3Z	250mL NaOH, ZnAc plastic	WP	Wipe	
BP3R	250mL Unpres. FF SO4/OH buffer			

September 19, 2023

Chase Forman Ramboll 8805 Governor's Hill Drive Suite 205 Cincinnati, OH 45249

RE: Project: GE Indy

Pace Project No.: 50353438

Dear Chase Forman:

Enclosed are the analytical results for sample(s) received by the laboratory on September 08, 2023. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Indianapolis

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Heather Patterson

heather.patterson@pacelabs.com

Heath Pathson

(317)228-3146 Project Manager

Enclosures

cc: Mr. Tyler Carter, Ramboll Environ

Matt Starrett, Ramboll Dana Williams, Ramboll

CERTIFICATIONS

Project: GE Indy
Pace Project No.: 50353438

Pace Analytical Services Indianapolis

7726 Moller Road, Indianapolis, IN 46268
Illinois Accreditation #: 200074
Indiana Drinking Water Laboratory #: C-49-06
Kansas/TNI Certification #: E-10177
Kentucky UST Agency Interest #: 80226
Kentucky WW Laboratory ID #: 98019
Michigan Drinking Water Laboratory #9050

Ohio VAP Certified Laboratory #: CL0065 Oklahoma Laboratory #: 9204 Texas Certification #: T104704355 Wisconsin Laboratory #: 999788130 USDA Foreign Soil Permit #: 525-23-13-23119 USDA Compliance Agreement #: IN-SL-22-001

SAMPLE SUMMARY

Project: GE Indy
Pace Project No.: 50353438

Lab ID	Sample ID	Matrix	Date Collected	Date Received
50353438001	MW-322-090723	Water	09/07/23 11:30	09/08/23 11:29
50353438002	MW-323-090723	Water	09/07/23 11:35	09/08/23 11:29
50353438003	W-4R-090723	Water	09/07/23 12:05	09/08/23 11:29
50353438004	W-4D-090723	Water	09/07/23 12:10	09/08/23 11:29
50353438005	MW-273-090723	Water	09/07/23 12:15	09/08/23 11:29
50353438006	MW-415S-090723	Water	09/07/23 12:30	09/08/23 11:29
50353438007	MW-415D-090723	Water	09/07/23 12:25	09/08/23 11:29
50353438008	MW-416S-090723	Water	09/07/23 12:40	09/08/23 11:29
50353438009	MW-416D-090723	Water	09/07/23 12:45	09/08/23 11:29
50353438010	W-2-090723	Water	09/07/23 13:00	09/08/23 11:29
50353438011	MW-423S-090723	Water	09/07/23 14:05	09/08/23 11:29
50353438012	MW-423D-090723	Water	09/07/23 14:10	09/08/23 11:29
50353438013	MW-422S-090723	Water	09/07/23 14:20	09/08/23 11:29
50353438014	MW-422D-090723	Water	09/07/23 14:25	09/08/23 11:29
50353438015	MW-419S-090723	Water	09/07/23 14:35	09/08/23 11:29
50353438016	MW-419D-090723	Water	09/07/23 14:40	09/08/23 11:29
50353438017	MW-417S-090723	Water	09/07/23 14:50	09/08/23 11:29
50353438018	MW-417D-090723	Water	09/07/23 14:55	09/08/23 11:29
50353438019	MW-401-090723	Water	09/07/23 15:05	09/08/23 11:29
50353438020	MW-406S-090723	Water	09/07/23 15:20	09/08/23 11:29
50353438021	MW-406D-090723	Water	09/07/23 15:25	09/08/23 11:29
50353438022	MW-424S-090723	Water	09/07/23 15:35	09/08/23 11:29
50353438023	MW-424D-090723	Water	09/07/23 15:40	09/08/23 11:29
50353438024	MW-404-090723	Water	09/07/23 15:50	09/08/23 11:29
50353438025	MW-405S-090723	Water	09/07/23 16:00	09/08/23 11:29
50353438026	MW-405D-090723	Water	09/07/23 16:05	09/08/23 11:29
50353438027	MW-403-090723	Water	09/07/23 16:20	09/08/23 11:29
50353438028	MW-414S-090723	Water	09/07/23 16:30	09/08/23 11:29
50353438029	MW-414D-090723	Water	09/07/23 16:35	09/08/23 11:29
50353438030	MW-321-090723	Water	09/07/23 16:45	09/08/23 11:29
50353438031	AD-101-090723	Water	09/07/23 12:00	09/08/23 11:29
50353438032	MW-183-090823	Water	09/08/23 08:30	09/08/23 11:29
50353438033	MW-22-090823	Water	09/08/23 08:45	09/08/23 11:29
50353438034	W-9-090823	Water	09/08/23 08:50	09/08/23 11:29
50353438035	W-82-090823	Water	09/08/23 09:00	09/08/23 11:29
50353438036	MW-173-090823	Water	09/08/23 09:15	09/08/23 11:29
50353438037	MW-426-090823	Water	09/08/23 09:20	09/08/23 11:29

REPORT OF LABORATORY ANALYSIS

SAMPLE SUMMARY

Project: GE Indy
Pace Project No.: 50353438

Lab ID	Sample ID	Matrix	Date Collected	Date Received
50353438038	W-8D-090823	Water	09/08/23 09:30	09/08/23 11:29
50353438039	MW-131-090823	Water	09/08/23 09:40	09/08/23 11:29
50353438040	MW-133-090823	Water	09/08/23 09:45	09/08/23 11:29
50353438041	MW-302-090823	Water	09/08/23 09:50	09/08/23 11:29
50353438042	MW-303-090823	Water	09/08/23 09:55	09/08/23 11:29
50353438043	MW-92-090823	Water	09/08/23 10:10	09/08/23 11:29
50353438044	AD-201-090823	Water	09/08/23 08:00	09/08/23 11:29
50353438045	Trip Blank-090823	Water	09/08/23 08:00	09/08/23 11:29

SAMPLE ANALYTE COUNT

Project: GE Indy
Pace Project No.: 50353438

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
50353438001	MW-322-090723	EPA 5030/8260	TMW		PASI-I
50353438002	MW-323-090723	EPA 5030/8260	TMW	75	PASI-I
50353438003	W-4R-090723	EPA 5030/8260	TMW	75	PASI-I
50353438004	W-4D-090723	EPA 5030/8260	TMW	75	PASI-I
50353438005	MW-273-090723	EPA 5030/8260	TMW	75	PASI-I
50353438006	MW-415S-090723	EPA 5030/8260	TMW	75	PASI-I
50353438007	MW-415D-090723	EPA 5030/8260	TMW	75	PASI-I
50353438008	MW-416S-090723	EPA 5030/8260	TMW	75	PASI-I
50353438009	MW-416D-090723	EPA 5030/8260	TMW	75	PASI-I
50353438010	W-2-090723	EPA 5030/8260	TMW	75	PASI-I
50353438011	MW-423S-090723	EPA 5030/8260	TMW	75	PASI-I
50353438012	MW-423D-090723	EPA 5030/8260	TMW	75	PASI-I
50353438013	MW-422S-090723	EPA 5030/8260	TMW	75	PASI-I
50353438014	MW-422D-090723	EPA 5030/8260	TMW	75	PASI-I
50353438015	MW-419S-090723	EPA 5030/8260	TMW	75	PASI-I
50353438016	MW-419D-090723	EPA 5030/8260	TMW	75	PASI-I
50353438017	MW-417S-090723	EPA 5030/8260	TMW	75	PASI-I
50353438018	MW-417D-090723	EPA 5030/8260	TMW	75	PASI-I
50353438019	MW-401-090723	EPA 5030/8260	TMW	75	PASI-I
50353438020	MW-406S-090723	EPA 5030/8260	TMW	75	PASI-I
50353438021	MW-406D-090723	EPA 5030/8260	TMW	75	PASI-I
50353438022	MW-424S-090723	EPA 5030/8260	TMW	75	PASI-I
50353438023	MW-424D-090723	EPA 5030/8260	TMW	75	PASI-I
50353438024	MW-404-090723	EPA 5030/8260	TMW	75	PASI-I
50353438025	MW-405S-090723	EPA 5030/8260	TMW	75	PASI-I
50353438026	MW-405D-090723	EPA 5030/8260	TMW	75	PASI-I
50353438027	MW-403-090723	EPA 5030/8260	TMW	75	PASI-I
50353438028	MW-414S-090723	EPA 5030/8260	TMW	75	PASI-I
50353438029	MW-414D-090723	EPA 5030/8260	TMW	75	PASI-I
50353438030	MW-321-090723	EPA 5030/8260	TMW	75	PASI-I
50353438031	AD-101-090723	EPA 5030/8260	TMW	75	PASI-I
50353438032	MW-183-090823	EPA 5030/8260	TMW	75	PASI-I
50353438033	MW-22-090823	EPA 5030/8260	TMW	75	PASI-I
50353438034	W-9-090823	RSK 175 Modified	TAY	3	PASI-I
		EPA 5030/8260	TMW	75	PASI-I
50353438035	W-82-090823	EPA 5030/8260	TMW	75	PASI-I
50353438036	MW-173-090823	EPA 5030/8260	TMW	75	PASI-I

REPORT OF LABORATORY ANALYSIS

SAMPLE ANALYTE COUNT

Project: GE Indy
Pace Project No.: 50353438

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
50353438037	MW-426-090823	EPA 5030/8260	TMW	75	PASI-I
50353438038	W-8D-090823	EPA 5030/8260	TMW	75	PASI-I
50353438039	MW-131-090823	EPA 5030/8260	TMW	75	PASI-I
50353438040	MW-133-090823	EPA 5030/8260	TMW	75	PASI-I
50353438041	MW-302-090823	EPA 5030/8260	TMW	75	PASI-I
50353438042	MW-303-090823	EPA 5030/8260	TMW	75	PASI-I
50353438043	MW-92-090823	EPA 5030/8260	TMW	75	PASI-I
50353438044	AD-201-090823	EPA 5030/8260	TMW	75	PASI-I
50353438045	Trip Blank-090823	EPA 5030/8260	TMW	75	PASI-I

PASI-I = Pace Analytical Services - Indianapolis

Project: GE Indy
Pace Project No.: 50353438

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
0353438001	MW-322-090723					
EPA 5030/8260	Chloroethane	2020	ug/L	100	09/15/23 20:25	
EPA 5030/8260	1,1-Dichloroethane	8.9	ug/L	5.0	09/15/23 07:14	
EPA 5030/8260	cis-1,2-Dichloroethene	623	ug/L	100	09/15/23 20:25	
EPA 5030/8260	trans-1,2-Dichloroethene	20.7	ug/L	5.0	09/15/23 07:14	
EPA 5030/8260	Trichloroethene	30.3	ug/L	5.0	09/15/23 07:14	
EPA 5030/8260	Vinyl chloride	734	ug/L	40.0	09/15/23 20:25	
0353438002	MW-323-090723					
EPA 5030/8260	cis-1,2-Dichloroethene	36.1	ug/L	5.0	09/15/23 07:44	
EPA 5030/8260	Vinyl chloride	16.0	ug/L	2.0	09/15/23 14:49	
0353438003	W-4R-090723					
EPA 5030/8260	Benzene	13.3	ug/L	5.0	09/15/23 08:15	
EPA 5030/8260	Chloroethane	512	ug/L	50.0	09/15/23 15:50	
EPA 5030/8260	1,1-Dichloroethane	10.1	ug/L	5.0	09/15/23 08:15	
EPA 5030/8260	cis-1,2-Dichloroethene	29.5	ug/L	5.0	09/15/23 08:15	
EPA 5030/8260	trans-1,2-Dichloroethene	8.8	ug/L	5.0	09/15/23 08:15	
EPA 5030/8260	Vinyl chloride	19.8	ug/L	2.0	09/15/23 15:19	
0353438005	MW-273-090723					
EPA 5030/8260	Methylene Chloride	7.8	ug/L	5.0	09/15/23 10:17	C9
0353438006	MW-415S-090723					
EPA 5030/8260	Chloroethane	634	ug/L	100	09/15/23 20:56	
0353438008	MW-416S-090723					
EPA 5030/8260	Chloroethane	567	ug/L	50.0	09/15/23 16:21	M1
EPA 5030/8260	1,1-Dichloroethane	25.5	ug/L	5.0	09/15/23 02:54	
EPA 5030/8260	trans-1,2-Dichloroethene	5.5	ug/L	5.0	09/15/23 02:54	
EPA 5030/8260	Vinyl chloride	2.6	ug/L	2.0	09/15/23 02:54	
0353438009	MW-416D-090723					
EPA 5030/8260	Chloroethane	436	ug/L	25.0	09/15/23 04:25	
EPA 5030/8260	1,1-Dichloroethane	45.4	ug/L	25.0	09/15/23 04:25	
EPA 5030/8260	Vinyl chloride	12.1	ug/L	10.0	09/15/23 04:25	
0353438010	W-2-090723					
EPA 5030/8260	Acetone	3830J	ug/L		09/18/23 12:29	
EPA 5030/8260	Chloroethane	30.5	ug/L	5.0	09/15/23 14:34	2d,CL
EPA 5030/8260	1,1-Dichloroethane	1290	ug/L	250	09/18/23 12:29	
EPA 5030/8260	1,1-Dichloroethene	14.9	ug/L	5.0	09/15/23 14:34	
EPA 5030/8260	cis-1,2-Dichloroethene	5700	ug/L	250	09/18/23 12:29	
PA 5030/8260	trans-1,2-Dichloroethene	57.2	ug/L	5.0	09/15/23 14:34	
PA 5030/8260	n-Hexane	5.9	ug/L	5.0	09/15/23 14:34	
PA 5030/8260	Methylene Chloride	8.2	ug/L	5.0	09/15/23 14:34	C9
PA 5030/8260	1,1,1-Trichloroethane	226	ug/L	5.0	09/15/23 14:34	
EPA 5030/8260	Trichloroethene	258	ug/L	5.0	09/15/23 14:34	
EPA 5030/8260	Vinyl chloride	129	ug/L	100	09/18/23 12:29	

REPORT OF LABORATORY ANALYSIS

Project: GE Indy
Pace Project No.: 50353438

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
60353438011	MW-423S-090723					
EPA 5030/8260	Chloroethane	948	ug/L	50.0	09/15/23 16:51	
EPA 5030/8260	1,1-Dichloroethane	922	ug/L	50.0	09/15/23 16:51	
EPA 5030/8260	1,2-Dichloroethane	21.5	ug/L	5.0	09/15/23 05:27	
EPA 5030/8260	1,1-Dichloroethene	23.8	ug/L	5.0	09/15/23 05:27	
EPA 5030/8260	cis-1,2-Dichloroethene	86.1	ug/L	5.0	09/15/23 05:27	
EPA 5030/8260	trans-1,2-Dichloroethene	9.5	ug/L	5.0	09/15/23 05:27	
EPA 5030/8260	Methylene Chloride	5.7	ug/L	5.0	09/15/23 05:27	
EPA 5030/8260	1,1,1-Trichloroethane	20.7	ug/L	5.0	09/15/23 05:27	
EPA 5030/8260	Vinyl chloride	75.3	ug/L	2.0	09/15/23 05:27	
0353438012	MW-423D-090723		_			
EPA 5030/8260	Chloroethane	21.8	ug/L	5.0	09/15/23 05:57	
EPA 5030/8260	cis-1,2-Dichloroethene	6.2	ug/L	5.0	09/15/23 05:57	
EPA 5030/8260	Vinyl chloride	7.0	ug/L	2.0	09/15/23 05:57	
0353438013	MW-422S-090723					
EPA 5030/8260	cis-1,2-Dichloroethene	1010	ug/L	250	09/15/23 17:52	
EPA 5030/8260	Trichloroethene	5.8	ug/L	5.0	09/15/23 06:28	
EPA 5030/8260	Vinyl chloride	3470	ug/L	100	09/15/23 17:52	
0353438014	MW-422D-090723					
EPA 5030/8260	1,2-Dichloroethane	6.8	ug/L	5.0	09/15/23 06:59	
EPA 5030/8260	cis-1,2-Dichloroethene	170	ug/L	5.0	09/15/23 06:59	
EPA 5030/8260	Vinyl chloride	493	ug/L	20.0	09/15/23 18:23	
0353438015	MW-419S-090723					
EPA 5030/8260	cis-1,2-Dichloroethene	30.3	ug/L	5.0	09/15/23 07:29	
EPA 5030/8260	Vinyl chloride	5.6	ug/L	2.0	09/15/23 07:29	
0353438016	MW-419D-090723					
EPA 5030/8260	cis-1,2-Dichloroethene	2780	ug/L	100	09/15/23 18:54	
0353438017	MW-417S-090723					
EPA 5030/8260	Chloroethane	192	ug/L	5.0	09/15/23 08:30	
EPA 5030/8260	1,2-Dichloroethane	5.8	ug/L	5.0	09/15/23 08:30	
EPA 5030/8260	cis-1,2-Dichloroethene	19.8	ug/L	5.0	09/15/23 08:30	
EPA 5030/8260	trans-1,2-Dichloroethene	8.2	ug/L	5.0	09/15/23 08:30	
EPA 5030/8260	Vinyl chloride	5.8	ug/L	2.0	09/15/23 08:30	
0353438018	MW-417D-090723					
EPA 5030/8260	Benzene	9.1	ug/L	5.0		
EPA 5030/8260	Chloroethane	582	ug/L	50.0		
EPA 5030/8260	1,1-Dichloroethane	35.9	ug/L	5.0		
EPA 5030/8260	cis-1,2-Dichloroethene	22.0	ug/L	5.0	09/15/23 09:32	
EPA 5030/8260	Vinyl chloride	15.1	ug/L	2.0	09/15/23 09:32	
0353438019	MW-401-090723					
EPA 5030/8260	Chloroethane	509	ug/L	250	09/15/23 10:33	
EPA 5030/8260	cis-1,2-Dichloroethene	1820	ug/L	250	09/15/23 10:33	
EPA 5030/8260	Methylene Chloride	255	ug/L	250	09/15/23 10:33	

REPORT OF LABORATORY ANALYSIS

Project: GE Indy
Pace Project No.: 50353438

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
50353438019	MW-401-090723					
EPA 5030/8260	Vinyl chloride	278	ug/L	100	09/15/23 10:33	
50353438020	MW-406S-090723					
EPA 5030/8260	Chloroethane	479	ug/L	25.0	09/15/23 15:04	2d,CL
EPA 5030/8260	1,1-Dichloroethane	1690	ug/L	1000	09/18/23 12:59	
EPA 5030/8260	1,1-Dichloroethene	62.1	ug/L	25.0	09/15/23 15:04	
EPA 5030/8260	cis-1,2-Dichloroethene	14300	ug/L	1000	09/18/23 12:59	
EPA 5030/8260	trans-1,2-Dichloroethene	152	ug/L	25.0	09/15/23 15:04	
EPA 5030/8260	Methylene Chloride	39.0	ug/L	25.0	09/15/23 15:04	
EPA 5030/8260	1,1,1-Trichloroethane	488	ug/L	25.0	09/15/23 15:04	
EPA 5030/8260	Trichloroethene	349	ug/L	25.0	09/15/23 15:04	
EPA 5030/8260	Vinyl chloride	253	ug/L	10.0	09/15/23 15:04	2d,CL
50353438021	MW-406D-090723					
EPA 5030/8260	Chloroethane	310	ug/L	25.0	09/15/23 15:35	2d,CL
EPA 5030/8260	1,1-Dichloroethane	2000	ug/L	1000	09/18/23 13:30	
EPA 5030/8260	1,1-Dichloroethene	398	ug/L	25.0	09/15/23 15:35	
EPA 5030/8260	cis-1,2-Dichloroethene	21800	ug/L	1000	09/18/23 13:30	
EPA 5030/8260	trans-1,2-Dichloroethene	134	ug/L	25.0	09/15/23 15:35	
EPA 5030/8260	Trichloroethene	191	ug/L	25.0	09/15/23 15:35	
EPA 5030/8260	Vinyl chloride	932	ug/L	400	09/18/23 13:30	
50353438022	MW-424S-090723					
EPA 5030/8260	Chloroethane	723	ug/L	50.0	09/18/23 20:41	
EPA 5030/8260	1,1-Dichloroethane	45.0	ug/L	5.0	09/16/23 02:18	
EPA 5030/8260	cis-1,2-Dichloroethene	88.3	ug/L	5.0	09/16/23 02:18	
EPA 5030/8260	trans-1,2-Dichloroethene	19.4	ug/L	5.0	09/16/23 02:18	
EPA 5030/8260	1,1,1-Trichloroethane	15.5	ug/L	5.0	09/16/23 02:18	
EPA 5030/8260	Trichloroethene	11.1	ug/L	5.0	09/16/23 02:18	
EPA 5030/8260	Vinyl chloride	18.5	ug/L	2.0	09/18/23 20:10	
0353438023	MW-424D-090723					
EPA 5030/8260	Chloroethane	256	ug/L	5.0	09/18/23 14:01	
EPA 5030/8260	1,1-Dichloroethane	6.1	ug/L	5.0	09/15/23 16:05	
EPA 5030/8260	cis-1,2-Dichloroethene	79.8	ug/L	5.0	09/15/23 16:05	
EPA 5030/8260	trans-1,2-Dichloroethene	13.5	ug/L	5.0	09/15/23 16:05	
EPA 5030/8260	n-Hexane	8.9	ug/L	5.0	09/15/23 16:05	
EPA 5030/8260	Trichloroethene	6.5	ug/L	5.0	09/15/23 16:05	
EPA 5030/8260	Vinyl chloride	21.6	ug/L	2.0	09/18/23 14:01	
0353438024	MW-404-090723					
EPA 5030/8260	Chloroethane	10500	ug/L	2500	09/18/23 14:31	
EPA 5030/8260	1,1-Dichloroethane	42400	ug/L	2500	09/18/23 14:31	
EPA 5030/8260	1,2-Dichloroethane	711	ug/L	250	09/15/23 17:06	
EPA 5030/8260	1,1-Dichloroethene	938	ug/L	250	09/15/23 17:06	
EPA 5030/8260	cis-1,2-Dichloroethene	47000	ug/L	2500	09/18/23 14:31	
EPA 5030/8260	trans-1,2-Dichloroethene	1180	ug/L	250	09/15/23 17:06	
EPA 5030/8260	1,1,1-Trichloroethane	45800	ug/L	2500	09/18/23 14:31	
EPA 5030/8260	Vinyl chloride	14400	ug/L	1000		

REPORT OF LABORATORY ANALYSIS

Project: GE Indy
Pace Project No.: 50353438

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
50353438025	MW-405S-090723					
EPA 5030/8260	Chloroethane	26.2	ug/L	5.0	09/18/23 15:02	
50353438026	MW-405D-090723					
EPA 5030/8260	Benzene	7.3	ug/L	5.0	09/15/23 19:09	
EPA 5030/8260	Chloroethane	3330	ug/L	500	09/18/23 15:33	
EPA 5030/8260	1,1-Dichloroethane	3030	ug/L	500	09/18/23 15:33	
EPA 5030/8260	1,2-Dichloroethane	8.3	ug/L	5.0	09/15/23 19:09	
EPA 5030/8260	1,1-Dichloroethene	8.7	ug/L	5.0	09/15/23 19:09	
EPA 5030/8260	cis-1,2-Dichloroethene	2890	ug/L	500	09/18/23 15:33	
EPA 5030/8260	trans-1,2-Dichloroethene	72.9	ug/L	5.0	09/15/23 19:09	
EPA 5030/8260	1,1,1-Trichloroethane	44.5	ug/L	5.0	09/15/23 19:09	
EPA 5030/8260	Vinyl chloride	920	ug/L	200	09/18/23 15:33	
60353438027	MW-403-090723					
EPA 5030/8260	Chloroethane	354	ug/L	50.0	09/18/23 16:35	
EPA 5030/8260	1,1-Dichloroethane	140	ug/L	5.0	09/15/23 19:39	
EPA 5030/8260	cis-1,2-Dichloroethene	74.4	ug/L	5.0	09/15/23 19:39	
EPA 5030/8260	1,1,1-Trichloroethane	40.2	ug/L	5.0	09/15/23 19:39	
EPA 5030/8260	Vinyl chloride	39.6	ug/L	2.0	09/18/23 16:04	
0353438028	MW-414S-090723					
EPA 5030/8260	Chloroethane	291	ug/L	5.0	09/18/23 17:06	
EPA 5030/8260	cis-1,2-Dichloroethene	7.5	ug/L	5.0	09/15/23 20:10	
0353438029	MW-414D-090723					
EPA 5030/8260	Chloroethane	10.0	ug/L	5.0	09/18/23 17:36	
EPA 5030/8260	cis-1,2-Dichloroethene	5.1	ug/L	5.0	09/15/23 21:11	
0353438030	MW-321-090723					
EPA 5030/8260	Chloroethane	243	ug/L	5.0	09/18/23 18:07	
EPA 5030/8260	1,1-Dichloroethane	5.5	ug/L	5.0	09/15/23 21:42	
EPA 5030/8260	cis-1,2-Dichloroethene	5.3	ug/L	5.0	09/15/23 21:42	
EPA 5030/8260	Vinyl chloride	6.1	ug/L	2.0	09/18/23 18:07	
0353438031	AD-101-090723					
EPA 5030/8260	Chloroethane	168	ug/L	5.0	09/18/23 18:38	
EPA 5030/8260	cis-1,2-Dichloroethene	19.8	ug/L	5.0	09/15/23 22:12	
EPA 5030/8260	trans-1,2-Dichloroethene	8.0	ug/L	5.0	09/15/23 22:12	
EPA 5030/8260	Vinyl chloride	4.8	ug/L	2.0	09/18/23 18:38	
60353438032	MW-183-090823					
EPA 5030/8260	Vinyl chloride	5.8	ug/L	2.0	09/18/23 19:08	
0353438033	MW-22-090823					
EPA 5030/8260	cis-1,2-Dichloroethene	139	ug/L	5.0	09/15/23 23:14	
EPA 5030/8260	Vinyl chloride	153	ug/L	2.0		
0353438034	W-9-090823					
RSK 175 Modified	Ethane	328	ug/L	50.0	09/14/23 09:53	
RSK 175 Modified	Methane	47000	ug/L	50.0	09/14/23 09:53	

REPORT OF LABORATORY ANALYSIS

Project: GE Indy
Pace Project No.: 50353438

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
50353438036	MW-173-090823					
EPA 5030/8260	1,2-Dichloroethane	9.9	ug/L	5.0	09/16/23 03:50	
EPA 5030/8260	cis-1,2-Dichloroethene	1080	ug/L	100	09/18/23 21:11	
EPA 5030/8260	trans-1,2-Dichloroethene	16.9	ug/L	5.0	09/16/23 03:50	
EPA 5030/8260	Vinyl chloride	64.6	ug/L	2.0	09/16/23 03:50	2d,CL
50353438037	MW-426-090823					
EPA 5030/8260	Chloroethane	5210	ug/L	250	09/18/23 21:42	
EPA 5030/8260	1,1-Dichloroethane	42.2	ug/L	5.0	09/16/23 04:20	
EPA 5030/8260	1,2-Dichloroethane	10.5	ug/L	5.0	09/16/23 04:20	
EPA 5030/8260	cis-1,2-Dichloroethene	1170	ug/L	250	09/18/23 21:42	
EPA 5030/8260	trans-1,2-Dichloroethene	16.6	ug/L	5.0	09/16/23 04:20	
EPA 5030/8260	Vinyl chloride	759	ug/L	100	09/18/23 21:42	
50353438038	W-8D-090823					
EPA 5030/8260	cis-1,2-Dichloroethene	34.7	ug/L	5.0	09/16/23 04:51	
EPA 5030/8260	Vinyl chloride	77.8	ug/L	2.0	09/18/23 12:44	
50353438039	MW-131-090823					
EPA 5030/8260	Carbon tetrachloride	5.7	ug/L	5.0	09/16/23 05:22	
EPA 5030/8260	Chloroform	11.1	ug/L	5.0	09/16/23 05:22	
EPA 5030/8260	1,1-Dichloroethane	16.4	ug/L	5.0	09/16/23 05:22	
EPA 5030/8260	cis-1,2-Dichloroethene	6.2	ug/L	5.0	09/16/23 05:22	
EPA 5030/8260	1,1,1-Trichloroethane	155	ug/L	5.0	09/16/23 05:22	
EPA 5030/8260	Trichloroethene	44.9	ug/L	5.0	09/16/23 05:22	
0353438040	MW-133-090823					
EPA 5030/8260	1,1-Dichloroethane	19.9	ug/L	5.0	09/16/23 05:52	
EPA 5030/8260	cis-1,2-Dichloroethene	16.8	ug/L	5.0	09/16/23 05:52	
0353438042	MW-303-090823					
EPA 5030/8260	cis-1,2-Dichloroethene	917	ug/L	50.0	09/18/23 13:15	
EPA 5030/8260	trans-1,2-Dichloroethene	5.2	ug/L	5.0	09/16/23 06:54	
EPA 5030/8260	Vinyl chloride	540	ug/L	20.0	09/18/23 13:15	
50353438043	MW-92-090823					
EPA 5030/8260	cis-1,2-Dichloroethene	106	ug/L	5.0	09/16/23 07:24	
EPA 5030/8260	Vinyl chloride	36.8	ug/L	2.0	09/18/23 13:45	
50353438044	AD-201-090823					
EPA 5030/8260	Carbon tetrachloride	5.4	ug/L	5.0	09/16/23 07:55	
EPA 5030/8260	Chloroform	10.8	ug/L	5.0	09/16/23 07:55	
EPA 5030/8260	1,1-Dichloroethane	15.7	ug/L	5.0	09/16/23 07:55	
EPA 5030/8260	cis-1,2-Dichloroethene	5.9	ug/L	5.0	09/16/23 07:55	
EPA 5030/8260	1,1,1-Trichloroethane	147	ug/L	5.0	09/16/23 07:55	
EPA 5030/8260	Trichloroethene	44.2	ug/L	5.0	09/16/23 07:55	

Project: GE Indy
Pace Project No.: 50353438

Date: 09/19/2023 04:25 PM

Pace Project No.: 50353438									
Sample: MW-322-090723	Lab ID:	50353438001	Collected	l: 09/07/23	3 11:30	Received: 09/08	3/23 11:29 N	Matrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Indiana	Analytical	Method: EPA 5	5030/8260						
		llytical Services		is					
A		•	·		4	,	00/45/00 07.4	4 67 64 4	
Acetone	ND	ug/L	100	8.6	1		09/15/23 07:14		
Acrolein	ND	ug/L	50.0	13.4	1		09/15/23 07:14		
Acrylonitrile	ND	ug/L	100	3.0	1		09/15/23 07:14		
Benzene	ND	ug/L	5.0	0.46	1		09/15/23 07:14		
Bromobenzene	ND	ug/L	5.0	0.41	1		09/15/23 07:14		
Bromochloromethane	ND	ug/L	5.0	0.33	1		09/15/23 07:14		
Bromodichloromethane	ND	ug/L	5.0	0.29	1		09/15/23 07:14		
Bromoform	ND	ug/L	5.0	0.29	1		09/15/23 07:14		
Bromomethane	ND	ug/L	5.0	0.51	1		09/15/23 07:14		
2-Butanone (MEK)	ND	ug/L	25.0	3.3	1		09/15/23 07:14		
n-Butylbenzene	ND	ug/L	5.0	0.39	1		09/15/23 07:14		
sec-Butylbenzene	ND	ug/L	5.0	0.36	1	(09/15/23 07:14	4 135-98-8	
tert-Butylbenzene	ND	ug/L	5.0	0.38	1	(09/15/23 07:14	4 98-06-6	
Carbon disulfide	ND	ug/L	10.0	0.62	1	(09/15/23 07:14	4 75-15-0	
Carbon tetrachloride	ND	ug/L	5.0	0.29	1	(09/15/23 07:14	4 56-23-5	
Chlorobenzene	ND	ug/L	5.0	0.35	1	(09/15/23 07:14	4 108-90-7	
Chloroethane	2020	ug/L	100	17.4	20	(09/15/23 20:25	5 75-00-3	
Chloroform	ND	ug/L	5.0	2.6	1	(09/15/23 07:14	4 67-66-3	
Chloromethane	ND	ug/L	5.0	0.56	1	(09/15/23 07:14	4 74-87-3	
2-Chlorotoluene	ND	ug/L	5.0	0.37	1	(09/15/23 07:14	4 95-49-8	
4-Chlorotoluene	ND	ug/L	5.0	0.40	1	(09/15/23 07:14	4 106-43-4	
Dibromochloromethane	ND	ug/L	5.0	0.31	1	(09/15/23 07:14	4 124-48-1	
1,2-Dibromoethane (EDB)	ND	ug/L	5.0	0.29	1	(09/15/23 07:14	4 106-93-4	
Dibromomethane	ND	ug/L	5.0	0.46	1	(09/15/23 07:14	4 74-95-3	
1,2-Dichlorobenzene	ND	ug/L	5.0	0.34	1	(09/15/23 07:14	4 95-50-1	
1,3-Dichlorobenzene	ND	ug/L	5.0	0.40	1	(09/15/23 07:14	4 541-73-1	
1,4-Dichlorobenzene	ND	ug/L	5.0	0.39	1		09/15/23 07:14		
trans-1,4-Dichloro-2-butene	ND	ug/L	100	0.42	1		09/15/23 07:14		
Dichlorodifluoromethane	ND	ug/L	5.0	0.38	1		09/15/23 07:14		
1.1-Dichloroethane	8.9	ug/L	5.0	0.37	1		09/15/23 07:14		
1.2-Dichloroethane	ND	ug/L	5.0	0.34	1		09/15/23 07:14		
1.1-Dichloroethene	ND	ug/L	5.0	0.37	1		09/15/23 07:14		
cis-1,2-Dichloroethene	623	ug/L	100	6.8	20		09/15/23 20:2 {		
trans-1,2-Dichloroethene	20.7	ug/L	5.0	0.48	1		09/15/23 07:14		
1,2-Dichloropropane	ND	ug/L	5.0	0.43	1		09/15/23 07:1- 09/15/23 07:14		
1,3-Dichloropropane	ND	ug/L	5.0	0.30	1		09/15/23 07:14 09/15/23 07:14		
2,2-Dichloropropane	ND ND	ug/L ug/L	5.0	0.30	1		09/15/23 07:14 09/15/23 07:14		
1,1-Dichloropropene	ND ND	ug/L ug/L	5.0 5.0	0.37	1		09/15/23 07:14 09/15/23 07:14		
cis-1,3-Dichloropropene	ND ND	ug/L ug/L	5.0 5.0	0.34	1			4 10061-01-5	
	ND ND	-	5.0 5.0	0.31	1			4 10061-01-5	
trans-1,3-Dichloropropene		ug/L							
Ethylbenzene Ethyl methodridate	ND	ug/L	5.0	0.40	1		09/15/23 07:14		
Ethyl methacrylate	ND	ug/L	100	0.32	1		09/15/23 07:14		
Hexachloro-1,3-butadiene	ND	ug/L	5.0	0.48	1		09/15/23 07:14		
n-Hexane	ND	ug/L	5.0	0.36	1		09/15/23 07:14		
2-Hexanone	ND	ug/L	25.0	2.2	1	(09/15/23 07:14	4 591-78-6	

Project: GE Indy
Pace Project No.: 50353438

Date: 09/19/2023 04:25 PM

Sample: MW-322-090723	Lab ID:	50353438001	Collecte	d: 09/07/23	3 11:30	Received: 09	/08/23 11:29 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	5030/8260						
	Pace Anal	ytical Services	- Indianapo	lis					
lodomethane	ND	ug/L	10.0	2.0	1		09/15/23 07:14	74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	5.0	0.36	1		09/15/23 07:14	98-82-8	
p-Isopropyltoluene	ND	ug/L	5.0	0.41	1		09/15/23 07:14	99-87-6	
Methylene Chloride	ND	ug/L	5.0	3.7	1		09/15/23 07:14	75-09-2	
1-Methylnaphthalene	ND	ug/L	10.0	2.1	1		09/15/23 07:14	90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	2.1	1		09/15/23 07:14	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	2.1	1		09/15/23 07:14	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	4.0	0.66	1		09/15/23 07:14	1634-04-4	
Naphthalene	ND	ug/L	1.2	0.57	1		09/15/23 07:14		
n-Propylbenzene	ND	ug/L	5.0	0.37	1		09/15/23 07:14	103-65-1	
Styrene	ND	ug/L	5.0	0.39	1		09/15/23 07:14	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.34	1		09/15/23 07:14	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.35	1		09/15/23 07:14	79-34-5	
Tetrachloroethene	ND	ug/L	5.0	0.36	1		09/15/23 07:14	127-18-4	
Toluene	ND	ug/L	5.0	0.38	1		09/15/23 07:14	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	0.42	1		09/15/23 07:14	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	5.0	0.42	1		09/15/23 07:14	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	5.0	0.31	1		09/15/23 07:14	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	5.0	0.33	1		09/15/23 07:14	79-00-5	
Trichloroethene	30.3	ug/L	5.0	0.41	1		09/15/23 07:14	79-01-6	
Trichlorofluoromethane	ND	ug/L	5.0	0.36	1		09/15/23 07:14	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	5.0	0.33	1		09/15/23 07:14		
1,2,4-Trimethylbenzene	ND	ug/L	5.0	0.37	1		09/15/23 07:14		
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.38	1		09/15/23 07:14	108-67-8	
Vinyl acetate	ND	ug/L	50.0	1.7	1		09/15/23 07:14	108-05-4	
Vinyl chloride	734	ug/L	40.0	7.0	20		09/15/23 20:25		
Xylene (Total)	ND	ug/L	10.0	1.5	1		09/15/23 07:14		
Surrogates		3 - –			-				
Dibromofluoromethane (S)	104	%.	82-128		1		09/15/23 07:14	1868-53-7	
4-Bromofluorobenzene (S)	102	%.	79-124		1		09/15/23 07:14	460-00-4	
Toluene-d8 (S)	98	%.	73-122		1		09/15/23 07:14	2037-26-5	

Project: GE Indy
Pace Project No.: 5035343

Date: 09/19/2023 04:25 PM

Sample: MW-323-090723	Lab ID:	50353438002	Collected	d: 09/07/23	11:35	Received: 09)/08/23 11:29 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	-	lytical Services		lis					
Acetone	ND	ug/L	100	8.6	1		09/15/23 07:44	67-64-1	
Acrolein	ND	ug/L	50.0	13.4	1		09/15/23 07:44	107-02-8	
Acrylonitrile	ND	ug/L	100	3.0	1		09/15/23 07:44	107-13-1	
Benzene	ND	ug/L	5.0	0.46	1		09/15/23 07:44	71-43-2	
Bromobenzene	ND	ug/L	5.0	0.41	1		09/15/23 07:44	108-86-1	
Bromochloromethane	ND	ug/L	5.0	0.33	1		09/15/23 07:44	74-97-5	
Bromodichloromethane	ND	ug/L	5.0	0.29	1		09/15/23 07:44	75-27-4	
Bromoform	ND	ug/L	5.0	0.29	1		09/15/23 07:44	75-25-2	
Bromomethane	ND	ug/L	5.0	0.51	1		09/15/23 07:44	74-83-9	
2-Butanone (MEK)	ND	ug/L	25.0	3.3	1		09/15/23 07:44		
n-Butylbenzene	ND	ug/L	5.0	0.39	1		09/15/23 07:44		
sec-Butylbenzene	ND	ug/L	5.0	0.36	1		09/15/23 07:44		
tert-Butylbenzene	ND	ug/L	5.0	0.38	1		09/15/23 07:44		
Carbon disulfide	ND	ug/L	10.0	0.62	1		09/15/23 07:44		
Carbon tetrachloride	ND	ug/L	5.0	0.29	1		09/15/23 07:44		
Chlorobenzene	ND	ug/L	5.0	0.35	1		09/15/23 07:44		
Chloroethane	ND	ug/L	5.0	0.44	1		09/15/23 07:44		
Chloroform	ND ND	ug/L	5.0	2.6	1		09/15/23 07:44		
Chloromethane	ND ND	ug/L	5.0	0.56	1		09/15/23 07:44		
2-Chlorotoluene	ND ND	ug/L	5.0	0.37	1		09/15/23 07:44		
4-Chlorotoluene	ND ND	-	5.0	0.40	1		09/15/23 07:44		
		ug/L							
Dibromochloromethane	ND ND	ug/L	5.0 5.0	0.31 0.29	1 1		09/15/23 07:44 09/15/23 07:44		
1,2-Dibromoethane (EDB) Dibromomethane		ug/L		0.29	1				
	ND	ug/L	5.0				09/15/23 07:44		
1,2-Dichlorobenzene	ND	ug/L	5.0	0.34	1		09/15/23 07:44		
1,3-Dichlorobenzene	ND	ug/L	5.0	0.40	1		09/15/23 07:44		
1,4-Dichlorobenzene	ND	ug/L	5.0	0.39	1		09/15/23 07:44		
rans-1,4-Dichloro-2-butene	ND	ug/L	100	0.42	1		09/15/23 07:44		
Dichlorodifluoromethane	ND	ug/L	5.0	0.38	1		09/15/23 07:44		
1,1-Dichloroethane	ND	ug/L	5.0	0.37	1		09/15/23 07:44		
1,2-Dichloroethane	ND	ug/L	5.0	0.34	1		09/15/23 07:44		
1,1-Dichloroethene	ND	ug/L	5.0	0.37	1		09/15/23 07:44		
cis-1,2-Dichloroethene	36.1	ug/L	5.0	0.48	1		09/15/23 07:44		
rans-1,2-Dichloroethene	ND	ug/L	5.0	0.48	1		09/15/23 07:44		
1,2-Dichloropropane	ND	ug/L	5.0	0.33	1		09/15/23 07:44		
,3-Dichloropropane	ND	ug/L	5.0	0.30	1		09/15/23 07:44		
2,2-Dichloropropane	ND	ug/L	5.0	0.37	1		09/15/23 07:44		
1,1-Dichloropropene	ND	ug/L	5.0	0.34	1		09/15/23 07:44		
cis-1,3-Dichloropropene	ND	ug/L	5.0	0.31	1		09/15/23 07:44		
rans-1,3-Dichloropropene	ND	ug/L	5.0	0.28	1		09/15/23 07:44		
Ethylbenzene	ND	ug/L	5.0	0.40	1		09/15/23 07:44	100-41-4	
Ethyl methacrylate	ND	ug/L	100	0.32	1		09/15/23 07:44	97-63-2	
Hexachloro-1,3-butadiene	ND	ug/L	5.0	0.48	1		09/15/23 07:44	87-68-3	
n-Hexane	ND	ug/L	5.0	0.36	1		09/15/23 07:44	110-54-3	
2-Hexanone	ND	ug/L	25.0	2.2	1		09/15/23 07:44	591-78-6	

Project: GE Indy
Pace Project No.: 50353438

Date: 09/19/2023 04:25 PM

Sample: MW-323-090723	Lab ID:	50353438002	Collecte	d: 09/07/23	3 11:35	Received: 09	9/08/23 11:29 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Anal	ytical Services	- Indianapo	lis					
lodomethane	ND	ug/L	10.0	2.0	1		09/15/23 07:44	74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	5.0	0.36	1		09/15/23 07:44	98-82-8	
p-Isopropyltoluene	ND	ug/L	5.0	0.41	1		09/15/23 07:44	99-87-6	
Methylene Chloride	ND	ug/L	5.0	3.7	1		09/15/23 07:44	75-09-2	
1-Methylnaphthalene	ND	ug/L	10.0	2.1	1		09/15/23 07:44	90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	2.1	1		09/15/23 07:44	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	2.1	1		09/15/23 07:44	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	4.0	0.66	1		09/15/23 07:44	1634-04-4	
Naphthalene	ND	ug/L	1.2	0.57	1		09/15/23 07:44	91-20-3	
n-Propylbenzene	ND	ug/L	5.0	0.37	1		09/15/23 07:44	103-65-1	
Styrene	ND	ug/L	5.0	0.39	1		09/15/23 07:44	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.34	1		09/15/23 07:44	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.35	1		09/15/23 07:44	79-34-5	
Tetrachloroethene	ND	ug/L	5.0	0.36	1		09/15/23 07:44	127-18-4	
Toluene	ND	ug/L	5.0	0.38	1		09/15/23 07:44	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	0.42	1		09/15/23 07:44	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	5.0	0.42	1		09/15/23 07:44	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	5.0	0.31	1		09/15/23 07:44	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	5.0	0.33	1		09/15/23 07:44	79-00-5	
Trichloroethene	ND	ug/L	5.0	0.41	1		09/15/23 07:44	79-01-6	
Trichlorofluoromethane	ND	ug/L	5.0	0.36	1		09/15/23 07:44	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	5.0	0.33	1		09/15/23 07:44	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/L	5.0	0.37	1		09/15/23 07:44	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.38	1		09/15/23 07:44	108-67-8	
Vinyl acetate	ND	ug/L	50.0	1.7	1		09/15/23 07:44	108-05-4	
Vinyl chloride	16.0	ug/L	2.0	0.35	1		09/15/23 14:49	75-01-4	
Xylene (Total)	ND	ug/L	10.0	1.5	1		09/15/23 07:44	1330-20-7	
Surrogates		Ü							
Dibromofluoromethane (S)	107	%.	82-128		1		09/15/23 07:44	1868-53-7	
4-Bromofluorobenzene (S)	101	%.	79-124		1		09/15/23 07:44	460-00-4	
Toluene-d8 (S)	99	%.	73-122		1		09/15/23 07:44	2037-26-5	

Project: GE Indy
Pace Project No.: 50353438

Date: 09/19/2023 04:25 PM

Sample: W-4R-090723	Lab ID:	50353438003	Collected	1: 09/07/23	3 12:05	Received: 0	9/08/23 11:29	Matrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	•	ytical Services		is					
Acetone	ND	ug/L	100	8.6	1		09/15/23 08:	15 67-64-1	
Acrolein	ND	ug/L	50.0	13.4	1		09/15/23 08:	15 107-02-8	
Acrylonitrile	ND	ug/L	100	3.0	1		09/15/23 08:	15 107-13-1	
Benzene	13.3	ug/L	5.0	0.46	1		09/15/23 08:	15 71-43-2	
Bromobenzene	ND	ug/L	5.0	0.41	1		09/15/23 08:		
Bromochloromethane	ND	ug/L	5.0	0.33	1		09/15/23 08:		
Bromodichloromethane	ND	ug/L	5.0	0.29	1		09/15/23 08:		
Bromoform	ND	ug/L	5.0	0.29	1		09/15/23 08:		
Bromomethane	ND	ug/L	5.0	0.51	1		09/15/23 08:		
2-Butanone (MEK)	ND	ug/L	25.0	3.3	1		09/15/23 08:		
n-Butylbenzene	ND	ug/L ug/L	5.0	0.39	1			15	
sec-Butylbenzene	ND	ug/L	5.0	0.36	1			15 135-98-8	
tert-Butylbenzene	ND	ug/L ug/L	5.0	0.38	1		09/15/23 08:		
Carbon disulfide	ND	ug/L ug/L	10.0	0.62	1		09/15/23 08:		
Carbon tetrachloride	ND ND	ug/L ug/L	5.0	0.02	1		09/15/23 08:		
Chlorobenzene	ND ND	ug/L ug/L	5.0	0.29	1			15 108-90-7	
Chloroethane	512	_	50.0	8.7	10		09/15/23 06.		
Chloroform	ND	ug/L	5.0	2.6	10		09/15/23 15.		
		ug/L			1				
Chloromethane	ND	ug/L	5.0	0.56	1		09/15/23 08:		
2-Chlorotoluene	ND	ug/L	5.0	0.37			09/15/23 08:		
4-Chlorotoluene	ND	ug/L	5.0	0.40	1			15 106-43-4	
Dibromochloromethane	ND	ug/L	5.0	0.31	1		09/15/23 08:		
1,2-Dibromoethane (EDB)	ND	ug/L	5.0	0.29	1			15 106-93-4	
Dibromomethane	ND	ug/L	5.0	0.46	1		09/15/23 08:		
1,2-Dichlorobenzene	ND	ug/L	5.0	0.34	1		09/15/23 08:		
1,3-Dichlorobenzene	ND	ug/L	5.0	0.40	1		09/15/23 08:		
1,4-Dichlorobenzene	ND	ug/L	5.0	0.39	1			15 106-46-7	
trans-1,4-Dichloro-2-butene	ND	ug/L	100	0.42	1			15 110-57-6	5.
Dichlorodifluoromethane	ND	ug/L	5.0	0.38	1		09/15/23 08:		R1
1,1-Dichloroethane	10.1	ug/L	5.0	0.37	1		09/15/23 08:		
1,2-Dichloroethane	ND	ug/L	5.0	0.34	1			15 107-06-2	
1,1-Dichloroethene	ND	ug/L	5.0	0.37	1		09/15/23 08:		
cis-1,2-Dichloroethene	29.5	ug/L	5.0	0.48	1			15 156-59-2	
trans-1,2-Dichloroethene	8.8	ug/L	5.0	0.48	1			15 156-60-5	
1,2-Dichloropropane	ND	ug/L	5.0	0.33	1		09/15/23 08:		
1,3-Dichloropropane	ND	ug/L	5.0	0.30	1			15 142-28-9	
2,2-Dichloropropane	ND	ug/L	5.0	0.37	1			15 594-20-7	
1,1-Dichloropropene	ND	ug/L	5.0	0.34	1			15 563-58-6	
cis-1,3-Dichloropropene	ND	ug/L	5.0	0.31	1			15 10061-01-5	
trans-1,3-Dichloropropene	ND	ug/L	5.0	0.28	1		09/15/23 08:	15 10061-02-6	
Ethylbenzene	ND	ug/L	5.0	0.40	1		09/15/23 08:	15 100-41-4	
Ethyl methacrylate	ND	ug/L	100	0.32	1		09/15/23 08:	15 97-63-2	
Hexachloro-1,3-butadiene	ND	ug/L	5.0	0.48	1		09/15/23 08:	15 87-68-3	
n-Hexane	ND	ug/L	5.0	0.36	1		09/15/23 08:	15 110-54-3	
2-Hexanone	ND	ug/L	25.0	2.2	1		09/15/23 08:	15 591-78-6	

Project: GE Indy
Pace Project No.: 50353438

Date: 09/19/2023 04:25 PM

Sample: W-4R-090723	Lab ID:	50353438003	Collecte	d: 09/07/23	3 12:05	Received: 09	9/08/23 11:29 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Ana	lytical Services	- Indianapo	lis					
lodomethane	ND	ug/L	10.0	2.0	1		09/15/23 08:15	74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	5.0	0.36	1		09/15/23 08:15	98-82-8	
p-Isopropyltoluene	ND	ug/L	5.0	0.41	1		09/15/23 08:15	99-87-6	
Methylene Chloride	ND	ug/L	5.0	3.7	1		09/15/23 08:15	75-09-2	
1-Methylnaphthalene	ND	ug/L	10.0	2.1	1		09/15/23 08:15	90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	2.1	1		09/15/23 08:15	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	2.1	1		09/15/23 08:15	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	4.0	0.66	1		09/15/23 08:15	1634-04-4	
Naphthalene	ND	ug/L	1.2	0.57	1		09/15/23 08:15	91-20-3	
n-Propylbenzene	ND	ug/L	5.0	0.37	1		09/15/23 08:15	103-65-1	
Styrene	ND	ug/L	5.0	0.39	1		09/15/23 08:15	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.34	1		09/15/23 08:15	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.35	1		09/15/23 08:15		
Tetrachloroethene	ND	ug/L	5.0	0.36	1		09/15/23 08:15	127-18-4	
Toluene	ND	ug/L	5.0	0.38	1		09/15/23 08:15	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	0.42	1		09/15/23 08:15	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	5.0	0.42	1		09/15/23 08:15	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	5.0	0.31	1		09/15/23 08:15	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	5.0	0.33	1		09/15/23 08:15	79-00-5	
Trichloroethene	ND	ug/L	5.0	0.41	1		09/15/23 08:15	79-01-6	
Trichlorofluoromethane	ND	ug/L	5.0	0.36	1		09/15/23 08:15	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	5.0	0.33	1		09/15/23 08:15		
1,2,4-Trimethylbenzene	ND	ug/L	5.0	0.37	1		09/15/23 08:15	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.38	1		09/15/23 08:15	108-67-8	
Vinyl acetate	ND	ug/L	50.0	1.7	1		09/15/23 08:15	108-05-4	
Vinyl chloride	19.8	ug/L	2.0	0.35	1		09/15/23 15:19	75-01-4	
Xylene (Total)	ND	ug/L	10.0	1.5	1		09/15/23 08:15	1330-20-7	
Surrogates		Č							
Dibromofluoromethane (S)	106	%.	82-128		1		09/15/23 08:15	1868-53-7	
4-Bromofluorobenzene (S)	102	%.	79-124		1		09/15/23 08:15	460-00-4	
Toluene-d8 (S)	98	%.	73-122		1		09/15/23 08:15	2037-26-5	

Project: GE Indy
Pace Project No.: 50353436

Date: 09/19/2023 04:25 PM

Sample: W-4D-090723	Lab ID:	50353438004	Collected	d: 09/07/23	12:10	Received: 09	9/08/23 11:29 M	latrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	-	lytical Services		is					
Acetone	ND	ug/L	100	8.6	1		09/15/23 09:47	67-64-1	
Acrolein	ND	ug/L	50.0	13.4	1		09/15/23 09:47		
Acrylonitrile	ND	ug/L	100	3.0	1		09/15/23 09:47		
Benzene	ND	ug/L	5.0	0.46	1		09/15/23 09:47	71-43-2	
Bromobenzene	ND	ug/L	5.0	0.41	1		09/15/23 09:47		
Bromochloromethane	ND	ug/L	5.0	0.33	1		09/15/23 09:47		
Bromodichloromethane	ND	ug/L	5.0	0.29	1		09/15/23 09:47		
Bromoform	ND	ug/L	5.0	0.29	1		09/15/23 09:47		
Bromomethane	ND	ug/L	5.0	0.51	1		09/15/23 09:47		
2-Butanone (MEK)	ND ND	ug/L	25.0	3.3	1		09/15/23 09:47		
n-Butylbenzene	ND ND	ug/L	5.0	0.39	1		09/15/23 09:47		
sec-Butylbenzene	ND ND	-	5.0	0.39	1		09/15/23 09:47		
•		ug/L		0.38	1				
ert-Butylbenzene	ND	ug/L	5.0				09/15/23 09:47		
Carbon disulfide	ND	ug/L	10.0	0.62	1		09/15/23 09:47		
Carbon tetrachloride	ND	ug/L	5.0	0.29	1		09/15/23 09:47		
Chlorobenzene	ND	ug/L	5.0	0.35	1		09/15/23 09:47		
Chloroethane	ND	ug/L	5.0	0.44	1		09/15/23 09:47		
Chloroform	ND	ug/L	5.0	2.6	1		09/15/23 09:47		
Chloromethane	ND	ug/L	5.0	0.56	1		09/15/23 09:47		
2-Chlorotoluene	ND	ug/L	5.0	0.37	1		09/15/23 09:47		
1-Chlorotoluene	ND	ug/L	5.0	0.40	1		09/15/23 09:47		
Dibromochloromethane	ND	ug/L	5.0	0.31	1		09/15/23 09:47		
1,2-Dibromoethane (EDB)	ND	ug/L	5.0	0.29	1		09/15/23 09:47		
Dibromomethane	ND	ug/L	5.0	0.46	1		09/15/23 09:47	74-95-3	
1,2-Dichlorobenzene	ND	ug/L	5.0	0.34	1		09/15/23 09:47	' 95-50-1	
1,3-Dichlorobenzene	ND	ug/L	5.0	0.40	1		09/15/23 09:47	541-73-1	
1,4-Dichlorobenzene	ND	ug/L	5.0	0.39	1		09/15/23 09:47	106-46-7	
rans-1,4-Dichloro-2-butene	ND	ug/L	100	0.42	1		09/15/23 09:47	110-57-6	
Dichlorodifluoromethane	ND	ug/L	5.0	0.38	1		09/15/23 09:47	75-71-8	
1,1-Dichloroethane	ND	ug/L	5.0	0.37	1		09/15/23 09:47	75-34-3	
1,2-Dichloroethane	ND	ug/L	5.0	0.34	1		09/15/23 09:47	107-06-2	
1,1-Dichloroethene	ND	ug/L	5.0	0.37	1		09/15/23 09:47	75-35-4	
cis-1,2-Dichloroethene	ND	ug/L	5.0	0.48	1		09/15/23 09:47	156-59-2	
rans-1,2-Dichloroethene	ND	ug/L	5.0	0.48	1		09/15/23 09:47	156-60-5	
,2-Dichloropropane	ND	ug/L	5.0	0.33	1		09/15/23 09:47	78-87-5	
, 3-Dichloropropane	ND	ug/L	5.0	0.30	1		09/15/23 09:47	142-28-9	
2,2-Dichloropropane	ND	ug/L	5.0	0.37	1		09/15/23 09:47		
1,1-Dichloropropene	ND	ug/L	5.0	0.34	1		09/15/23 09:47		
cis-1,3-Dichloropropene	ND	ug/L	5.0	0.31	1		09/15/23 09:47		
trans-1,3-Dichloropropene	ND	ug/L	5.0	0.28	1		09/15/23 09:47		
Ethylbenzene	ND	ug/L	5.0	0.40	1		09/15/23 09:47		
Ethyl methacrylate	ND ND	ug/L	100	0.32	1		09/15/23 09:47		
Hexachloro-1,3-butadiene	ND ND	ug/L	5.0	0.48	1		09/15/23 09:47		
n-Hexane	ND ND	ug/L ug/L	5.0	0.46	1		09/15/23 09:47		
2-Hexanone	ND ND	ug/L ug/L	25.0	2.2	1		09/15/23 09:47		

Project: GE Indy
Pace Project No.: 50353438

Date: 09/19/2023 04:25 PM

Sample: W-4D-090723	Lab ID:	50353438004	Collecte	d: 09/07/23	3 12:10	Received: 09	0/08/23 11:29 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Ana	lytical Services	- Indianapo	lis					
lodomethane	ND	ug/L	10.0	2.0	1		09/15/23 09:47	74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	5.0	0.36	1		09/15/23 09:47	98-82-8	
p-lsopropyltoluene	ND	ug/L	5.0	0.41	1		09/15/23 09:47	99-87-6	
Methylene Chloride	ND	ug/L	5.0	3.7	1		09/15/23 09:47	75-09-2	
1-Methylnaphthalene	ND	ug/L	10.0	2.1	1		09/15/23 09:47	90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	2.1	1		09/15/23 09:47	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	2.1	1		09/15/23 09:47	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	4.0	0.66	1		09/15/23 09:47	1634-04-4	
Naphthalene	ND	ug/L	1.2	0.57	1		09/15/23 09:47	91-20-3	
n-Propylbenzene	ND	ug/L	5.0	0.37	1		09/15/23 09:47	103-65-1	
Styrene	ND	ug/L	5.0	0.39	1		09/15/23 09:47	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.34	1		09/15/23 09:47	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.35	1		09/15/23 09:47	79-34-5	
Tetrachloroethene	ND	ug/L	5.0	0.36	1		09/15/23 09:47	127-18-4	
Toluene	ND	ug/L	5.0	0.38	1		09/15/23 09:47	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	0.42	1		09/15/23 09:47	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	5.0	0.42	1		09/15/23 09:47	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	5.0	0.31	1		09/15/23 09:47	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	5.0	0.33	1		09/15/23 09:47	79-00-5	
Trichloroethene	ND	ug/L	5.0	0.41	1		09/15/23 09:47	79-01-6	
Trichlorofluoromethane	ND	ug/L	5.0	0.36	1		09/15/23 09:47	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	5.0	0.33	1		09/15/23 09:47		
1,2,4-Trimethylbenzene	ND	ug/L	5.0	0.37	1		09/15/23 09:47	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.38	1		09/15/23 09:47	108-67-8	
Vinyl acetate	ND	ug/L	50.0	1.7	1		09/15/23 09:47	108-05-4	
Vinyl chloride	ND	ug/L	2.0	0.40	1		09/15/23 09:47		
Xylene (Total)	ND	ug/L	10.0	1.5	1		09/15/23 09:47		
Surrogates		Ü							
Dibromofluoromethane (S)	108	%.	82-128		1		09/15/23 09:47	1868-53-7	
4-Bromofluorobenzene (S)	102	%.	79-124		1		09/15/23 09:47	460-00-4	
Toluene-d8 (S)	99	%.	73-122		1		09/15/23 09:47	2037-26-5	

Project: GE Indy
Pace Project No.: 50353436

Date: 09/19/2023 04:25 PM

Pace Project No.: 50353438									
Sample: MW-273-090723	Lab ID:	50353438005	Collected	: 09/07/23	12:15	Received: 09/0	8/23 11:29 N	Matrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
		lytical Services		is					
A		•	•		4		00/45/00 40-45	7 07 04 4	
Acetone	ND	ug/L	100	8.6	1		09/15/23 10:17		
Acrolein	ND	ug/L	50.0	13.4	1		09/15/23 10:17		
Acrylonitrile	ND	ug/L	100	3.0	1		09/15/23 10:17		
Benzene	ND	ug/L	5.0	0.46	1		09/15/23 10:17	-	
Bromobenzene	ND	ug/L	5.0	0.41	1		09/15/23 10:17		
Bromochloromethane	ND	ug/L	5.0	0.33	1		09/15/23 10:17		
Bromodichloromethane	ND	ug/L	5.0	0.29	1		09/15/23 10:17		
Bromoform	ND	ug/L	5.0	0.29	1		09/15/23 10:17		
Bromomethane	ND	ug/L	5.0	0.51	1		09/15/23 10:17		
2-Butanone (MEK)	ND	ug/L	25.0	3.3	1		09/15/23 10:17		
n-Butylbenzene	ND	ug/L	5.0	0.39	1		09/15/23 10:17		
sec-Butylbenzene	ND	ug/L	5.0	0.36	1		09/15/23 10:17	7 135-98-8	
tert-Butylbenzene	ND	ug/L	5.0	0.38	1		09/15/23 10:17	7 98-06-6	
Carbon disulfide	ND	ug/L	10.0	0.62	1		09/15/23 10:17	7 75-15-0	
Carbon tetrachloride	ND	ug/L	5.0	0.29	1		09/15/23 10:17	7 56-23-5	
Chlorobenzene	ND	ug/L	5.0	0.35	1		09/15/23 10:17	7 108-90-7	
Chloroethane	ND	ug/L	5.0	0.44	1		09/15/23 10:17	7 75-00-3	
Chloroform	ND	ug/L	5.0	2.6	1		09/15/23 10:17	7 67-66-3	
Chloromethane	ND	ug/L	5.0	0.56	1		09/15/23 10:17	7 74-87-3	
2-Chlorotoluene	ND	ug/L	5.0	0.37	1		09/15/23 10:17	7 95-49-8	
4-Chlorotoluene	ND	ug/L	5.0	0.40	1		09/15/23 10:17	7 106-43-4	
Dibromochloromethane	ND	ug/L	5.0	0.31	1		09/15/23 10:17	7 124-48-1	
1,2-Dibromoethane (EDB)	ND	ug/L	5.0	0.29	1		09/15/23 10:17	7 106-93-4	
Dibromomethane	ND	ug/L	5.0	0.46	1		09/15/23 10:17	7 74-95-3	
1,2-Dichlorobenzene	ND	ug/L	5.0	0.34	1		09/15/23 10:17	7 95-50-1	
1,3-Dichlorobenzene	ND	ug/L	5.0	0.40	1		09/15/23 10:17	7 541-73-1	
1,4-Dichlorobenzene	ND	ug/L	5.0	0.39	1		09/15/23 10:17		
trans-1,4-Dichloro-2-butene	ND	ug/L	100	0.42	1		09/15/23 10:17		
Dichlorodifluoromethane	ND	ug/L	5.0	0.38	1		09/15/23 10:17		
1.1-Dichloroethane	ND	ug/L	5.0	0.37	1		09/15/23 10:17		
1,2-Dichloroethane	ND	ug/L	5.0	0.34	1		09/15/23 10:17		
1,1-Dichloroethene	ND	ug/L	5.0	0.37	1		09/15/23 10:17		
cis-1,2-Dichloroethene	ND ND	ug/L	5.0	0.48	1		09/15/23 10:17		
trans-1,2-Dichloroethene	ND	ug/L	5.0	0.48	1		09/15/23 10:17		
1,2-Dichloropropane	ND	ug/L	5.0	0.40	1		09/15/23 10:17		
1,3-Dichloropropane	ND	ug/L	5.0	0.30	1		09/15/23 10:17		
• •		_							
2,2-Dichloropropane 1,1-Dichloropropene	ND ND	ug/L	5.0 5.0	0.37 0.34	1 1		09/15/23 10:17 09/15/23 10:17		
• •		ug/L						7 10061-01-5	
cis-1,3-Dichloropropene	ND ND	ug/L	5.0	0.31	1				
trans-1,3-Dichloropropene	ND	ug/L	5.0	0.28	1			7 10061-02-6	
Ethylbenzene	ND	ug/L	5.0	0.40	1		09/15/23 10:17		
Ethyl methacrylate	ND	ug/L	100	0.32	1		09/15/23 10:17		
Hexachloro-1,3-butadiene	ND	ug/L	5.0	0.48	1		09/15/23 10:17		
n-Hexane	ND	ug/L	5.0	0.36	1		09/15/23 10:17		
2-Hexanone	ND	ug/L	25.0	2.2	1		09/15/23 10:17	7 591-78-6	

Project: GE Indy
Pace Project No.: 50353438

Date: 09/19/2023 04:25 PM

Sample: MW-273-090723	Lab ID:	50353438005	Collected	d: 09/07/23	3 12:15	Received: 09	0/08/23 11:29 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Ana	lytical Services	- Indianapo	lis					
lodomethane	ND	ug/L	10.0	2.0	1		09/15/23 10:17	74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	5.0	0.36	1		09/15/23 10:17	98-82-8	
p-Isopropyltoluene	ND	ug/L	5.0	0.41	1		09/15/23 10:17	99-87-6	
Methylene Chloride	7.8	ug/L	5.0	3.7	1		09/15/23 10:17	75-09-2	C9
1-Methylnaphthalene	ND	ug/L	10.0	2.1	1		09/15/23 10:17	90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	2.1	1		09/15/23 10:17	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	2.1	1		09/15/23 10:17	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	4.0	0.66	1		09/15/23 10:17	1634-04-4	
Naphthalene	ND	ug/L	1.2	0.57	1		09/15/23 10:17	91-20-3	
n-Propylbenzene	ND	ug/L	5.0	0.37	1		09/15/23 10:17	103-65-1	
Styrene	ND	ug/L	5.0	0.39	1		09/15/23 10:17	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.34	1		09/15/23 10:17	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.35	1		09/15/23 10:17	79-34-5	
Tetrachloroethene	ND	ug/L	5.0	0.36	1		09/15/23 10:17	127-18-4	
Toluene	ND	ug/L	5.0	0.38	1		09/15/23 10:17	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	0.42	1		09/15/23 10:17	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	5.0	0.42	1		09/15/23 10:17	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	5.0	0.31	1		09/15/23 10:17	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	5.0	0.33	1		09/15/23 10:17	79-00-5	
Trichloroethene	ND	ug/L	5.0	0.41	1		09/15/23 10:17	79-01-6	
Trichlorofluoromethane	ND	ug/L	5.0	0.36	1		09/15/23 10:17	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	5.0	0.33	1		09/15/23 10:17		
1,2,4-Trimethylbenzene	ND	ug/L	5.0	0.37	1		09/15/23 10:17	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.38	1		09/15/23 10:17	108-67-8	
Vinyl acetate	ND	ug/L	50.0	1.7	1		09/15/23 10:17		
Vinyl chloride	ND	ug/L	2.0	0.40	1		09/15/23 10:17		
Xylene (Total)	ND	ug/L	10.0	1.5	1		09/15/23 10:17		
Surrogates		- 3						 -	
Dibromofluoromethane (S)	106	%.	82-128		1		09/15/23 10:17	1868-53-7	
4-Bromofluorobenzene (S)	102	%.	79-124		1		09/15/23 10:17	460-00-4	
Toluene-d8 (S)	99	%.	73-122		1		09/15/23 10:17	2037-26-5	

Project: GE Indy
Pace Project No.: 5035343

Date: 09/19/2023 04:25 PM

Sample: MW-415S-090723	Lab ID:	50353438006	Collected	1: 09/07/23	12:30	Received: 09	9/08/23 11:29 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
		lytical Services		is					
Acetone	ND	ug/L	100	8.6	1		09/15/23 10:48	67-64-1	
Acrolein	ND	ug/L	50.0	13.4	1		09/15/23 10:48		
Acrylonitrile	ND	ug/L	100	3.0	1		09/15/23 10:48		
Benzene	ND	ug/L	5.0	0.46	1		09/15/23 10:48	71-43-2	
Bromobenzene	ND	ug/L	5.0	0.41	1		09/15/23 10:48		
Bromochloromethane	ND	ug/L	5.0	0.33	1		09/15/23 10:48		
Bromodichloromethane	ND	ug/L	5.0	0.29	1		09/15/23 10:48		
Bromoform	ND	ug/L	5.0	0.29	1		09/15/23 10:48		
Bromomethane	ND	ug/L	5.0	0.51	1		09/15/23 10:48		
2-Butanone (MEK)	ND ND	ug/L	25.0	3.3	1		09/15/23 10:48		
, ,	ND ND	-	5.0	0.39	1		09/15/23 10:48		
n-Butylbenzene		ug/L			1				
sec-Butylbenzene	ND	ug/L	5.0	0.36	1		09/15/23 10:48		
ert-Butylbenzene	ND	ug/L	5.0	0.38			09/15/23 10:48		
Carbon disulfide	ND	ug/L	10.0	0.62	1		09/15/23 10:48		
Carbon tetrachloride	ND	ug/L	5.0	0.29	1		09/15/23 10:48		
Chlorobenzene	ND	ug/L	5.0	0.35	1		09/15/23 10:48		
Chloroethane	634	ug/L	100	17.4	20		09/15/23 20:56		
Chloroform	ND	ug/L	5.0	2.6	1		09/15/23 10:48		
Chloromethane	ND	ug/L	5.0	0.56	1		09/15/23 10:48		
2-Chlorotoluene	ND	ug/L	5.0	0.37	1		09/15/23 10:48		
4-Chlorotoluene	ND	ug/L	5.0	0.40	1		09/15/23 10:48		
Dibromochloromethane	ND	ug/L	5.0	0.31	1		09/15/23 10:48		
1,2-Dibromoethane (EDB)	ND	ug/L	5.0	0.29	1		09/15/23 10:48		
Dibromomethane	ND	ug/L	5.0	0.46	1		09/15/23 10:48	74-95-3	
1,2-Dichlorobenzene	ND	ug/L	5.0	0.34	1		09/15/23 10:48	95-50-1	
1,3-Dichlorobenzene	ND	ug/L	5.0	0.40	1		09/15/23 10:48	541-73-1	
1,4-Dichlorobenzene	ND	ug/L	5.0	0.39	1		09/15/23 10:48	106-46-7	
rans-1,4-Dichloro-2-butene	ND	ug/L	100	0.42	1		09/15/23 10:48	110-57-6	
Dichlorodifluoromethane	ND	ug/L	5.0	0.38	1		09/15/23 10:48	75-71-8	
1,1-Dichloroethane	ND	ug/L	5.0	0.37	1		09/15/23 10:48	75-34-3	
1,2-Dichloroethane	ND	ug/L	5.0	0.34	1		09/15/23 10:48	107-06-2	
1,1-Dichloroethene	ND	ug/L	5.0	0.37	1		09/15/23 10:48	75-35-4	
cis-1,2-Dichloroethene	ND	ug/L	5.0	0.48	1		09/15/23 10:48	156-59-2	
rans-1,2-Dichloroethene	ND	ug/L	5.0	0.48	1		09/15/23 10:48	156-60-5	
1,2-Dichloropropane	ND	ug/L	5.0	0.33	1		09/15/23 10:48	78-87-5	
,3-Dichloropropane	ND	ug/L	5.0	0.30	1		09/15/23 10:48	142-28-9	
2,2-Dichloropropane	ND	ug/L	5.0	0.37	1		09/15/23 10:48	594-20-7	
I,1-Dichloropropene	ND	ug/L	5.0	0.34	1		09/15/23 10:48		
cis-1,3-Dichloropropene	ND	ug/L	5.0	0.31	1		09/15/23 10:48		
trans-1,3-Dichloropropene	ND	ug/L	5.0	0.28	1		09/15/23 10:48		
Ethylbenzene	ND	ug/L	5.0	0.40	1		09/15/23 10:48		
Ethyl methacrylate	ND ND	ug/L	100	0.40	1		09/15/23 10:48		
Hexachloro-1,3-butadiene	ND ND	ug/L	5.0	0.32	1		09/15/23 10:48		
n-Hexane	ND ND	ug/L	5.0	0.46	1		09/15/23 10:48		
2-Hexanone	ND ND	ug/L ug/L	25.0	2.2	1		09/15/23 10:48		

Project: GE Indy
Pace Project No.: 50353438

Date: 09/19/2023 04:25 PM

Sample: MW-415S-090723	Lab ID:	50353438006	Collecte	d: 09/07/23	3 12:30	Received: 09	9/08/23 11:29 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	5030/8260						
	Pace Anal	ytical Services	- Indianapo	lis					
lodomethane	ND	ug/L	10.0	2.0	1		09/15/23 10:48	74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	5.0	0.36	1		09/15/23 10:48	98-82-8	
p-Isopropyltoluene	ND	ug/L	5.0	0.41	1		09/15/23 10:48	99-87-6	
Methylene Chloride	ND	ug/L	5.0	3.7	1		09/15/23 10:48	75-09-2	
1-Methylnaphthalene	ND	ug/L	10.0	2.1	1		09/15/23 10:48	90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	2.1	1		09/15/23 10:48	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	2.1	1		09/15/23 10:48	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	4.0	0.66	1		09/15/23 10:48	1634-04-4	
Naphthalene	ND	ug/L	1.2	0.57	1		09/15/23 10:48	91-20-3	
n-Propylbenzene	ND	ug/L	5.0	0.37	1		09/15/23 10:48	103-65-1	
Styrene	ND	ug/L	5.0	0.39	1		09/15/23 10:48	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.34	1		09/15/23 10:48	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.35	1		09/15/23 10:48	79-34-5	
Tetrachloroethene	ND	ug/L	5.0	0.36	1		09/15/23 10:48	127-18-4	
Toluene	ND	ug/L	5.0	0.38	1		09/15/23 10:48	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	0.42	1		09/15/23 10:48	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	5.0	0.42	1		09/15/23 10:48	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	5.0	0.31	1		09/15/23 10:48	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	5.0	0.33	1		09/15/23 10:48	79-00-5	
Trichloroethene	ND	ug/L	5.0	0.41	1		09/15/23 10:48	79-01-6	
Trichlorofluoromethane	ND	ug/L	5.0	0.36	1		09/15/23 10:48	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	5.0	0.33	1		09/15/23 10:48		
1,2,4-Trimethylbenzene	ND	ug/L	5.0	0.37	1		09/15/23 10:48		
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.38	1		09/15/23 10:48	108-67-8	
Vinyl acetate	ND	ug/L	50.0	1.7	1		09/15/23 10:48		
Vinyl chloride	ND	ug/L	2.0	0.40	1		09/15/23 10:48		
Xylene (Total)	ND	ug/L	10.0	1.5	1		09/15/23 10:48		
Surrogates		- 3-		_					
Dibromofluoromethane (S)	107	%.	82-128		1		09/15/23 10:48	1868-53-7	
4-Bromofluorobenzene (S)	104	%.	79-124		1		09/15/23 10:48	460-00-4	
Toluene-d8 (S)	100	%.	73-122		1		09/15/23 10:48	2037-26-5	

Project: GE Indy
Pace Project No.: 5035343

Date: 09/19/2023 04:25 PM

Pace Project No.: 50353438									
Sample: MW-415D-090723	Lab ID:	50353438007	Collected	: 09/07/23	12:25	Received: 09	/08/23 11:29 N	latrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qual
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
		lytical Services		s					
A		•	•				00/45/00 44:00	07.04.4	1.4
Acetone	ND	ug/L	100	8.6	1		09/15/23 14:03		L1
Acrolein	ND	ug/L	50.0	13.4	1		09/15/23 14:03		
Acrylonitrile	ND	ug/L	100	3.0	1		09/15/23 14:03		
Benzene	ND	ug/L	5.0	0.46	1		09/15/23 14:03	_	
Bromobenzene	ND	ug/L	5.0	0.41	1		09/15/23 14:03		
Bromochloromethane	ND	ug/L	5.0	0.33	1		09/15/23 14:03		
Bromodichloromethane	ND	ug/L	5.0	0.29	1		09/15/23 14:03		
Bromoform	ND	ug/L	5.0	0.29	1		09/15/23 14:03	75-25-2	
Bromomethane	ND	ug/L	5.0	0.51	1		09/15/23 14:03	74-83-9	
2-Butanone (MEK)	ND	ug/L	25.0	3.3	1		09/15/23 14:03	78-93-3	
n-Butylbenzene	ND	ug/L	5.0	0.39	1		09/15/23 14:03	104-51-8	
sec-Butylbenzene	ND	ug/L	5.0	0.36	1		09/15/23 14:03	135-98-8	
tert-Butylbenzene	ND	ug/L	5.0	0.38	1		09/15/23 14:03	98-06-6	
Carbon disulfide	ND	ug/L	10.0	0.62	1		09/15/23 14:03	75-15-0	
Carbon tetrachloride	ND	ug/L	5.0	0.29	1		09/15/23 14:03	56-23-5	
Chlorobenzene	ND	ug/L	5.0	0.35	1		09/15/23 14:03	108-90-7	
Chloroethane	ND	ug/L	5.0	0.44	1		09/15/23 14:03		
Chloroform	ND	ug/L	5.0	2.6	1		09/15/23 14:03		
Chloromethane	ND	ug/L	5.0	0.56	1		09/15/23 14:03		
2-Chlorotoluene	ND ND	-	5.0	0.37	1		09/15/23 14:03		
		ug/L							
4-Chlorotoluene	ND	ug/L	5.0	0.40	1		09/15/23 14:03		
Dibromochloromethane	ND	ug/L	5.0	0.31	1		09/15/23 14:03		
1,2-Dibromoethane (EDB)	ND	ug/L	5.0	0.29	1		09/15/23 14:03		
Dibromomethane	ND	ug/L	5.0	0.46	1		09/15/23 14:03		
1,2-Dichlorobenzene	ND	ug/L	5.0	0.34	1		09/15/23 14:03	95-50-1	
1,3-Dichlorobenzene	ND	ug/L	5.0	0.40	1		09/15/23 14:03	541-73-1	
1,4-Dichlorobenzene	ND	ug/L	5.0	0.39	1		09/15/23 14:03	106-46-7	
trans-1,4-Dichloro-2-butene	ND	ug/L	100	0.42	1		09/15/23 14:03	110-57-6	
Dichlorodifluoromethane	ND	ug/L	5.0	0.38	1		09/15/23 14:03	75-71-8	
1,1-Dichloroethane	ND	ug/L	5.0	0.37	1		09/15/23 14:03	75-34-3	
1,2-Dichloroethane	ND	ug/L	5.0	0.34	1		09/15/23 14:03	107-06-2	
1.1-Dichloroethene	ND	ug/L	5.0	0.37	1		09/15/23 14:03	75-35-4	
cis-1,2-Dichloroethene	ND	ug/L	5.0	0.48	1		09/15/23 14:03		
trans-1,2-Dichloroethene	ND	ug/L	5.0	0.48	1		09/15/23 14:03		
1,2-Dichloropropane	ND	ug/L	5.0	0.33	1		09/15/23 14:03		
1,3-Dichloropropane	ND	ug/L	5.0	0.30	1		09/15/23 14:03		
2,2-Dichloropropane	ND ND	-	5.0	0.37	1		09/15/23 14:03		
	ND ND	ug/L	5.0 5.0	0.37	1		09/15/23 14:03		
1,1-Dichloropropene		ug/L							
cis-1,3-Dichloropropene	ND	ug/L	5.0	0.31	1		09/15/23 14:03		
trans-1,3-Dichloropropene	ND	ug/L	5.0	0.28	1		09/15/23 14:03		
Ethylbenzene	ND	ug/L	5.0	0.40	1		09/15/23 14:03		
Ethyl methacrylate	ND	ug/L	100	0.32	1		09/15/23 14:03		
Hexachloro-1,3-butadiene	ND	ug/L	5.0	0.48	1		09/15/23 14:03		
n-Hexane	ND	ug/L	5.0	0.36	1		09/15/23 14:03		
2-Hexanone	ND	ug/L	25.0	2.2	1		09/15/23 14:03	591-78-6	

Project: GE Indy
Pace Project No.: 50353438

Date: 09/19/2023 04:25 PM

Sample: MW-415D-090723	Lab ID:	50353438007	Collecte	d: 09/07/23	3 12:25	Received: 09	9/08/23 11:29 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Anal	ytical Services	- Indianapo	lis					
lodomethane	ND	ug/L	10.0	2.0	1		09/15/23 14:03	74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	5.0	0.36	1		09/15/23 14:03	98-82-8	
p-Isopropyltoluene	ND	ug/L	5.0	0.41	1		09/15/23 14:03	99-87-6	
Methylene Chloride	ND	ug/L	5.0	3.7	1		09/15/23 14:03	75-09-2	
1-Methylnaphthalene	ND	ug/L	10.0	2.1	1		09/15/23 14:03	90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	2.1	1		09/15/23 14:03	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	2.1	1		09/15/23 14:03	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	4.0	0.66	1		09/15/23 14:03	1634-04-4	
Naphthalene	ND	ug/L	1.2	0.57	1		09/15/23 14:03	91-20-3	
n-Propylbenzene	ND	ug/L	5.0	0.37	1		09/15/23 14:03	103-65-1	
Styrene	ND	ug/L	5.0	0.39	1		09/15/23 14:03	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.34	1		09/15/23 14:03	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.35	1		09/15/23 14:03	79-34-5	
Tetrachloroethene	ND	ug/L	5.0	0.36	1		09/15/23 14:03	127-18-4	
Toluene	ND	ug/L	5.0	0.38	1		09/15/23 14:03	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	0.42	1		09/15/23 14:03	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	5.0	0.42	1		09/15/23 14:03	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	5.0	0.31	1		09/15/23 14:03	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	5.0	0.33	1		09/15/23 14:03	79-00-5	
Trichloroethene	ND	ug/L	5.0	0.41	1		09/15/23 14:03	79-01-6	
Trichlorofluoromethane	ND	ug/L	5.0	0.36	1		09/15/23 14:03	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	5.0	0.33	1		09/15/23 14:03	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/L	5.0	0.37	1		09/15/23 14:03	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.38	1		09/15/23 14:03	108-67-8	
Vinyl acetate	ND	ug/L	50.0	1.7	1		09/15/23 14:03	108-05-4	
Vinyl chloride	ND	ug/L	2.0	0.40	1		09/15/23 14:03	75-01-4	
Xylene (Total)	ND	ug/L	10.0	1.5	1		09/15/23 14:03	1330-20-7	
Surrogates		J							
Dibromofluoromethane (S)	107	%.	82-128		1		09/15/23 14:03	1868-53-7	
4-Bromofluorobenzene (S)	103	%.	79-124		1		09/15/23 14:03	460-00-4	
Toluene-d8 (S)	98	%.	73-122		1		09/15/23 14:03	2037-26-5	

Project: GE Indy
Pace Project No.: 50353436

Date: 09/19/2023 04:25 PM

Sample: MW-416S-090723	Lab ID:	50353438008	Collecte	d: 09/07/23	3 12:40	Received: 09	9/08/23 11:29 Ma	atrix: Water	
_			Report						
Parameters	Results -	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Ana	lytical Services	- Indianapo	lis					
Acetone	ND	ug/L	100	6.4	1		09/15/23 02:54	67-64-1	
Acrolein	ND	ug/L	50.0	13.7	1		09/15/23 02:54		
Acrylonitrile	ND	ug/L	100	1.8	1		09/15/23 02:54		
Benzene	ND	ug/L	5.0	0.44	1		09/15/23 02:54		
Bromobenzene	ND	ug/L	5.0	0.38	1		09/15/23 02:54	-	
Bromochloromethane	ND	ug/L	5.0	0.37	1		09/15/23 02:54		
Bromodichloromethane	ND	ug/L	5.0	0.29	1		09/15/23 02:54		
Bromoform	ND ND	ug/L	5.0	0.29	1		09/15/23 02:54		
Bromomethane	ND ND	ug/L ug/L	5.0	1.8	1		09/15/23 02:54		
	ND ND	_	25.0	3.6	1		09/15/23 02:54		
2-Butanone (MEK)		ug/L							
n-Butylbenzene	ND	ug/L	5.0	0.39	1		09/15/23 02:54		
sec-Butylbenzene	ND	ug/L	5.0	0.35	1		09/15/23 02:54		
tert-Butylbenzene	ND	ug/L	5.0	0.36	1		09/15/23 02:54		
Carbon disulfide	ND	ug/L	10.0	0.40	1		09/15/23 02:54		L2
Carbon tetrachloride	ND	ug/L	5.0	1.6	1		09/15/23 02:54		
Chlorobenzene	ND	ug/L	5.0	0.32	1		09/15/23 02:54		
Chloroethane	567	ug/L	50.0	8.7	10		09/15/23 16:21		M1
Chloroform	ND	ug/L	5.0	2.6	1		09/15/23 02:54		
Chloromethane	ND	ug/L	5.0	0.42	1		09/15/23 02:54		
2-Chlorotoluene	ND	ug/L	5.0	0.34	1		09/15/23 02:54	95-49-8	
4-Chlorotoluene	ND	ug/L	5.0	0.38	1		09/15/23 02:54	106-43-4	
Dibromochloromethane	ND	ug/L	5.0	0.27	1		09/15/23 02:54	124-48-1	
1,2-Dibromoethane (EDB)	ND	ug/L	5.0	0.33	1		09/15/23 02:54	106-93-4	
Dibromomethane	ND	ug/L	5.0	0.42	1		09/15/23 02:54	74-95-3	
1,2-Dichlorobenzene	ND	ug/L	5.0	0.36	1		09/15/23 02:54	95-50-1	
1,3-Dichlorobenzene	ND	ug/L	5.0	0.36	1		09/15/23 02:54	541-73-1	
1,4-Dichlorobenzene	ND	ug/L	5.0	0.35	1		09/15/23 02:54	106-46-7	
trans-1,4-Dichloro-2-butene	ND	ug/L	100	0.41	1		09/15/23 02:54	110-57-6	
Dichlorodifluoromethane	ND	ug/L	5.0	0.37	1		09/15/23 02:54	75-71-8	
1,1-Dichloroethane	25.5	ug/L	5.0	0.31	1		09/15/23 02:54	75-34-3	
1,2-Dichloroethane	ND	ug/L	5.0	0.29	1		09/15/23 02:54	107-06-2	
1,1-Dichloroethene	ND	ug/L	5.0	0.27	1		09/15/23 02:54	75-35-4	
cis-1,2-Dichloroethene	ND	ug/L	5.0	0.34	1		09/15/23 02:54	156-59-2	
trans-1,2-Dichloroethene	5.5	ug/L	5.0	0.37	1		09/15/23 02:54	156-60-5	
1,2-Dichloropropane	ND	ug/L	5.0	0.40	1		09/15/23 02:54	78-87-5	
1,3-Dichloropropane	ND	ug/L	5.0	0.29	1		09/15/23 02:54		
2,2-Dichloropropane	ND	ug/L	5.0	0.33	1		09/15/23 02:54		
1,1-Dichloropropene	ND	ug/L	5.0	0.37	1		09/15/23 02:54		
cis-1,3-Dichloropropene	ND	ug/L	5.0	0.37	1		09/15/23 02:54		
trans-1,3-Dichloropropene	ND	ug/L	5.0	0.29	1		09/15/23 02:54		
Ethylbenzene	ND ND	ug/L	5.0	0.29	1		09/15/23 02:54		
Ethyl methacrylate	ND ND	ug/L ug/L	100	0.38	1		09/15/23 02:54		
	ND ND	-		0.50	1		09/15/23 02:54		
Hexachloro-1,3-butadiene		ug/L	5.0						
n-Hexane	ND	ug/L	5.0	0.39	1		09/15/23 02:54	110-54-3	

Project: GE Indy
Pace Project No.: 50353438

Date: 09/19/2023 04:25 PM

Sample: MW-416S-090723	Lab ID:	50353438008	Collected	1: 09/07/23	12:40	Received: 09	0/08/23 11:29 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
3260 MSV Indiana	Analytical	Method: EPA	5030/8260						
	Pace Ana	lytical Services	s - Indianapol	is					
odomethane	ND	ug/L	10.0	1.9	1		09/15/23 02:54	74-88-4	
sopropylbenzene (Cumene)	ND	ug/L	5.0	0.34	1		09/15/23 02:54	98-82-8	
o-Isopropyltoluene	ND	ug/L	5.0	0.40	1		09/15/23 02:54	99-87-6	
Methylene Chloride	ND	ug/L	5.0	3.7	1		09/15/23 02:54	75-09-2	
1-Methylnaphthalene	ND	ug/L	10.0	1.6	1		09/15/23 02:54	90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	2.0	1		09/15/23 02:54	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	2.0	1		09/15/23 02:54	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	4.0	0.31	1		09/15/23 02:54	1634-04-4	
Naphthalene	ND	ug/L	1.2	0.43	1		09/15/23 02:54	91-20-3	
n-Propylbenzene	ND	ug/L	5.0	0.34	1		09/15/23 02:54	103-65-1	
Styrene	ND	ug/L	5.0	0.36	1		09/15/23 02:54	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.36	1		09/15/23 02:54	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.33	1		09/15/23 02:54	79-34-5	
Tetrachloroethene	ND	ug/L	5.0	0.35	1		09/15/23 02:54	127-18-4	
Toluene	ND	ug/L	5.0	0.38	1		09/15/23 02:54	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	0.45	1		09/15/23 02:54	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	5.0	0.43	1		09/15/23 02:54	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	5.0	0.30	1		09/15/23 02:54	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	5.0	0.36	1		09/15/23 02:54	79-00-5	
Trichloroethene	ND	ug/L	5.0	0.31	1		09/15/23 02:54	79-01-6	
Trichlorofluoromethane	ND	ug/L	5.0	0.34	1		09/15/23 02:54	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	5.0	0.40	1		09/15/23 02:54	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/L	5.0	0.37	1		09/15/23 02:54	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.35	1		09/15/23 02:54	108-67-8	
Vinyl acetate	ND	ug/L	50.0	2.3	1		09/15/23 02:54	108-05-4	
Vinyl chloride	2.6	ug/L	2.0	0.35	1		09/15/23 02:54	75-01-4	
Xylene (Total)	ND	ug/L	10.0	2.2	1		09/15/23 02:54	1330-20-7	
Surrogates		-							
Dibromofluoromethane (S)	107	%.	82-128		1		09/15/23 02:54	1868-53-7	
4-Bromofluorobenzene (S)	105	%.	79-124		1		09/15/23 02:54	460-00-4	
Toluene-d8 (S)	98	%.	73-122		1		09/15/23 02:54	2037-26-5	

Project: GE Indy
Pace Project No.: 50353438

Date: 09/19/2023 04:25 PM

Sample: MW-416D-090723	Lab ID:	50353438009	Collected	d: 09/07/23	3 12:45	Received: 09	9/08/23 11:29	Matrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	•	ytical Services		lis					
Acetone	ND	ug/L	500	32.0	5		09/15/23 04:	25 67-64-1	
Acrolein	ND	ug/L	250	68.5	5		09/15/23 04:2	25 107-02-8	
Acrylonitrile	ND	ug/L	500	9.2	5		09/15/23 04:	25 107-13-1	
Benzene	ND	ug/L	25.0	2.2	5		09/15/23 04:	25 71-43-2	
Bromobenzene	ND	ug/L	25.0	1.9	5		09/15/23 04:2	25 108-86-1	
Bromochloromethane	ND	ug/L	25.0	1.8	5		09/15/23 04:	25 74-97-5	
Bromodichloromethane	ND	ug/L	25.0	1.5	5		09/15/23 04:	25 75-27-4	
Bromoform	ND	ug/L	25.0	1.6	5		09/15/23 04:		
Bromomethane	ND	ug/L	25.0	8.8	5		09/15/23 04:		
2-Butanone (MEK)	ND	ug/L	125	18.2	5		09/15/23 04:		
n-Butylbenzene	ND	ug/L	25.0	2.0	5		09/15/23 04:		
sec-Butylbenzene	ND	ug/L	25.0	1.7	5		09/15/23 04:		
tert-Butylbenzene	ND	ug/L	25.0	1.8	5		09/15/23 04:		
Carbon disulfide	ND	ug/L	50.0	2.0	5		09/15/23 04:		L2
Carbon tetrachloride	ND	ug/L	25.0	8.0	5		09/15/23 04:		
Chlorobenzene	ND	ug/L	25.0	1.6	5		09/15/23 04:		
Chloroethane	436	ug/L	25.0	4.3	5		09/15/23 04:		
Chloroform	ND	ug/L ug/L	25.0	13.0	5		09/15/23 04:		
Chloromethane	ND	ug/L	25.0	2.1	5		09/15/23 04:		
2-Chlorotoluene	ND ND	ug/L ug/L	25.0	1.7	5		09/15/23 04:2		
4-Chlorotoluene	ND ND	ug/L ug/L	25.0	1.9	5		09/15/23 04:		
Dibromochloromethane	ND ND	ug/L ug/L	25.0	1.3	5		09/15/23 04:		
1,2-Dibromoethane (EDB)	ND ND	ug/L ug/L	25.0	1.7	5		09/15/23 04:		
Dibromomethane	ND ND	ug/L ug/L	25.0	2.1	5		09/15/23 04:2		
1,2-Dichlorobenzene	ND ND	ug/L ug/L	25.0	1.8	5		09/15/23 04:2		
	ND ND	-	25.0	1.8	5 5		09/15/23 04:2		
1,3-Dichlorobenzene		ug/L		1.8					
1,4-Dichlorobenzene trans-1,4-Dichloro-2-butene	ND ND	ug/L	25.0 500	2.0	5 5		09/15/23 04:2 09/15/23 04:2		
Dichlorodifluoromethane		ug/L			5 5				
	ND	ug/L	25.0	1.9			09/15/23 04:		
1,1-Dichloroethane	45.4	ug/L	25.0	1.6	5		09/15/23 04:		
1,2-Dichloroethane	ND	ug/L	25.0	1.4	5			25 107-06-2	
1,1-Dichloroethene	ND	ug/L	25.0	1.4	5		09/15/23 04:		
cis-1,2-Dichloroethene	ND	ug/L	25.0	1.7	5		09/15/23 04:		
trans-1,2-Dichloroethene	ND	ug/L	25.0	1.9	5		09/15/23 04:		
1,2-Dichloropropane	ND	ug/L	25.0	2.0	5		09/15/23 04:		
1,3-Dichloropropane	ND	ug/L	25.0	1.5	5		09/15/23 04:		
2,2-Dichloropropane	ND	ug/L	25.0	1.6	5			25 594-20-7	
1,1-Dichloropropene	ND	ug/L	25.0	1.9	5		09/15/23 04:		
cis-1,3-Dichloropropene	ND	ug/L	25.0	1.9	5			25 10061-01-5	
trans-1,3-Dichloropropene	ND	ug/L	25.0	1.4	5			25 10061-02-6	
Ethylbenzene	ND	ug/L	25.0	4.3	5		09/15/23 04:		
Ethyl methacrylate	ND	ug/L	500	1.9	5		09/15/23 04:		
Hexachloro-1,3-butadiene	ND	ug/L	25.0	2.5	5		09/15/23 04:		
n-Hexane	ND	ug/L	25.0	2.0	5		09/15/23 04:		
2-Hexanone	ND	ug/L	125	10.2	5		09/15/23 04:2	25 591-78-6	

Project: GE Indy
Pace Project No.: 50353438

Date: 09/19/2023 04:25 PM

Sample: MW-416D-090723	Lab ID:	50353438009	Collected	d: 09/07/2	3 12:45	Received: 09	0/08/23 11:29 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF ———	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Ana	lytical Services	- Indianapo	lis					
lodomethane	ND	ug/L	50.0	9.6	5		09/15/23 04:25	74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	25.0	1.7	5		09/15/23 04:25	98-82-8	
p-Isopropyltoluene	ND	ug/L	25.0	2.0	5		09/15/23 04:25	99-87-6	
Methylene Chloride	ND	ug/L	25.0	18.5	5		09/15/23 04:25	75-09-2	
1-Methylnaphthalene	ND	ug/L	50.0	8.0	5		09/15/23 04:25	90-12-0	
2-Methylnaphthalene	ND	ug/L	50.0	10.0	5		09/15/23 04:25	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	125	9.8	5		09/15/23 04:25	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	20.0	1.5	5		09/15/23 04:25	1634-04-4	
Naphthalene	ND	ug/L	6.0	2.2	5		09/15/23 04:25	91-20-3	
n-Propylbenzene	ND	ug/L	25.0	1.7	5		09/15/23 04:25	103-65-1	
Styrene	ND	ug/L	25.0	1.8	5		09/15/23 04:25	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	25.0	1.8	5		09/15/23 04:25	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	25.0	1.7	5		09/15/23 04:25	79-34-5	
Tetrachloroethene	ND	ug/L	25.0	1.8	5		09/15/23 04:25	127-18-4	
Toluene	ND	ug/L	25.0	1.9	5		09/15/23 04:25	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	25.0	2.3	5		09/15/23 04:25	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	25.0	2.2	5		09/15/23 04:25	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	25.0	1.5	5		09/15/23 04:25	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	25.0	1.8	5		09/15/23 04:25	79-00-5	
Trichloroethene	ND	ug/L	25.0	1.6	5		09/15/23 04:25	79-01-6	
Trichlorofluoromethane	ND	ug/L	25.0	1.7	5		09/15/23 04:25	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	25.0	2.0	5		09/15/23 04:25	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/L	25.0	1.8	5		09/15/23 04:25	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	25.0	1.7	5		09/15/23 04:25	108-67-8	
Vinyl acetate	ND	ug/L	250	11.4	5		09/15/23 04:25	108-05-4	
Vinyl chloride	12.1	ug/L	10.0	1.8	5		09/15/23 04:25	75-01-4	
Xylene (Total)	ND	ug/L	50.0	11.0	5		09/15/23 04:25	1330-20-7	
Surrogates		Ü							
Dibromofluoromethane (S)	106	%.	82-128		5		09/15/23 04:25	1868-53-7	
4-Bromofluorobenzene (S)	104	%.	79-124		5		09/15/23 04:25	460-00-4	
Toluene-d8 (S)	97	%.	73-122		5		09/15/23 04:25	2037-26-5	

Project: GE Indy
Pace Project No.: 5035343

Date: 09/19/2023 04:25 PM

Pace Project No.: 50353438									
Sample: W-2-090723	Lab ID:	50353438010	Collected	: 09/07/23	13:00	Received: 09/	08/23 11:29 N	/latrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
		lytical Services		is					
A		•			50		00/40/00 40:0	0 07 04 4	011117
Acetone	3830J	ug/L	5000	430	50		09/18/23 12:29		CH,H7
Acrolein	ND	ug/L	50.0	13.4	1		09/15/23 14:3		
Acrylonitrile	ND	ug/L	100	3.0	1		09/15/23 14:3		
Benzene	ND	ug/L	5.0	0.46	1		09/15/23 14:3		
Bromobenzene	ND	ug/L	5.0	0.41	1		09/15/23 14:3		
Bromochloromethane	ND	ug/L	5.0	0.33	1		09/15/23 14:3		
Bromodichloromethane	ND	ug/L	5.0	0.29	1		09/15/23 14:3		
Bromoform	ND	ug/L	5.0	0.29	1		09/15/23 14:3		
Bromomethane	ND	ug/L	5.0	0.51	1		09/15/23 14:3		
2-Butanone (MEK)	ND	ug/L	25.0	3.3	1		09/15/23 14:3		
n-Butylbenzene	ND	ug/L	5.0	0.39	1		09/15/23 14:3	4 104-51-8	
sec-Butylbenzene	ND	ug/L	5.0	0.36	1		09/15/23 14:3	4 135-98-8	
tert-Butylbenzene	ND	ug/L	5.0	0.38	1		09/15/23 14:3	4 98-06-6	
Carbon disulfide	ND	ug/L	10.0	0.62	1		09/15/23 14:3	4 75-15-0	
Carbon tetrachloride	ND	ug/L	5.0	0.29	1		09/15/23 14:3	4 56-23-5	
Chlorobenzene	ND	ug/L	5.0	0.35	1		09/15/23 14:3	4 108-90-7	
Chloroethane	30.5	ug/L	5.0	0.44	1		09/15/23 14:34	4 75-00-3	2d,CL
Chloroform	ND	ug/L	5.0	2.6	1		09/15/23 14:34	4 67-66-3	
Chloromethane	ND	ug/L	5.0	0.56	1		09/15/23 14:3	4 74-87-3	
2-Chlorotoluene	ND	ug/L	5.0	0.37	1		09/15/23 14:3	4 95-49-8	
4-Chlorotoluene	ND	ug/L	5.0	0.40	1		09/15/23 14:3	4 106-43-4	
Dibromochloromethane	ND	ug/L	5.0	0.31	1		09/15/23 14:3	4 124-48-1	
1,2-Dibromoethane (EDB)	ND	ug/L	5.0	0.29	1		09/15/23 14:3		
Dibromomethane	ND	ug/L	5.0	0.46	1		09/15/23 14:3		
1,2-Dichlorobenzene	ND	ug/L	5.0	0.34	1		09/15/23 14:3		
1,3-Dichlorobenzene	ND	ug/L	5.0	0.40	1		09/15/23 14:3		
1,4-Dichlorobenzene	ND	ug/L	5.0	0.39	1		09/15/23 14:3		
trans-1,4-Dichloro-2-butene	ND	ug/L	100	0.42	1		09/15/23 14:3		
Dichlorodifluoromethane	ND	ug/L	5.0	0.42	1		09/15/23 14:3		
1.1-Dichloroethane	1290	ug/L	250	18.3	50		09/18/23 12:29		
1.2-Dichloroethane	ND	-	5.0	0.34	1		09/15/23 12:2		
,		ug/L			1		09/15/23 14:3		
1,1-Dichloroethene	14.9	ug/L	5.0	0.37	50		09/15/23 14:34		
cis-1,2-Dichloroethene	5700	ug/L	250	24.0					
trans-1,2-Dichloroethene	57.2	ug/L	5.0	0.48	1		09/15/23 14:3		
1,2-Dichloropropane	ND	ug/L	5.0	0.33	1		09/15/23 14:3		
1,3-Dichloropropane	ND	ug/L	5.0	0.30	1		09/15/23 14:3		
2,2-Dichloropropane	ND	ug/L	5.0	0.37	1		09/15/23 14:3		
1,1-Dichloropropene	ND	ug/L	5.0	0.34	1		09/15/23 14:3		
cis-1,3-Dichloropropene	ND	ug/L	5.0	0.31	1		09/15/23 14:3		
trans-1,3-Dichloropropene	ND	ug/L	5.0	0.28	1		09/15/23 14:3		
Ethylbenzene	ND	ug/L	5.0	0.40	1		09/15/23 14:3	4 100-41-4	
Ethyl methacrylate	ND	ug/L	100	0.32	1		09/15/23 14:3	4 97-63-2	
Hexachloro-1,3-butadiene	ND	ug/L	5.0	0.48	1		09/15/23 14:3	4 87-68-3	
n-Hexane	5.9	ug/L	5.0	0.36	1		09/15/23 14:3	4 110-54-3	
2-Hexanone	ND	ug/L	25.0	2.2	1		09/15/23 14:3	4 591-78-6	

Project: GE Indy
Pace Project No.: 50353438

Date: 09/19/2023 04:25 PM

Sample: W-2-090723	Lab ID:	50353438010	Collecte	d: 09/07/23	3 13:00	Received: 09	9/08/23 11:29 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	5030/8260						
	Pace Anal	ytical Services	- Indianapo	lis					
lodomethane	ND	ug/L	10.0	2.0	1		09/15/23 14:34	74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	5.0	0.36	1		09/15/23 14:34	98-82-8	
p-Isopropyltoluene	ND	ug/L	5.0	0.41	1		09/15/23 14:34	99-87-6	
Methylene Chloride	8.2	ug/L	5.0	3.7	1		09/15/23 14:34	75-09-2	C9
1-Methylnaphthalene	ND	ug/L	10.0	2.1	1		09/15/23 14:34	90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	2.1	1		09/15/23 14:34	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	2.1	1		09/15/23 14:34	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	4.0	0.66	1		09/15/23 14:34	1634-04-4	
Naphthalene	ND	ug/L	1.2	0.57	1		09/15/23 14:34	91-20-3	
n-Propylbenzene	ND	ug/L	5.0	0.37	1		09/15/23 14:34	103-65-1	
Styrene	ND	ug/L	5.0	0.39	1		09/15/23 14:34	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.34	1		09/15/23 14:34	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.35	1		09/15/23 14:34	79-34-5	
Tetrachloroethene	ND	ug/L	5.0	0.36	1		09/15/23 14:34	127-18-4	
Toluene	ND	ug/L	5.0	0.38	1		09/15/23 14:34	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	0.42	1		09/15/23 14:34	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	5.0	0.42	1		09/15/23 14:34	120-82-1	
1,1,1-Trichloroethane	226	ug/L	5.0	0.31	1		09/15/23 14:34	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	5.0	0.33	1		09/15/23 14:34	79-00-5	
Trichloroethene	258	ug/L	5.0	0.41	1		09/15/23 14:34	79-01-6	
Trichlorofluoromethane	ND	ug/L	5.0	0.36	1		09/15/23 14:34	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	5.0	0.33	1		09/15/23 14:34	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/L	5.0	0.37	1		09/15/23 14:34	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.38	1		09/15/23 14:34	108-67-8	
Vinyl acetate	ND	ug/L	50.0	1.7	1		09/15/23 14:34	108-05-4	
Vinyl chloride	129	ug/L	100	19.8	50		09/18/23 12:29	75-01-4	
Xylene (Total)	ND	ug/L	10.0	1.5	1		09/15/23 14:34	1330-20-7	
Surrogates		-							
Dibromofluoromethane (S)	106	%.	82-128		1		09/15/23 14:34	1868-53-7	
4-Bromofluorobenzene (S)	105	%.	79-124		1		09/15/23 14:34	460-00-4	
Toluene-d8 (S)	100	%.	73-122		1		09/15/23 14:34	2037-26-5	

Project: GE Indy
Pace Project No.: 5035343

Date: 09/19/2023 04:25 PM

Sample: MW-423S-090723	Lab ID:	50353438011	Collected	I: 09/07/23	14:05	Received: 09	9/08/23 11:29 M	latrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL .	DF_	Prepared	Analyzed	CAS No.	Qual
8260 MSV Indiana	Analytical	Method: EPA 5	5030/8260						
	Pace Ana	lytical Services	- Indianapol	is					
Acetone	ND	ug/L	100	6.4	1		09/15/23 05:27	67-64-1	
Acrolein	ND	ug/L	50.0	13.7	1		09/15/23 05:27		
Acrylonitrile	ND	ug/L	100	1.8	1		09/15/23 05:27		
Benzene	ND	ug/L	5.0	0.44	1		09/15/23 05:27	71-43-2	
Bromobenzene	ND	ug/L	5.0	0.38	1		09/15/23 05:27		
Bromochloromethane	ND	ug/L	5.0	0.37	1		09/15/23 05:27		
Bromodichloromethane	ND	ug/L	5.0	0.29	1		09/15/23 05:27		
Bromoform	ND	ug/L	5.0	0.32	1		09/15/23 05:27		
Bromomethane	ND	ug/L	5.0	1.8	1		09/15/23 05:27		
2-Butanone (MEK)	ND	ug/L	25.0	3.6	1		09/15/23 05:27		
n-Butylbenzene	ND ND	ug/L	5.0	0.39	1		09/15/23 05:27		
sec-Butylbenzene	ND ND	ug/L	5.0	0.35	1		09/15/23 05:27		
ert-Butylbenzene	ND ND	ug/L ug/L	5.0	0.36	1		09/15/23 05:27		
Carbon disulfide	ND ND	-	10.0	0.40	1		09/15/23 05:27		L2
Carbon disdilide Carbon tetrachloride		ug/L		1.6	1		09/15/23 05:27		LZ
	ND	ug/L	5.0						
Chlorobenzene	ND	ug/L	5.0	0.32	1		09/15/23 05:27		
Chloroethane	948	ug/L	50.0	8.7	10		09/15/23 16:51		
Chloroform	ND	ug/L	5.0	2.6	1		09/15/23 05:27		
Chloromethane	ND	ug/L	5.0	0.42	1		09/15/23 05:27		
2-Chlorotoluene	ND	ug/L	5.0	0.34	1		09/15/23 05:27		
4-Chlorotoluene	ND	ug/L	5.0	0.38	1		09/15/23 05:27		
Dibromochloromethane	ND	ug/L	5.0	0.27	1		09/15/23 05:27		
1,2-Dibromoethane (EDB)	ND	ug/L	5.0	0.33	1		09/15/23 05:27		
Dibromomethane	ND	ug/L	5.0	0.42	1		09/15/23 05:27		
1,2-Dichlorobenzene	ND	ug/L	5.0	0.36	1		09/15/23 05:27		
1,3-Dichlorobenzene	ND	ug/L	5.0	0.36	1		09/15/23 05:27		
1,4-Dichlorobenzene	ND	ug/L	5.0	0.35	1		09/15/23 05:27		
trans-1,4-Dichloro-2-butene	ND	ug/L	100	0.41	1		09/15/23 05:27		
Dichlorodifluoromethane	ND	ug/L	5.0	0.37	1		09/15/23 05:27		
1,1-Dichloroethane	922	ug/L	50.0	3.1	10		09/15/23 16:51	75-34-3	
1,2-Dichloroethane	21.5	ug/L	5.0	0.29	1		09/15/23 05:27	107-06-2	
1,1-Dichloroethene	23.8	ug/L	5.0	0.27	1		09/15/23 05:27	75-35-4	
cis-1,2-Dichloroethene	86.1	ug/L	5.0	0.34	1		09/15/23 05:27	156-59-2	
rans-1,2-Dichloroethene	9.5	ug/L	5.0	0.37	1		09/15/23 05:27	156-60-5	
1,2-Dichloropropane	ND	ug/L	5.0	0.40	1		09/15/23 05:27	78-87-5	
1,3-Dichloropropane	ND	ug/L	5.0	0.29	1		09/15/23 05:27	142-28-9	
2,2-Dichloropropane	ND	ug/L	5.0	0.33	1		09/15/23 05:27	594-20-7	
1,1-Dichloropropene	ND	ug/L	5.0	0.37	1		09/15/23 05:27		
cis-1,3-Dichloropropene	ND	ug/L	5.0	0.37	1		09/15/23 05:27	10061-01-5	
trans-1,3-Dichloropropene	ND	ug/L	5.0	0.29	1		09/15/23 05:27		
Ethylbenzene	ND	ug/L	5.0	0.86	1		09/15/23 05:27		
Ethyl methacrylate	ND	ug/L	100	0.38	1		09/15/23 05:27		
Hexachloro-1,3-butadiene	ND	ug/L	5.0	0.50	1		09/15/23 05:27		
n-Hexane	ND	ug/L	5.0	0.39	1		09/15/23 05:27		
2-Hexanone	ND	ug/L	25.0	2.0	1		09/15/23 05:27		

Project: GE Indy
Pace Project No.: 50353438

Date: 09/19/2023 04:25 PM

Sample: MW-423S-090723	Lab ID:	50353438011	Collected	d: 09/07/23	3 14:05	Received: 09	0/08/23 11:29 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF ———	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Ana	lytical Services	- Indianapo	lis					
Iodomethane	ND	ug/L	10.0	1.9	1		09/15/23 05:27	74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	5.0	0.34	1		09/15/23 05:27	98-82-8	
p-Isopropyltoluene	ND	ug/L	5.0	0.40	1		09/15/23 05:27	99-87-6	
Methylene Chloride	5.7	ug/L	5.0	3.7	1		09/15/23 05:27	75-09-2	
1-Methylnaphthalene	ND	ug/L	10.0	1.6	1		09/15/23 05:27	90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	2.0	1		09/15/23 05:27	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	2.0	1		09/15/23 05:27	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	4.0	0.31	1		09/15/23 05:27	1634-04-4	
Naphthalene	ND	ug/L	1.2	0.43	1		09/15/23 05:27	91-20-3	
n-Propylbenzene	ND	ug/L	5.0	0.34	1		09/15/23 05:27	103-65-1	
Styrene	ND	ug/L	5.0	0.36	1		09/15/23 05:27	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.36	1		09/15/23 05:27	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.33	1		09/15/23 05:27	79-34-5	
Tetrachloroethene	ND	ug/L	5.0	0.35	1		09/15/23 05:27	127-18-4	
Toluene	ND	ug/L	5.0	0.38	1		09/15/23 05:27	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	0.45	1		09/15/23 05:27	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	5.0	0.43	1		09/15/23 05:27	120-82-1	
1,1,1-Trichloroethane	20.7	ug/L	5.0	0.30	1		09/15/23 05:27	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	5.0	0.36	1		09/15/23 05:27	79-00-5	
Trichloroethene	ND	ug/L	5.0	0.31	1		09/15/23 05:27	79-01-6	
Trichlorofluoromethane	ND	ug/L	5.0	0.34	1		09/15/23 05:27	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	5.0	0.40	1		09/15/23 05:27		
1,2,4-Trimethylbenzene	ND	ug/L	5.0	0.37	1		09/15/23 05:27	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.35	1		09/15/23 05:27	108-67-8	
Vinyl acetate	ND	ug/L	50.0	2.3	1		09/15/23 05:27	108-05-4	
Vinyl chloride	75.3	ug/L	2.0	0.35	1		09/15/23 05:27	75-01-4	
Xylene (Total)	ND	ug/L	10.0	2.2	1		09/15/23 05:27	1330-20-7	
Surrogates		ŭ							
Dibromofluoromethane (S)	107	%.	82-128		1		09/15/23 05:27	1868-53-7	
4-Bromofluorobenzene (S)	103	%.	79-124		1		09/15/23 05:27	460-00-4	
Toluene-d8 (S)	98	%.	73-122		1		09/15/23 05:27	2037-26-5	

Project: GE Indy
Pace Project No.: 50353436

Date: 09/19/2023 04:25 PM

Sample: MW-423D-090723	Lab ID:	50353438012	Collecte	d: 09/07/23	3 14:10	Received: 09)/08/23 11:29 Ma	atrix: Water	
Developed to the	Desults	l laita	Report	MDI	DE	Duananad	A a b a -d	CACNI	0
Parameters	Results	Units	Limit	MDL .	DF ——	Prepared	Analyzed	CAS No.	Qual
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Ana	lytical Services	- Indianapo	lis					
Acetone	ND	ug/L	100	6.4	1		09/15/23 05:57	67-64-1	
Acrolein	ND	ug/L	50.0	13.7	1		09/15/23 05:57		
Acrylonitrile	ND	ug/L	100	1.8	1		09/15/23 05:57		
Benzene	ND	ug/L	5.0	0.44	1		09/15/23 05:57		
Bromobenzene	ND	ug/L	5.0	0.38	1		09/15/23 05:57		
Bromochloromethane	ND	ug/L	5.0	0.37	1		09/15/23 05:57		
Bromodichloromethane	ND ND	ug/L	5.0	0.37	1		09/15/23 05:57		
Bromoform	ND ND	-	5.0	0.29	1		09/15/23 05:57		
		ug/L		1.8					
Bromomethane	ND	ug/L	5.0		1		09/15/23 05:57		
2-Butanone (MEK)	ND	ug/L	25.0	3.6	1		09/15/23 05:57		
n-Butylbenzene	ND	ug/L	5.0	0.39	1		09/15/23 05:57		
sec-Butylbenzene	ND	ug/L	5.0	0.35	1		09/15/23 05:57		
tert-Butylbenzene	ND	ug/L	5.0	0.36	1		09/15/23 05:57		
Carbon disulfide	ND	ug/L	10.0	0.40	1		09/15/23 05:57		L2
Carbon tetrachloride	ND	ug/L	5.0	1.6	1		09/15/23 05:57		
Chlorobenzene	ND	ug/L	5.0	0.32	1		09/15/23 05:57	108-90-7	
Chloroethane	21.8	ug/L	5.0	0.87	1		09/15/23 05:57	75-00-3	
Chloroform	ND	ug/L	5.0	2.6	1		09/15/23 05:57	67-66-3	
Chloromethane	ND	ug/L	5.0	0.42	1		09/15/23 05:57	74-87-3	
2-Chlorotoluene	ND	ug/L	5.0	0.34	1		09/15/23 05:57	95-49-8	
4-Chlorotoluene	ND	ug/L	5.0	0.38	1		09/15/23 05:57	106-43-4	
Dibromochloromethane	ND	ug/L	5.0	0.27	1		09/15/23 05:57	124-48-1	
1,2-Dibromoethane (EDB)	ND	ug/L	5.0	0.33	1		09/15/23 05:57	106-93-4	
Dibromomethane	ND	ug/L	5.0	0.42	1		09/15/23 05:57	74-95-3	
1,2-Dichlorobenzene	ND	ug/L	5.0	0.36	1		09/15/23 05:57	95-50-1	
1,3-Dichlorobenzene	ND	ug/L	5.0	0.36	1		09/15/23 05:57	541-73-1	
1,4-Dichlorobenzene	ND	ug/L	5.0	0.35	1		09/15/23 05:57	106-46-7	
trans-1,4-Dichloro-2-butene	ND	ug/L	100	0.41	1		09/15/23 05:57		
Dichlorodifluoromethane	ND	ug/L	5.0	0.37	1		09/15/23 05:57	75-71-8	
1,1-Dichloroethane	ND	ug/L	5.0	0.31	1		09/15/23 05:57		
1,2-Dichloroethane	ND	ug/L	5.0	0.29	1		09/15/23 05:57		
1,1-Dichloroethene	ND	ug/L	5.0	0.27	1		09/15/23 05:57		
cis-1,2-Dichloroethene	6.2	ug/L	5.0	0.27	1		09/15/23 05:57		
trans-1,2-Dichloroethene	ND	ug/L	5.0	0.34	1		09/15/23 05:57		
•	ND ND	-	5.0	0.37	1		09/15/23 05:57		
1,2-Dichloropropane	ND ND	ug/L ug/L	5.0	0.40			09/15/23 05:57		
1,3-Dichloropropane		-			1				
2,2-Dichloropropane	ND	ug/L	5.0	0.33	1		09/15/23 05:57		
1,1-Dichloropropene	ND	ug/L	5.0	0.37	1		09/15/23 05:57		
cis-1,3-Dichloropropene	ND	ug/L	5.0	0.37	1		09/15/23 05:57		
trans-1,3-Dichloropropene	ND	ug/L	5.0	0.29	1		09/15/23 05:57		
Ethylbenzene	ND	ug/L	5.0	0.86	1		09/15/23 05:57		
Ethyl methacrylate	ND	ug/L	100	0.38	1		09/15/23 05:57		
Hexachloro-1,3-butadiene	ND	ug/L	5.0	0.50	1		09/15/23 05:57		
n-Hexane	ND	ug/L	5.0	0.39	1		09/15/23 05:57		
2-Hexanone	ND	ug/L	25.0	2.0	1		09/15/23 05:57	591-78-6	

Project: GE Indy
Pace Project No.: 50353438

Date: 09/19/2023 04:25 PM

Sample: MW-423D-090723	Lab ID:	50353438012	Collected	d: 09/07/23	3 14:10	Received: 09	9/08/23 11:29 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Ana	lytical Services	- Indianapo	lis					
lodomethane	ND	ug/L	10.0	1.9	1		09/15/23 05:57	74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	5.0	0.34	1		09/15/23 05:57	98-82-8	
p-Isopropyltoluene	ND	ug/L	5.0	0.40	1		09/15/23 05:57	99-87-6	
Methylene Chloride	ND	ug/L	5.0	3.7	1		09/15/23 05:57	75-09-2	
1-Methylnaphthalene	ND	ug/L	10.0	1.6	1		09/15/23 05:57	90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	2.0	1		09/15/23 05:57	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	2.0	1		09/15/23 05:57	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	4.0	0.31	1		09/15/23 05:57	1634-04-4	
Naphthalene	ND	ug/L	1.2	0.43	1		09/15/23 05:57	91-20-3	
n-Propylbenzene	ND	ug/L	5.0	0.34	1		09/15/23 05:57	103-65-1	
Styrene	ND	ug/L	5.0	0.36	1		09/15/23 05:57	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.36	1		09/15/23 05:57	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.33	1		09/15/23 05:57		
Tetrachloroethene	ND	ug/L	5.0	0.35	1		09/15/23 05:57	127-18-4	
Toluene	ND	ug/L	5.0	0.38	1		09/15/23 05:57	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	0.45	1		09/15/23 05:57	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	5.0	0.43	1		09/15/23 05:57	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	5.0	0.30	1		09/15/23 05:57	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	5.0	0.36	1		09/15/23 05:57	79-00-5	
Trichloroethene	ND	ug/L	5.0	0.31	1		09/15/23 05:57	79-01-6	
Trichlorofluoromethane	ND	ug/L	5.0	0.34	1		09/15/23 05:57	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	5.0	0.40	1		09/15/23 05:57	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/L	5.0	0.37	1		09/15/23 05:57	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.35	1		09/15/23 05:57	108-67-8	
Vinyl acetate	ND	ug/L	50.0	2.3	1		09/15/23 05:57	108-05-4	
Vinyl chloride	7.0	ug/L	2.0	0.35	1		09/15/23 05:57	75-01-4	
Xylene (Total)	ND	ug/L	10.0	2.2	1		09/15/23 05:57	1330-20-7	
Surrogates		Ü							
Dibromofluoromethane (S)	108	%.	82-128		1		09/15/23 05:57	1868-53-7	
4-Bromofluorobenzene (S)	105	%.	79-124		1		09/15/23 05:57	460-00-4	
Toluene-d8 (S)	97	%.	73-122		1		09/15/23 05:57	2037-26-5	

Project: GE Indy
Pace Project No.: 5035343

Date: 09/19/2023 04:25 PM

Sample: MW-422S-090723	Lab ID:	50353438013	Collected	d: 09/07/23	14:20	Received: 09	9/08/23 11:29 M	latrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL .	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Ana	lytical Services	- Indianapol	is					
Acetone	ND	ug/L	100	6.4	1		09/15/23 06:28	67-64-1	
Acrolein	ND	ug/L	50.0	13.7	1		09/15/23 06:28	107-02-8	
Acrylonitrile	ND	ug/L	100	1.8	1		09/15/23 06:28	107-13-1	
Benzene	ND	ug/L	5.0	0.44	1		09/15/23 06:28	71-43-2	
Bromobenzene	ND	ug/L	5.0	0.38	1		09/15/23 06:28		
Bromochloromethane	ND	ug/L	5.0	0.37	1		09/15/23 06:28		
Bromodichloromethane	ND	ug/L	5.0	0.29	1		09/15/23 06:28		
Bromoform	ND	ug/L	5.0	0.32	1		09/15/23 06:28		
Bromomethane	ND	ug/L	5.0	1.8	1		09/15/23 06:28		
2-Butanone (MEK)	ND ND	ug/L	25.0	3.6	1		09/15/23 06:28		
, ,		-			1				
n-Butylbenzene	ND	ug/L	5.0	0.39			09/15/23 06:28		
sec-Butylbenzene	ND	ug/L	5.0	0.35	1		09/15/23 06:28		
tert-Butylbenzene	ND	ug/L	5.0	0.36	1		09/15/23 06:28		
Carbon disulfide	ND	ug/L	10.0	0.40	1		09/15/23 06:28		L2
Carbon tetrachloride	ND	ug/L	5.0	1.6	1		09/15/23 06:28		
Chlorobenzene	ND	ug/L	5.0	0.32	1		09/15/23 06:28		
Chloroethane	ND	ug/L	5.0	0.87	1		09/15/23 06:28		
Chloroform	ND	ug/L	5.0	2.6	1		09/15/23 06:28		
Chloromethane	ND	ug/L	5.0	0.42	1		09/15/23 06:28	74-87-3	
2-Chlorotoluene	ND	ug/L	5.0	0.34	1		09/15/23 06:28	95-49-8	
4-Chlorotoluene	ND	ug/L	5.0	0.38	1		09/15/23 06:28	106-43-4	
Dibromochloromethane	ND	ug/L	5.0	0.27	1		09/15/23 06:28	124-48-1	
1,2-Dibromoethane (EDB)	ND	ug/L	5.0	0.33	1		09/15/23 06:28	106-93-4	
Dibromomethane	ND	ug/L	5.0	0.42	1		09/15/23 06:28	74-95-3	
1,2-Dichlorobenzene	ND	ug/L	5.0	0.36	1		09/15/23 06:28	95-50-1	
1,3-Dichlorobenzene	ND	ug/L	5.0	0.36	1		09/15/23 06:28	541-73-1	
1,4-Dichlorobenzene	ND	ug/L	5.0	0.35	1		09/15/23 06:28	106-46-7	
trans-1,4-Dichloro-2-butene	ND	ug/L	100	0.41	1		09/15/23 06:28	110-57-6	
Dichlorodifluoromethane	ND	ug/L	5.0	0.37	1		09/15/23 06:28	75-71-8	
1,1-Dichloroethane	ND	ug/L	5.0	0.31	1		09/15/23 06:28		
1,2-Dichloroethane	ND	ug/L	5.0	0.29	1		09/15/23 06:28		
1.1-Dichloroethene	ND	ug/L	5.0	0.27	1		09/15/23 06:28		
cis-1,2-Dichloroethene	1010	ug/L	250	17.0	50		09/15/23 17:52		
trans-1,2-Dichloroethene	ND	ug/L	5.0	0.37	1		09/15/23 06:28		
1,2-Dichloropropane	ND	ug/L	5.0	0.40	1		09/15/23 06:28		
1,3-Dichloropropane		-	5.0	0.40			09/15/23 06:28		
' '	ND	ug/L			1		09/15/23 06:28		
2,2-Dichloropropane	ND	ug/L	5.0	0.33	1				
1,1-Dichloropropene	ND	ug/L	5.0	0.37	1		09/15/23 06:28		
cis-1,3-Dichloropropene	ND	ug/L	5.0	0.37	1		09/15/23 06:28		
trans-1,3-Dichloropropene	ND	ug/L	5.0	0.29	1		09/15/23 06:28		
Ethylbenzene	ND	ug/L	5.0	0.86	1		09/15/23 06:28		
Ethyl methacrylate	ND	ug/L	100	0.38	1		09/15/23 06:28		
Hexachloro-1,3-butadiene	ND	ug/L	5.0	0.50	1		09/15/23 06:28		
n-Hexane	ND	ug/L	5.0	0.39	1		09/15/23 06:28		
2-Hexanone	ND	ug/L	25.0	2.0	1		09/15/23 06:28	591-78-6	

Project: GE Indy
Pace Project No.: 50353438

Date: 09/19/2023 04:25 PM

Sample: MW-422S-090723	Lab ID:	50353438013	Collecte	d: 09/07/23	3 14:20	Received: 09	9/08/23 11:29 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Ana	lytical Services	- Indianapo	lis					
lodomethane	ND	ug/L	10.0	1.9	1		09/15/23 06:28	74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	5.0	0.34	1		09/15/23 06:28	98-82-8	
p-Isopropyltoluene	ND	ug/L	5.0	0.40	1		09/15/23 06:28	99-87-6	
Methylene Chloride	ND	ug/L	5.0	3.7	1		09/15/23 06:28	75-09-2	
1-Methylnaphthalene	ND	ug/L	10.0	1.6	1		09/15/23 06:28	90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	2.0	1		09/15/23 06:28	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	2.0	1		09/15/23 06:28	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	4.0	0.31	1		09/15/23 06:28	1634-04-4	
Naphthalene	ND	ug/L	1.2	0.43	1		09/15/23 06:28	91-20-3	
n-Propylbenzene	ND	ug/L	5.0	0.34	1		09/15/23 06:28	103-65-1	
Styrene	ND	ug/L	5.0	0.36	1		09/15/23 06:28	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.36	1		09/15/23 06:28	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.33	1		09/15/23 06:28	79-34-5	
Tetrachloroethene	ND	ug/L	5.0	0.35	1		09/15/23 06:28	127-18-4	
Toluene	ND	ug/L	5.0	0.38	1		09/15/23 06:28	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	0.45	1		09/15/23 06:28	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	5.0	0.43	1		09/15/23 06:28		
1,1,1-Trichloroethane	ND	ug/L	5.0	0.30	1		09/15/23 06:28	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	5.0	0.36	1		09/15/23 06:28	79-00-5	
Trichloroethene	5.8	ug/L	5.0	0.31	1		09/15/23 06:28	79-01-6	
Trichlorofluoromethane	ND	ug/L	5.0	0.34	1		09/15/23 06:28	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	5.0	0.40	1		09/15/23 06:28	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/L	5.0	0.37	1		09/15/23 06:28	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.35	1		09/15/23 06:28	108-67-8	
Vinyl acetate	ND	ug/L	50.0	2.3	1		09/15/23 06:28	108-05-4	
Vinyl chloride	3470	ug/L	100	17.5	50		09/15/23 17:52	75-01-4	
Xylene (Total)	ND	ug/L	10.0	2.2	1		09/15/23 06:28	1330-20-7	
Surrogates		Ü							
Dibromofluoromethane (S)	107	%.	82-128		1		09/15/23 06:28	1868-53-7	
4-Bromofluorobenzene (S)	105	%.	79-124		1		09/15/23 06:28	460-00-4	
Toluene-d8 (S)	97	%.	73-122		1		09/15/23 06:28	2037-26-5	

Project: GE Indy
Pace Project No.: 50353438

Date: 09/19/2023 04:25 PM

Sample: MW-422D-090723	Lab ID:	50353438014	Collected	1: 09/07/23	14:25	Received: 09	9/08/23 11:29 N	latrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qual
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	-	lytical Services		is					
Acetone	ND	ug/L	100	6.4	1		09/15/23 06:59	67-64-1	
Acrolein	ND	ug/L	50.0	13.7	1		09/15/23 06:59		
Acrylonitrile	ND	ug/L	100	1.8	1		09/15/23 06:59		
Benzene	ND	ug/L	5.0	0.44	1		09/15/23 06:59		
Bromobenzene	ND	ug/L	5.0	0.38	1		09/15/23 06:59		
Bromochloromethane	ND	ug/L	5.0	0.37	1		09/15/23 06:59		
Bromodichloromethane	ND	ug/L	5.0	0.29	1		09/15/23 06:59		
Bromoform	ND	ug/L	5.0	0.32	1		09/15/23 06:59		
Bromomethane	ND	ug/L	5.0	1.8	1		09/15/23 06:59		
2-Butanone (MEK)	ND ND	ug/L ug/L	25.0	3.6	1		09/15/23 06:59		
2-Butarione (MEK) n-Butylbenzene	ND ND	ug/L ug/L	25.0 5.0	0.39	1		09/15/23 06:59		
sec-Butylbenzene		-	5.0						
,	ND	ug/L		0.35 0.36	1 1		09/15/23 06:59		
tert-Butylbenzene	ND	ug/L	5.0				09/15/23 06:59		1.0
Carbon disulfide	ND	ug/L	10.0	0.40	1		09/15/23 06:59		L2
Carbon tetrachloride	ND	ug/L	5.0	1.6	1		09/15/23 06:59		
Chlorobenzene	ND	ug/L	5.0	0.32	1		09/15/23 06:59		
Chloroethane	ND	ug/L	5.0	0.87	1		09/15/23 06:59		
Chloroform	ND	ug/L	5.0	2.6	1		09/15/23 06:59		
Chloromethane	ND	ug/L	5.0	0.42	1		09/15/23 06:59		
2-Chlorotoluene	ND	ug/L	5.0	0.34	1		09/15/23 06:59		
4-Chlorotoluene	ND	ug/L	5.0	0.38	1		09/15/23 06:59	106-43-4	
Dibromochloromethane	ND	ug/L	5.0	0.27	1		09/15/23 06:59	124-48-1	
1,2-Dibromoethane (EDB)	ND	ug/L	5.0	0.33	1		09/15/23 06:59	106-93-4	
Dibromomethane	ND	ug/L	5.0	0.42	1		09/15/23 06:59	74-95-3	
1,2-Dichlorobenzene	ND	ug/L	5.0	0.36	1		09/15/23 06:59	95-50-1	
1,3-Dichlorobenzene	ND	ug/L	5.0	0.36	1		09/15/23 06:59	541-73-1	
1,4-Dichlorobenzene	ND	ug/L	5.0	0.35	1		09/15/23 06:59	106-46-7	
rans-1,4-Dichloro-2-butene	ND	ug/L	100	0.41	1		09/15/23 06:59	110-57-6	
Dichlorodifluoromethane	ND	ug/L	5.0	0.37	1		09/15/23 06:59	75-71-8	
1,1-Dichloroethane	ND	ug/L	5.0	0.31	1		09/15/23 06:59	75-34-3	
1,2-Dichloroethane	6.8	ug/L	5.0	0.29	1		09/15/23 06:59	107-06-2	
1,1-Dichloroethene	ND	ug/L	5.0	0.27	1		09/15/23 06:59	75-35-4	
cis-1,2-Dichloroethene	170	ug/L	5.0	0.34	1		09/15/23 06:59	156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	5.0	0.37	1		09/15/23 06:59	156-60-5	
1,2-Dichloropropane	ND	ug/L	5.0	0.40	1		09/15/23 06:59		
1,3-Dichloropropane	ND	ug/L	5.0	0.29	1		09/15/23 06:59		
2,2-Dichloropropane	ND	ug/L	5.0	0.33	1		09/15/23 06:59		
1,1-Dichloropropene	ND	ug/L	5.0	0.37	1		09/15/23 06:59		
cis-1,3-Dichloropropene	ND	ug/L	5.0	0.37	1		09/15/23 06:59		
rans-1,3-Dichloropropene	ND ND	ug/L	5.0	0.37	1		09/15/23 06:59		
Ethylbenzene	ND ND	ug/L ug/L	5.0	0.29	1		09/15/23 06:59		
•	ND ND	-	100	0.88	1		09/15/23 06:59		
Ethyl methacrylate Hexachloro-1,3-butadiene	ND ND	ug/L	5.0	0.50	1		09/15/23 06:59		
•		ug/L							
n-Hexane	ND	ug/L	5.0	0.39	1		09/15/23 06:59	110-54-3	

Project: GE Indy
Pace Project No.: 50353438

Date: 09/19/2023 04:25 PM

Sample: MW-422D-090723	Lab ID:	50353438014	Collecte	d: 09/07/23	3 14:25	Received: 09	0/08/23 11:29 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	5030/8260						
	Pace Anal	ytical Services	- Indianapo	lis					
lodomethane	ND	ug/L	10.0	1.9	1		09/15/23 06:59	74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	5.0	0.34	1		09/15/23 06:59	98-82-8	
p-Isopropyltoluene	ND	ug/L	5.0	0.40	1		09/15/23 06:59	99-87-6	
Methylene Chloride	ND	ug/L	5.0	3.7	1		09/15/23 06:59	75-09-2	
1-Methylnaphthalene	ND	ug/L	10.0	1.6	1		09/15/23 06:59	90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	2.0	1		09/15/23 06:59	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	2.0	1		09/15/23 06:59	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	4.0	0.31	1		09/15/23 06:59	1634-04-4	
Naphthalene	ND	ug/L	1.2	0.43	1		09/15/23 06:59	91-20-3	
n-Propylbenzene	ND	ug/L	5.0	0.34	1		09/15/23 06:59		
Styrene	ND	ug/L	5.0	0.36	1		09/15/23 06:59	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.36	1		09/15/23 06:59	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.33	1		09/15/23 06:59	79-34-5	
Tetrachloroethene	ND	ug/L	5.0	0.35	1		09/15/23 06:59	127-18-4	
Toluene	ND	ug/L	5.0	0.38	1		09/15/23 06:59	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	0.45	1		09/15/23 06:59	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	5.0	0.43	1		09/15/23 06:59	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	5.0	0.30	1		09/15/23 06:59	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	5.0	0.36	1		09/15/23 06:59	79-00-5	
Trichloroethene	ND	ug/L	5.0	0.31	1		09/15/23 06:59	79-01-6	
Trichlorofluoromethane	ND	ug/L	5.0	0.34	1		09/15/23 06:59	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	5.0	0.40	1		09/15/23 06:59		
1,2,4-Trimethylbenzene	ND	ug/L	5.0	0.37	1		09/15/23 06:59		
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.35	1		09/15/23 06:59	108-67-8	
Vinyl acetate	ND	ug/L	50.0	2.3	1		09/15/23 06:59		
Vinyl chloride	493	ug/L	20.0	3.5	10		09/15/23 18:23		
Xylene (Total)	ND	ug/L	10.0	2.2	1		09/15/23 06:59		
Surrogates		- 3 -		_					
Dibromofluoromethane (S)	108	%.	82-128		1		09/15/23 06:59	1868-53-7	
4-Bromofluorobenzene (S)	106	%.	79-124		1		09/15/23 06:59	460-00-4	
Toluene-d8 (S)	98	%.	73-122		1		09/15/23 06:59	2037-26-5	

Project: GE Indy
Pace Project No.: 5035343

Date: 09/19/2023 04:25 PM

Sample: MW-419S-090723	Lab ID:	50353438015	Collected:	09/07/23	14:35	Received: 0	9/08/23 11:29	Matrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Ana	lytical Services	- Indianapolis	6					
Acetone	ND	ug/L	100	6.4	1		09/15/23 07:	29 67-64-1	
Acrolein	ND	ug/L	50.0	13.7	1		09/15/23 07:	29 107-02-8	
Acrylonitrile	ND	ug/L	100	1.8	1		09/15/23 07:	29 107-13-1	
Benzene	ND	ug/L	5.0	0.44	1		09/15/23 07:	29 71-43-2	
Bromobenzene	ND	ug/L	5.0	0.38	1		09/15/23 07:		
Bromochloromethane	ND	ug/L	5.0	0.37	1		09/15/23 07:		
Bromodichloromethane	ND	ug/L	5.0	0.29	1		09/15/23 07:		
Bromoform	ND	ug/L	5.0	0.32	1		09/15/23 07:		
Bromomethane	ND	ug/L	5.0	1.8	1		09/15/23 07:		
2-Butanone (MEK)	ND	ug/L	25.0	3.6	1		09/15/23 07:		
n-Butylbenzene	ND ND	ug/L	5.0	0.39	1			29 104-51-8	
sec-Butylbenzene	ND	ug/L	5.0	0.35	1			29 135-98-8	
tert-Butylbenzene	ND	ug/L	5.0	0.36	1		09/15/23 07:		
Carbon disulfide	ND ND	ug/L	10.0	0.40	1		09/15/23 07:		L2
Carbon tetrachloride	ND ND	-	5.0	1.6	1		09/15/23 07:		LZ
		ug/L			1			29	
Chlorobenzene	ND	ug/L	5.0	0.32	1				
Chloroethane Chloroform	ND	ug/L	5.0	0.87			09/15/23 07:		
	ND	ug/L	5.0	2.6	1		09/15/23 07:		
Chloromethane	ND	ug/L	5.0	0.42	1		09/15/23 07:		
2-Chlorotoluene	ND	ug/L	5.0	0.34	1		09/15/23 07:		
4-Chlorotoluene	ND	ug/L	5.0	0.38	1			29 106-43-4	
Dibromochloromethane	ND	ug/L	5.0	0.27	1			29 124-48-1	
1,2-Dibromoethane (EDB)	ND	ug/L	5.0	0.33	1			29 106-93-4	
Dibromomethane	ND	ug/L	5.0	0.42	1		09/15/23 07:		
1,2-Dichlorobenzene	ND	ug/L	5.0	0.36	1		09/15/23 07:		
1,3-Dichlorobenzene	ND	ug/L	5.0	0.36	1		09/15/23 07:		
1,4-Dichlorobenzene	ND	ug/L	5.0	0.35	1			29 106-46-7	
trans-1,4-Dichloro-2-butene	ND	ug/L	100	0.41	1			29 110-57-6	
Dichlorodifluoromethane	ND	ug/L	5.0	0.37	1		09/15/23 07:		
1,1-Dichloroethane	ND	ug/L	5.0	0.31	1		09/15/23 07:		
1,2-Dichloroethane	ND	ug/L	5.0	0.29	1			29 107-06-2	
1,1-Dichloroethene	ND	ug/L	5.0	0.27	1		09/15/23 07:		
cis-1,2-Dichloroethene	30.3	ug/L	5.0	0.34	1		09/15/23 07:	29 156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	5.0	0.37	1		09/15/23 07:	29 156-60-5	
1,2-Dichloropropane	ND	ug/L	5.0	0.40	1		09/15/23 07:	29 78-87-5	
1,3-Dichloropropane	ND	ug/L	5.0	0.29	1		09/15/23 07:	29 142-28-9	
2,2-Dichloropropane	ND	ug/L	5.0	0.33	1		09/15/23 07:	29 594-20-7	
1,1-Dichloropropene	ND	ug/L	5.0	0.37	1		09/15/23 07:	29 563-58-6	
cis-1,3-Dichloropropene	ND	ug/L	5.0	0.37	1		09/15/23 07:	29 10061-01-5	
trans-1,3-Dichloropropene	ND	ug/L	5.0	0.29	1		09/15/23 07:	29 10061-02-6	
Ethylbenzene	ND	ug/L	5.0	0.86	1			29 100-41-4	
Ethyl methacrylate	ND	ug/L	100	0.38	1		09/15/23 07:		
Hexachloro-1,3-butadiene	ND	ug/L	5.0	0.50	1		09/15/23 07:		
n-Hexane	ND	ug/L	5.0	0.39	1			29 110-54-3	
2-Hexanone	ND	ug/L	25.0	2.0	1			29 591-78-6	

Project: GE Indy
Pace Project No.: 50353438

Date: 09/19/2023 04:25 PM

Sample: MW-419S-090723	Lab ID:	50353438015	Collecte	d: 09/07/23	3 14:35	Received: 09	0/08/23 11:29 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	5030/8260						
	Pace Anal	ytical Services	- Indianapo	lis					
lodomethane	ND	ug/L	10.0	1.9	1		09/15/23 07:29	74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	5.0	0.34	1		09/15/23 07:29	98-82-8	
p-Isopropyltoluene	ND	ug/L	5.0	0.40	1		09/15/23 07:29	99-87-6	
Methylene Chloride	ND	ug/L	5.0	3.7	1		09/15/23 07:29	75-09-2	
1-Methylnaphthalene	ND	ug/L	10.0	1.6	1		09/15/23 07:29	90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	2.0	1		09/15/23 07:29	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	2.0	1		09/15/23 07:29	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	4.0	0.31	1		09/15/23 07:29	1634-04-4	
Naphthalene	ND	ug/L	1.2	0.43	1		09/15/23 07:29	91-20-3	
n-Propylbenzene	ND	ug/L	5.0	0.34	1		09/15/23 07:29	103-65-1	
Styrene	ND	ug/L	5.0	0.36	1		09/15/23 07:29	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.36	1		09/15/23 07:29	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.33	1		09/15/23 07:29	79-34-5	
Tetrachloroethene	ND	ug/L	5.0	0.35	1		09/15/23 07:29	127-18-4	
Toluene	ND	ug/L	5.0	0.38	1		09/15/23 07:29	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	0.45	1		09/15/23 07:29	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	5.0	0.43	1		09/15/23 07:29	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	5.0	0.30	1		09/15/23 07:29	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	5.0	0.36	1		09/15/23 07:29	79-00-5	
Trichloroethene	ND	ug/L	5.0	0.31	1		09/15/23 07:29	79-01-6	
Trichlorofluoromethane	ND	ug/L	5.0	0.34	1		09/15/23 07:29	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	5.0	0.40	1		09/15/23 07:29	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/L	5.0	0.37	1		09/15/23 07:29		
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.35	1		09/15/23 07:29	108-67-8	
Vinyl acetate	ND	ug/L	50.0	2.3	1		09/15/23 07:29	108-05-4	
Vinyl chloride	5.6	ug/L	2.0	0.35	1		09/15/23 07:29		
Xylene (Total)	ND	ug/L	10.0	2.2	1		09/15/23 07:29		
Surrogates		- 3		_					
Dibromofluoromethane (S)	108	%.	82-128		1		09/15/23 07:29	1868-53-7	
4-Bromofluorobenzene (S)	105	%.	79-124		1		09/15/23 07:29	460-00-4	
Toluene-d8 (S)	98	%.	73-122		1		09/15/23 07:29	2037-26-5	

Project: GE Indy
Pace Project No.: 50353438

Date: 09/19/2023 04:25 PM

Sample: MW-419D-090723 Parameters 8260 MSV Indiana	Lab ID:	50353438016	Collected	: 09/07/23	14:40	Received: 09	9/08/23 11:29 N	fatrix: Water	
	Results								
	Results		Report						
8260 MSV Indiana		Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
	Analytical	Method: EPA 5	030/8260						
	•	lytical Services		S					
Acatona		•	•		20		00/45/00 40.5	1 67 64 4	
Acetone	ND	ug/L	2000	128	20		09/15/23 18:54		
Acrolein	ND	ug/L	1000	274	20		09/15/23 18:54		
Acrylonitrile	ND	ug/L	2000	36.6	20		09/15/23 18:54		
Benzene	ND	ug/L	100	8.9	20		09/15/23 18:54		
Bromobenzene	ND	ug/L	100	7.5	20		09/15/23 18:54		
Bromochloromethane	ND	ug/L	100	7.4	20		09/15/23 18:54		
Bromodichloromethane	ND	ug/L	100	5.9	20		09/15/23 18:54		
Bromoform	ND	ug/L	100	6.4	20		09/15/23 18:54		
Bromomethane	ND	ug/L	100	35.0	20		09/15/23 18:54		
2-Butanone (MEK)	ND	ug/L	500	72.6	20		09/15/23 18:54		
n-Butylbenzene	ND	ug/L	100	7.8	20		09/15/23 18:54		
sec-Butylbenzene	ND	ug/L	100	6.9	20		09/15/23 18:54		
tert-Butylbenzene	ND	ug/L	100	7.2	20		09/15/23 18:54		
Carbon disulfide	ND	ug/L	200	7.9	20		09/15/23 18:5		L2
Carbon tetrachloride	ND	ug/L	100	31.8	20		09/15/23 18:5	1 56-23-5	
Chlorobenzene	ND	ug/L	100	6.5	20		09/15/23 18:54		
Chloroethane	ND	ug/L	100	17.4	20		09/15/23 18:54	75-00-3	
Chloroform	ND	ug/L	100	52.0	20		09/15/23 18:54	4 67-66-3	
Chloromethane	ND	ug/L	100	8.5	20		09/15/23 18:54	1 74-87-3	
2-Chlorotoluene	ND	ug/L	100	6.8	20		09/15/23 18:54	4 95-49-8	
4-Chlorotoluene	ND	ug/L	100	7.6	20		09/15/23 18:54	1 106-43-4	
Dibromochloromethane	ND	ug/L	100	5.4	20		09/15/23 18:54	1 124-48-1	
1,2-Dibromoethane (EDB)	ND	ug/L	100	6.6	20		09/15/23 18:54	1 106-93-4	
Dibromomethane	ND	ug/L	100	8.3	20		09/15/23 18:54	1 74-95-3	
1,2-Dichlorobenzene	ND	ug/L	100	7.1	20		09/15/23 18:54	1 95-50-1	
1,3-Dichlorobenzene	ND	ug/L	100	7.3	20		09/15/23 18:54	1 541-73-1	
1,4-Dichlorobenzene	ND	ug/L	100	7.0	20		09/15/23 18:54	1 106-46-7	
trans-1,4-Dichloro-2-butene	ND	ug/L	2000	8.1	20		09/15/23 18:54	1 110-57-6	
Dichlorodifluoromethane	ND	ug/L	100	7.4	20		09/15/23 18:54	1 75-71-8	
1,1-Dichloroethane	ND	ug/L	100	6.2	20		09/15/23 18:54	1 75-34-3	
1,2-Dichloroethane	ND	ug/L	100	5.7	20		09/15/23 18:54	1 107-06-2	
1,1-Dichloroethene	ND	ug/L	100	5.4	20		09/15/23 18:54	1 75-35-4	
cis-1,2-Dichloroethene	2780	ug/L	100	6.8	20		09/15/23 18:54	1 156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	100	7.5	20		09/15/23 18:54	1 156-60-5	
1,2-Dichloropropane	ND	ug/L	100	8.0	20		09/15/23 18:54	1 78-87-5	
1,3-Dichloropropane	ND	ug/L	100	5.9	20		09/15/23 18:54	1 142-28-9	
2,2-Dichloropropane	ND	ug/L	100	6.6	20		09/15/23 18:54	1 594-20-7	
1,1-Dichloropropene	ND	ug/L	100	7.4	20		09/15/23 18:54	4 563-58-6	
cis-1,3-Dichloropropene	ND	ug/L	100	7.5	20		09/15/23 18:54		
trans-1,3-Dichloropropene	ND	ug/L	100	5.7	20		09/15/23 18:54		
Ethylbenzene	ND	ug/L	100	17.2	20		09/15/23 18:54		
Ethyl methacrylate	ND	ug/L	2000	7.5	20		09/15/23 18:54		
Hexachloro-1,3-butadiene	ND	ug/L	100	9.9	20		09/15/23 18:54		
n-Hexane	ND	ug/L	100	7.8	20		09/15/23 18:54		
2-Hexanone	ND	ug/L	500	41.0	20		09/15/23 18:54		

Project: GE Indy
Pace Project No.: 50353438

Date: 09/19/2023 04:25 PM

Sample: MW-419D-090723	Lab ID:	50353438016	Collecte	d: 09/07/2	3 14:40	Received: 09	/08/23 11:29 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA	5030/8260						
	Pace Anal	lytical Services	s - Indianapo	lis					
lodomethane	ND	ug/L	200	38.2	20		09/15/23 18:54	74-88-4	
sopropylbenzene (Cumene)	ND	ug/L	100	6.8	20		09/15/23 18:54	98-82-8	
o-Isopropyltoluene	ND	ug/L	100	7.9	20		09/15/23 18:54	99-87-6	
Methylene Chloride	ND	ug/L	100	74.0	20		09/15/23 18:54	75-09-2	
1-Methylnaphthalene	ND	ug/L	200	32.0	20		09/15/23 18:54	90-12-0	
2-Methylnaphthalene	ND	ug/L	200	40.0	20		09/15/23 18:54	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	500	39.4	20		09/15/23 18:54	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	80.0	6.2	20		09/15/23 18:54	1634-04-4	
Naphthalene	ND	ug/L	24.0	8.6	20		09/15/23 18:54	91-20-3	
n-Propylbenzene	ND	ug/L	100	6.9	20		09/15/23 18:54	103-65-1	
Styrene	ND	ug/L	100	7.2	20		09/15/23 18:54	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	100	7.2	20		09/15/23 18:54	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	100	6.7	20		09/15/23 18:54	79-34-5	
Tetrachloroethene	ND	ug/L	100	7.1	20		09/15/23 18:54	127-18-4	
Toluene	ND	ug/L	100	7.5	20		09/15/23 18:54	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	100	9.1	20		09/15/23 18:54	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	100	8.7	20		09/15/23 18:54	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	100	6.0	20		09/15/23 18:54	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	100	7.3	20		09/15/23 18:54	79-00-5	
Trichloroethene	ND	ug/L	100	6.3	20		09/15/23 18:54	79-01-6	
Trichlorofluoromethane	ND	ug/L	100	6.8	20		09/15/23 18:54	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	100	8.0	20		09/15/23 18:54	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/L	100	7.4	20		09/15/23 18:54	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	100	7.0	20		09/15/23 18:54	108-67-8	
Vinyl acetate	ND	ug/L	1000	45.4	20		09/15/23 18:54	108-05-4	
Vinyl chloride	ND	ug/L	40.0	7.0	20		09/15/23 18:54	75-01-4	
Xylene (Total)	ND	ug/L	200	44.0	20		09/15/23 18:54	1330-20-7	
Surrogates		J							
Dibromofluoromethane (S)	108	%.	82-128		20		09/15/23 18:54	1868-53-7	
4-Bromofluorobenzene (S)	105	%.	79-124		20		09/15/23 18:54	460-00-4	
Toluene-d8 (S)	97	%.	73-122		20		09/15/23 18:54	2037-26-5	

Project: GE Indy
Pace Project No.: 5035343

Date: 09/19/2023 04:25 PM

Pace Project No.: 50353438									
Sample: MW-417S-090723	Lab ID:	50353438017	Collected	l: 09/07/23	14:50	Received: 09	/08/23 11:29 N	/latrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Indiana	Analytical	Method: EPA 5	5030/8260						
		llytical Services		is					
Acatona		•	·		4		00/45/00 00:0	0 67 64 4	
Acetone	ND	ug/L	100	6.4	1		09/15/23 08:30		
Acrolein	ND	ug/L	50.0	13.7	1		09/15/23 08:30		
Acrylonitrile	ND	ug/L	100	1.8	1		09/15/23 08:30		
Benzene	ND	ug/L	5.0	0.44	1		09/15/23 08:30		
Bromobenzene	ND	ug/L	5.0	0.38	1		09/15/23 08:30		
Bromochloromethane	ND	ug/L	5.0	0.37	1		09/15/23 08:30		
Bromodichloromethane	ND	ug/L	5.0	0.29	1		09/15/23 08:30		
Bromoform	ND	ug/L	5.0	0.32	1		09/15/23 08:30		
Bromomethane	ND	ug/L	5.0	1.8	1		09/15/23 08:30		
2-Butanone (MEK)	ND	ug/L	25.0	3.6	1		09/15/23 08:30		
n-Butylbenzene	ND	ug/L	5.0	0.39	1		09/15/23 08:30		
sec-Butylbenzene	ND	ug/L	5.0	0.35	1		09/15/23 08:30	0 135-98-8	
tert-Butylbenzene	ND	ug/L	5.0	0.36	1		09/15/23 08:30		
Carbon disulfide	ND	ug/L	10.0	0.40	1		09/15/23 08:30	75-15-0	L2
Carbon tetrachloride	ND	ug/L	5.0	1.6	1		09/15/23 08:30	0 56-23-5	
Chlorobenzene	ND	ug/L	5.0	0.32	1		09/15/23 08:30	0 108-90-7	
Chloroethane	192	ug/L	5.0	0.87	1		09/15/23 08:30	75-00-3	
Chloroform	ND	ug/L	5.0	2.6	1		09/15/23 08:30	0 67-66-3	
Chloromethane	ND	ug/L	5.0	0.42	1		09/15/23 08:30	74-87-3	
2-Chlorotoluene	ND	ug/L	5.0	0.34	1		09/15/23 08:30	0 95-49-8	
4-Chlorotoluene	ND	ug/L	5.0	0.38	1		09/15/23 08:30	0 106-43-4	
Dibromochloromethane	ND	ug/L	5.0	0.27	1		09/15/23 08:30	0 124-48-1	
1,2-Dibromoethane (EDB)	ND	ug/L	5.0	0.33	1		09/15/23 08:30	0 106-93-4	
Dibromomethane	ND	ug/L	5.0	0.42	1		09/15/23 08:30	74-95-3	
1,2-Dichlorobenzene	ND	ug/L	5.0	0.36	1		09/15/23 08:30	0 95-50-1	
1,3-Dichlorobenzene	ND	ug/L	5.0	0.36	1		09/15/23 08:30	541-73-1	
1,4-Dichlorobenzene	ND	ug/L	5.0	0.35	1		09/15/23 08:30		
trans-1,4-Dichloro-2-butene	ND	ug/L	100	0.41	1		09/15/23 08:30		
Dichlorodifluoromethane	ND	ug/L	5.0	0.37	1		09/15/23 08:30		
1.1-Dichloroethane	ND	ug/L	5.0	0.31	1		09/15/23 08:30		
1.2-Dichloroethane	5.8	ug/L	5.0	0.29	1		09/15/23 08:30		
1.1-Dichloroethene	ND	ug/L	5.0	0.27	1		09/15/23 08:30		
cis-1,2-Dichloroethene	19.8	ug/L	5.0	0.34	1		09/15/23 08:30		
trans-1,2-Dichloroethene	8.2	ug/L	5.0	0.37	1		09/15/23 08:30		
1,2-Dichloropropane	ND	ug/L	5.0	0.40	1		09/15/23 08:30		
1,3-Dichloropropane	ND	ug/L	5.0	0.40	1		09/15/23 08:30		
2,2-Dichloropropane	ND ND	-	5.0	0.23	1		09/15/23 08:30		
1,1-Dichloropropene	ND ND	ug/L ug/L	5.0 5.0	0.33	1		09/15/23 08:30		
	ND ND	-	5.0 5.0	0.37	1		09/15/23 08:30		
cis-1,3-Dichloropropene		ug/L							
trans-1,3-Dichloropropene	ND ND	ug/L	5.0	0.29	1		09/15/23 08:30		
Ethylbenzene	ND	ug/L	5.0	0.86	1		09/15/23 08:30		
Ethyl methacrylate	ND	ug/L	100	0.38	1		09/15/23 08:30		
Hexachloro-1,3-butadiene	ND	ug/L	5.0	0.50	1		09/15/23 08:30		
n-Hexane	ND	ug/L	5.0	0.39	1		09/15/23 08:30		
2-Hexanone	ND	ug/L	25.0	2.0	1		09/15/23 08:30	591-78-6	

Project: GE Indy
Pace Project No.: 50353438

Date: 09/19/2023 04:25 PM

Sample: MW-417S-090723	Lab ID:	50353438017	Collecte	d: 09/07/23	3 14:50	Received: 09	0/08/23 11:29 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Anal	ytical Services	- Indianapo	lis					
lodomethane	ND	ug/L	10.0	1.9	1		09/15/23 08:30	74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	5.0	0.34	1		09/15/23 08:30	98-82-8	
p-Isopropyltoluene	ND	ug/L	5.0	0.40	1		09/15/23 08:30	99-87-6	
Methylene Chloride	ND	ug/L	5.0	3.7	1		09/15/23 08:30	75-09-2	
1-Methylnaphthalene	ND	ug/L	10.0	1.6	1		09/15/23 08:30	90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	2.0	1		09/15/23 08:30	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	2.0	1		09/15/23 08:30	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	4.0	0.31	1		09/15/23 08:30	1634-04-4	
Naphthalene	ND	ug/L	1.2	0.43	1		09/15/23 08:30	91-20-3	
n-Propylbenzene	ND	ug/L	5.0	0.34	1		09/15/23 08:30	103-65-1	
Styrene	ND	ug/L	5.0	0.36	1		09/15/23 08:30	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.36	1		09/15/23 08:30	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.33	1		09/15/23 08:30	79-34-5	
Tetrachloroethene	ND	ug/L	5.0	0.35	1		09/15/23 08:30	127-18-4	
Toluene	ND	ug/L	5.0	0.38	1		09/15/23 08:30	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	0.45	1		09/15/23 08:30	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	5.0	0.43	1		09/15/23 08:30	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	5.0	0.30	1		09/15/23 08:30	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	5.0	0.36	1		09/15/23 08:30	79-00-5	
Trichloroethene	ND	ug/L	5.0	0.31	1		09/15/23 08:30	79-01-6	
Trichlorofluoromethane	ND	ug/L	5.0	0.34	1		09/15/23 08:30	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	5.0	0.40	1		09/15/23 08:30	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/L	5.0	0.37	1		09/15/23 08:30	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.35	1		09/15/23 08:30		
Vinyl acetate	ND	ug/L	50.0	2.3	1		09/15/23 08:30		
Vinyl chloride	5.8	ug/L	2.0	0.35	1		09/15/23 08:30		
Xylene (Total)	ND	ug/L	10.0	2.2	1		09/15/23 08:30		
Surrogates		- J		_					
Dibromofluoromethane (S)	108	%.	82-128		1		09/15/23 08:30	1868-53-7	
4-Bromofluorobenzene (S)	103	%.	79-124		1		09/15/23 08:30	460-00-4	
Toluene-d8 (S)	97	%.	73-122		1		09/15/23 08:30	2037-26-5	

Project: GE Indy
Pace Project No.: 50353436

Date: 09/19/2023 04:25 PM

Sample: MW-417D-090723	Lab ID:	50353438018	Collected	: 09/07/23	14:55	Received: 09	9/08/23 11:29 N	latrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Ana	lytical Services	- Indianapoli	is					
Acetone	ND	ug/L	100	6.4	1		09/15/23 09:32	2 67-64-1	
Acrolein	ND	ug/L	50.0	13.7	1		09/15/23 09:32	2 107-02-8	
Acrylonitrile	ND	ug/L	100	1.8	1		09/15/23 09:32		
Benzene	9.1	ug/L	5.0	0.44	1		09/15/23 09:32	2 71-43-2	
Bromobenzene	ND	ug/L	5.0	0.38	1		09/15/23 09:32		
Bromochloromethane	ND	ug/L	5.0	0.37	1		09/15/23 09:32		
Bromodichloromethane	ND	ug/L	5.0	0.29	1		09/15/23 09:32		
Bromoform	ND	ug/L	5.0	0.32	1		09/15/23 09:32		
Bromomethane	ND	ug/L	5.0	1.8	1		09/15/23 09:32		
2-Butanone (MEK)	ND	ug/L	25.0	3.6	1		09/15/23 09:32		
n-Butylbenzene	ND ND	ug/L ug/L	5.0	0.39	1		09/15/23 09:32		
sec-Butylbenzene	ND ND	ug/L	5.0	0.35	1		09/15/23 09:32		
tert-Butylbenzene	ND ND	ug/L ug/L	5.0	0.36	1		09/15/23 09:32		
Carbon disulfide	ND ND	-	10.0	0.30	1		09/15/23 09:32		L2
		ug/L		1.6			09/15/23 09:32		LZ
Carbon tetrachloride	ND	ug/L	5.0		1				
Chlorobenzene	ND	ug/L	5.0	0.32	1		09/15/23 09:32		
Chloroethane	582	ug/L	50.0	8.7	10		09/15/23 10:02		
Chloroform	ND	ug/L	5.0	2.6	1		09/15/23 09:32		
Chloromethane	ND	ug/L	5.0	0.42	1		09/15/23 09:32		
2-Chlorotoluene	ND	ug/L	5.0	0.34	1		09/15/23 09:32		
4-Chlorotoluene	ND	ug/L	5.0	0.38	1		09/15/23 09:32		
Dibromochloromethane	ND	ug/L	5.0	0.27	1		09/15/23 09:32		
1,2-Dibromoethane (EDB)	ND	ug/L	5.0	0.33	1		09/15/23 09:32		
Dibromomethane	ND	ug/L	5.0	0.42	1		09/15/23 09:32		
1,2-Dichlorobenzene	ND	ug/L	5.0	0.36	1		09/15/23 09:32	95-50-1	
1,3-Dichlorobenzene	ND	ug/L	5.0	0.36	1		09/15/23 09:32	2 541-73-1	
1,4-Dichlorobenzene	ND	ug/L	5.0	0.35	1		09/15/23 09:32	2 106-46-7	
trans-1,4-Dichloro-2-butene	ND	ug/L	100	0.41	1		09/15/23 09:32	2 110-57-6	
Dichlorodifluoromethane	ND	ug/L	5.0	0.37	1		09/15/23 09:32	2 75-71-8	
1,1-Dichloroethane	35.9	ug/L	5.0	0.31	1		09/15/23 09:32	75-34-3	
1,2-Dichloroethane	ND	ug/L	5.0	0.29	1		09/15/23 09:32	2 107-06-2	
1,1-Dichloroethene	ND	ug/L	5.0	0.27	1		09/15/23 09:32	2 75-35-4	
cis-1,2-Dichloroethene	22.0	ug/L	5.0	0.34	1		09/15/23 09:32	2 156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	5.0	0.37	1		09/15/23 09:32	156-60-5	
1,2-Dichloropropane	ND	ug/L	5.0	0.40	1		09/15/23 09:32		
1,3-Dichloropropane	ND	ug/L	5.0	0.29	1		09/15/23 09:32	142-28-9	
2,2-Dichloropropane	ND	ug/L	5.0	0.33	1		09/15/23 09:32		
1,1-Dichloropropene	ND	ug/L	5.0	0.37	1		09/15/23 09:32		
cis-1,3-Dichloropropene	ND	ug/L	5.0	0.37	1		09/15/23 09:32		
trans-1,3-Dichloropropene	ND	ug/L	5.0	0.29	1		09/15/23 09:32		
Ethylbenzene	ND	ug/L	5.0	0.86	1		09/15/23 09:32		
Ethyl methacrylate	ND ND	ug/L	100	0.38	1		09/15/23 09:32		
Hexachloro-1,3-butadiene	ND ND	ug/L	5.0	0.50	1		09/15/23 09:32		
n-Hexane	ND ND	ug/L	5.0	0.39	1		09/15/23 09:32		
11-Hexane 2-Hexanone	ND ND	ug/L ug/L	25.0	2.0	1		09/15/23 09:32		

Project: GE Indy
Pace Project No.: 50353438

Date: 09/19/2023 04:25 PM

Sample: MW-417D-090723	Lab ID:	50353438018	Collecte	d: 09/07/23	3 14:55	Received: 09	9/08/23 11:29 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Ana	lytical Services	- Indianapo	lis					
lodomethane	ND	ug/L	10.0	1.9	1		09/15/23 09:32	74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	5.0	0.34	1		09/15/23 09:32	98-82-8	
p-lsopropyltoluene	ND	ug/L	5.0	0.40	1		09/15/23 09:32	99-87-6	
Methylene Chloride	ND	ug/L	5.0	3.7	1		09/15/23 09:32	75-09-2	
1-Methylnaphthalene	ND	ug/L	10.0	1.6	1		09/15/23 09:32	90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	2.0	1		09/15/23 09:32	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	2.0	1		09/15/23 09:32	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	4.0	0.31	1		09/15/23 09:32	1634-04-4	
Naphthalene	ND	ug/L	1.2	0.43	1		09/15/23 09:32	91-20-3	
n-Propylbenzene	ND	ug/L	5.0	0.34	1		09/15/23 09:32	103-65-1	
Styrene	ND	ug/L	5.0	0.36	1		09/15/23 09:32	100-42-5	
1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.36	1		09/15/23 09:32	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.33	1		09/15/23 09:32	79-34-5	
Tetrachloroethene	ND	ug/L	5.0	0.35	1		09/15/23 09:32	127-18-4	
Toluene	ND	ug/L	5.0	0.38	1		09/15/23 09:32	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	0.45	1		09/15/23 09:32	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	5.0	0.43	1		09/15/23 09:32	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	5.0	0.30	1		09/15/23 09:32	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	5.0	0.36	1		09/15/23 09:32	79-00-5	
Trichloroethene	ND	ug/L	5.0	0.31	1		09/15/23 09:32	79-01-6	
Trichlorofluoromethane	ND	ug/L	5.0	0.34	1		09/15/23 09:32		
1,2,3-Trichloropropane	ND	ug/L	5.0	0.40	1		09/15/23 09:32		
1,2,4-Trimethylbenzene	ND	ug/L	5.0	0.37	1		09/15/23 09:32	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.35	1		09/15/23 09:32	108-67-8	
Vinyl acetate	ND	ug/L	50.0	2.3	1		09/15/23 09:32		
Vinyl chloride	15.1	ug/L	2.0	0.35	1		09/15/23 09:32		
Xylene (Total)	ND	ug/L	10.0	2.2	1		09/15/23 09:32		
Surrogates		- J							
Dibromofluoromethane (S)	106	%.	82-128		1		09/15/23 09:32	1868-53-7	
4-Bromofluorobenzene (S)	104	%.	79-124		1		09/15/23 09:32	460-00-4	
Toluene-d8 (S)	97	%.	73-122		1		09/15/23 09:32	2037-26-5	

Project: GE Indy
Pace Project No.: 5035343

Date: 09/19/2023 04:25 PM

Sample: MW-401-090723	Lab ID:	50353438019	Collected	: 09/07/23	15:05	Received: 09	9/08/23 11:29 M	latrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	•	lytical Services		is					
Acetone	ND	ug/L	5000	320	50		09/15/23 10:33	8 67-64-1	
Acrolein	ND	ug/L	2500	685	50		09/15/23 10:33		
Acrylonitrile	ND	ug/L	5000	91.5	50		09/15/23 10:33		
Benzene	ND	ug/L	250	22.2	50		09/15/23 10:33		
Bromobenzene	ND	ug/L	250	18.8	50		09/15/23 10:33		
Bromochloromethane	ND	ug/L	250	18.5	50		09/15/23 10:33		
Bromodichloromethane	ND ND	ug/L	250	14.7	50		09/15/23 10:33		
Bromoform	ND ND	ug/L ug/L	250	16.0	50		09/15/23 10:33		
Bromomethane	ND ND	-	250	87.5	50		09/15/23 10:33		
	ND ND	ug/L	1250	182	50		09/15/23 10:33		
2-Butanone (MEK)		ug/L							
n-Butylbenzene	ND	ug/L	250	19.5	50		09/15/23 10:33		
sec-Butylbenzene	ND	ug/L	250	17.4	50		09/15/23 10:33		
tert-Butylbenzene	ND	ug/L	250	18.0	50		09/15/23 10:33		
Carbon disulfide	ND	ug/L	500	19.8	50		09/15/23 10:33		L2
Carbon tetrachloride	ND	ug/L	250	79.5	50		09/15/23 10:33		
Chlorobenzene	ND	ug/L	250	16.2	50		09/15/23 10:33		
Chloroethane	509	ug/L	250	43.4	50		09/15/23 10:33		
Chloroform	ND	ug/L	250	130	50		09/15/23 10:33		
Chloromethane	ND	ug/L	250	21.2	50		09/15/23 10:33		
2-Chlorotoluene	ND	ug/L	250	17.1	50		09/15/23 10:33		
4-Chlorotoluene	ND	ug/L	250	19.0	50		09/15/23 10:33		
Dibromochloromethane	ND	ug/L	250	13.4	50		09/15/23 10:33		
1,2-Dibromoethane (EDB)	ND	ug/L	250	16.6	50		09/15/23 10:33		
Dibromomethane	ND	ug/L	250	20.8	50		09/15/23 10:33	3 74-95-3	
1,2-Dichlorobenzene	ND	ug/L	250	17.8	50		09/15/23 10:33	95-50-1	
1,3-Dichlorobenzene	ND	ug/L	250	18.2	50		09/15/23 10:33	3 541-73-1	
1,4-Dichlorobenzene	ND	ug/L	250	17.6	50		09/15/23 10:33	3 106-46-7	
trans-1,4-Dichloro-2-butene	ND	ug/L	5000	20.4	50		09/15/23 10:33	3 110-57-6	
Dichlorodifluoromethane	ND	ug/L	250	18.6	50		09/15/23 10:33	3 75-71-8	
1,1-Dichloroethane	ND	ug/L	250	15.6	50		09/15/23 10:33	3 75-34-3	
1,2-Dichloroethane	ND	ug/L	250	14.3	50		09/15/23 10:33	3 107-06-2	
1,1-Dichloroethene	ND	ug/L	250	13.6	50		09/15/23 10:33	3 75-35-4	
cis-1,2-Dichloroethene	1820	ug/L	250	17.0	50		09/15/23 10:33	156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	250	18.7	50		09/15/23 10:33	3 156-60-5	
1,2-Dichloropropane	ND	ug/L	250	20.0	50		09/15/23 10:33	8 78-87-5	
1,3-Dichloropropane	ND	ug/L	250	14.6	50		09/15/23 10:33	3 142-28-9	
2,2-Dichloropropane	ND	ug/L	250	16.5	50		09/15/23 10:33	3 594-20-7	
1,1-Dichloropropene	ND	ug/L	250	18.6	50		09/15/23 10:33	563-58-6	
cis-1,3-Dichloropropene	ND	ug/L	250	18.7	50		09/15/23 10:33	3 10061-01-5	
trans-1,3-Dichloropropene	ND	ug/L	250	14.4	50		09/15/23 10:33		
Ethylbenzene	ND	ug/L	250	43.0	50		09/15/23 10:33		
Ethyl methacrylate	ND	ug/L	5000	18.8	50		09/15/23 10:33		
Hexachloro-1,3-butadiene	ND	ug/L	250	24.8	50		09/15/23 10:33		
n-Hexane	ND	ug/L	250	19.6	50		09/15/23 10:33		
2-Hexanone	ND	ug/L	1250	102	50		09/15/23 10:33		

Project: GE Indy
Pace Project No.: 50353438

Date: 09/19/2023 04:25 PM

Sample: MW-401-090723	Lab ID:	50353438019	Collected	d: 09/07/23	3 15:05	Received: 09	9/08/23 11:29 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF ———	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Ana	lytical Services	- Indianapol	is					
Iodomethane	ND	ug/L	500	95.5	50		09/15/23 10:33	74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	250	17.1	50		09/15/23 10:33	98-82-8	
p-Isopropyltoluene	ND	ug/L	250	19.8	50		09/15/23 10:33	99-87-6	
Methylene Chloride	255	ug/L	250	185	50		09/15/23 10:33	75-09-2	
1-Methylnaphthalene	ND	ug/L	500	80.0	50		09/15/23 10:33	90-12-0	
2-Methylnaphthalene	ND	ug/L	500	100	50		09/15/23 10:33	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	1250	98.5	50		09/15/23 10:33	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	200	15.4	50		09/15/23 10:33	1634-04-4	
Naphthalene	ND	ug/L	60.0	21.5	50		09/15/23 10:33	91-20-3	
n-Propylbenzene	ND	ug/L	250	17.2	50		09/15/23 10:33	103-65-1	
Styrene	ND	ug/L	250	17.9	50		09/15/23 10:33	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	250	18.0	50		09/15/23 10:33	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	250	16.7	50		09/15/23 10:33	79-34-5	
Tetrachloroethene	ND	ug/L	250	17.7	50		09/15/23 10:33	127-18-4	
Toluene	ND	ug/L	250	18.8	50		09/15/23 10:33	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	250	22.6	50		09/15/23 10:33	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	250	21.6	50		09/15/23 10:33	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	250	15.1	50		09/15/23 10:33	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	250	18.2	50		09/15/23 10:33	79-00-5	
Trichloroethene	ND	ug/L	250	15.6	50		09/15/23 10:33	79-01-6	
Trichlorofluoromethane	ND	ug/L	250	17.1	50		09/15/23 10:33	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	250	20.0	50		09/15/23 10:33		
1,2,4-Trimethylbenzene	ND	ug/L	250	18.4	50		09/15/23 10:33	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	250	17.4	50		09/15/23 10:33	108-67-8	
Vinyl acetate	ND	ug/L	2500	114	50		09/15/23 10:33		
Vinyl chloride	278	ug/L	100	17.5	50		09/15/23 10:33		
Xylene (Total)	ND	ug/L	500	110	50		09/15/23 10:33	1330-20-7	
Surrogates		Ü							
Dibromofluoromethane (S)	108	%.	82-128		50		09/15/23 10:33	1868-53-7	
4-Bromofluorobenzene (S)	103	%.	79-124		50		09/15/23 10:33	460-00-4	
Toluene-d8 (S)	97	%.	73-122		50		09/15/23 10:33	2037-26-5	

Project: GE Indy
Pace Project No.: 50353438

Date: 09/19/2023 04:25 PM

Sample: MW-406S-090723	Lab ID:	50353438020	Collected:	09/07/23	3 15:20	Received: 0	9/08/23 11:29 I	Matrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Ana	lytical Services	- Indianapolis	3					
Acetone	ND	ug/L	500	43.0	5		09/15/23 15:0	4 67-64-1	L1
Acrolein	ND	ug/L	250	67.0	5		09/15/23 15:0		
Acrylonitrile	ND	ug/L	500	15.1	5		09/15/23 15:0		
Benzene	ND	ug/L	25.0	2.3	5		09/15/23 15:0		
Bromobenzene	ND	ug/L	25.0	2.0	5		09/15/23 15:0	_	
Bromochloromethane	ND	ug/L	25.0	1.6	5		09/15/23 15:0		
Bromodichloromethane	ND	ug/L	25.0	1.4	5		09/15/23 15:0		
Bromoform	ND	ug/L	25.0	1.4	5		09/15/23 15:0		
Bromomethane	ND	ug/L	25.0	2.6	5		09/15/23 15:0		
2-Butanone (MEK)	ND ND	ug/L	125	16.7	5		09/15/23 15:0		
n-Butylbenzene	ND ND	ug/L	25.0	1.9	5		09/15/23 15:0		
sec-Butylbenzene	ND	ug/L	25.0	1.8	5		09/15/23 15:0		
tert-Butylbenzene	ND	ug/L	25.0	1.9	5		09/15/23 15:0		
Carbon disulfide	ND ND	ug/L	50.0	3.1	5		09/15/23 15:0		
Carbon tetrachloride	ND	ug/L	25.0	1.5	5		09/15/23 15:0		
Chlorobenzene	ND ND	ug/L	25.0	1.7	5		09/15/23 15:0		
Chloroethane	479	ug/L	25.0	2.2	5		09/15/23 15:0		2d,CL
Chloroform	ND	ug/L	25.0	13.0	5		09/15/23 15:0		Zu,CL
Chloromethane	ND ND	ug/L	25.0	2.8	5		09/15/23 15:0		
2-Chlorotoluene	ND ND	ug/L	25.0	1.9	5		09/15/23 15:0		
4-Chlorotoluene	ND ND	ug/L	25.0	2.0	5		09/15/23 15:0		
Dibromochloromethane	ND ND	ug/L	25.0	1.5	5		09/15/23 15:0		
1,2-Dibromoethane (EDB)	ND ND	ug/L	25.0	1.4	5		09/15/23 15:0		
Dibromomethane	ND ND	ug/L	25.0	2.3	5		09/15/23 15:0		
1,2-Dichlorobenzene	ND ND	ug/L	25.0	1.7	5		09/15/23 15:0		
1,3-Dichlorobenzene	ND ND	ug/L	25.0	2.0	5		09/15/23 15:0		
1,4-Dichlorobenzene	ND ND	ug/L	25.0	2.0	5		09/15/23 15:0		
trans-1,4-Dichloro-2-butene	ND ND	ug/L	500	2.0	5		09/15/23 15:0		
Dichlorodifluoromethane	ND ND	ug/L	25.0	1.9	5		09/15/23 15:0		
1,1-Dichloroethane	1690	ug/L	1000	73.2	200		09/18/23 12:5		
1,2-Dichloroethane	ND	ug/L	25.0	1.7	5		09/15/23 15:0		
1,1-Dichloroethene	62.1	ug/L	25.0	1.9	5		09/15/23 15:0		
cis-1,2-Dichloroethene	14300	ug/L	1000	96.0	200		09/18/23 12:5		
trans-1,2-Dichloroethene	152	ug/L	25.0	2.4	5		09/15/23 15:0		
1,2-Dichloropropane	ND	ug/L	25.0	1.7	5		09/15/23 15:0		
1,3-Dichloropropane	ND	ug/L	25.0	1.5	5		09/15/23 15:0		
2,2-Dichloropropane	ND ND	ug/L	25.0	1.9	5		09/15/23 15:0		
1,1-Dichloropropene	ND	ug/L	25.0	1.7	5		09/15/23 15:0		
cis-1,3-Dichloropropene	ND	ug/L	25.0	1.6	5			4 10061-01-5	
trans-1,3-Dichloropropene	ND	ug/L	25.0	1.4	5			4 10061-02-6	
Ethylbenzene	ND ND	ug/L	25.0	2.0	5		09/15/23 15:0		
Ethyl methacrylate	ND ND	ug/L ug/L	500	1.6	5		09/15/23 15:0		
Hexachloro-1,3-butadiene	ND ND	ug/L ug/L	25.0	2.4	5 5		09/15/23 15:0		
n-Hexane	ND ND	ug/L ug/L	25.0 25.0	1.8	5 5		09/15/23 15:0		
ιι-ι ιυλαιίσ	שוו	ug/∟	20.0	1.0	J		03/13/23 13.0	T 110-04-0	

Project: GE Indy
Pace Project No.: 50353438

Date: 09/19/2023 04:25 PM

Sample: MW-406S-090723	Lab ID:	50353438020	Collecte	d: 09/07/23	3 15:20	Received: 09	9/08/23 11:29 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF ——	Prepared	Analyzed	CAS No.	Qual
8260 MSV Indiana	Analytical I	Method: EPA 5	030/8260						
	Pace Analy	ytical Services	- Indianapo	lis					
lodomethane	ND	ug/L	50.0	10.2	5		09/15/23 15:04	74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	25.0	1.8	5		09/15/23 15:04	98-82-8	
p-Isopropyltoluene	ND	ug/L	25.0	2.0	5		09/15/23 15:04	99-87-6	
Methylene Chloride	39.0	ug/L	25.0	18.5	5		09/15/23 15:04	75-09-2	
1-Methylnaphthalene	ND	ug/L	50.0	10.5	5		09/15/23 15:04	90-12-0	
2-Methylnaphthalene	ND	ug/L	50.0	10.5	5		09/15/23 15:04	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	125	10.4	5		09/15/23 15:04	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	20.0	3.3	5		09/15/23 15:04	1634-04-4	
Naphthalene	ND	ug/L	6.0	2.8	5		09/15/23 15:04	91-20-3	
n-Propylbenzene	ND	ug/L	25.0	1.8	5		09/15/23 15:04	103-65-1	
Styrene	ND	ug/L	25.0	1.9	5		09/15/23 15:04	100-42-5	
1,1,2-Tetrachloroethane	ND	ug/L	25.0	1.7	5		09/15/23 15:04	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	25.0	1.7	5		09/15/23 15:04	79-34-5	
Tetrachloroethene	ND	ug/L	25.0	1.8	5		09/15/23 15:04	127-18-4	
Toluene	ND	ug/L	25.0	1.9	5		09/15/23 15:04	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	25.0	2.1	5		09/15/23 15:04	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	25.0	2.1	5		09/15/23 15:04		
1,1,1-Trichloroethane	488	ug/L	25.0	1.6	5		09/15/23 15:04	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	25.0	1.7	5		09/15/23 15:04	79-00-5	
Trichloroethene	349	ug/L	25.0	2.0	5		09/15/23 15:04		
Trichlorofluoromethane	ND	ug/L	25.0	1.8	5		09/15/23 15:04	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	25.0	1.7	5		09/15/23 15:04	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/L	25.0	1.8	5		09/15/23 15:04		
1,3,5-Trimethylbenzene	ND	ug/L	25.0	1.9	5		09/15/23 15:04		
Vinyl acetate	ND	ug/L	250	8.7	5		09/15/23 15:04		
Vinyl chloride	253	ug/L	10.0	2.0	5		09/15/23 15:04		2d,CL
Xylene (Total)	ND	ug/L	50.0	7.5	5		09/15/23 15:04		,-,
Surrogates	5	<i>~</i> ⊕ −	55.5	0	•		23, .0,20 .3.01		
Dibromofluoromethane (S)	106	%.	82-128		5		09/15/23 15:04	1868-53-7	
4-Bromofluorobenzene (S)	101	%.	79-124		5		09/15/23 15:04	460-00-4	
Toluene-d8 (S)	99	%.	73-122		5		09/15/23 15:04	2037-26-5	

Project: GE Indy
Pace Project No.: 50353438

Date: 09/19/2023 04:25 PM

Sample: MW-406D-090723	Lab ID:	50353438021	Collected	d: 09/07/23	3 15:25	Received: 09	9/08/23 11:29	Matrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF ——	Prepared	Analyzed	CAS No.	Qual
8260 MSV Indiana	Analytical I	Method: EPA 5	030/8260						
	•	tical Services		lis					
Acetone	ND	ug/L	500	43.0	5		09/15/23 15:3	35 67-64-1	L1
Acrolein	ND	ug/L	250	67.0	5		09/15/23 15:3	35 107-02-8	
Acrylonitrile	ND	ug/L	500	15.1	5		09/15/23 15:3	35 107-13-1	
Benzene	ND	ug/L	25.0	2.3	5		09/15/23 15:3	35 71-43-2	
Bromobenzene	ND	ug/L	25.0	2.0	5		09/15/23 15:3	35 108-86-1	
Bromochloromethane	ND	ug/L	25.0	1.6	5		09/15/23 15:3		
Bromodichloromethane	ND	ug/L	25.0	1.4	5		09/15/23 15:3		
Bromoform	ND	ug/L	25.0	1.4	5		09/15/23 15:3		
Bromomethane	ND	ug/L	25.0	2.6	5		09/15/23 15:3		
2-Butanone (MEK)	ND	ug/L	125	16.7	5		09/15/23 15:3		
n-Butylbenzene	ND	ug/L	25.0	1.9	5		09/15/23 15:3		
sec-Butylbenzene	ND	ug/L	25.0	1.8	5		09/15/23 15:3		
tert-Butylbenzene	ND	ug/L	25.0	1.9	5		09/15/23 15:3		
Carbon disulfide	ND	ug/L	50.0	3.1	5		09/15/23 15:3		
Carbon tetrachloride	ND	ug/L	25.0	1.5	5		09/15/23 15:3		
Chlorobenzene	ND	ug/L	25.0	1.7	5		09/15/23 15:3		
Chloroethane	31 0	-	25.0	2.2	5		09/15/23 15:3		2d,CL
Chloroform	ND	ug/L ug/L	25.0	13.0	5		09/15/23 15:3		Zu,CL
Chloromethane	ND ND	-	25.0	2.8	5		09/15/23 15:3		
		ug/L			5				
2-Chlorotoluene	ND	ug/L	25.0	1.9 2.0	5 5		09/15/23 15:3		
4-Chlorotoluene	ND	ug/L	25.0				09/15/23 15:3		
Dibromochloromethane	ND	ug/L	25.0	1.5	5		09/15/23 15:3		
1,2-Dibromoethane (EDB)	ND	ug/L	25.0	1.4	5		09/15/23 15:3		
Dibromomethane	ND	ug/L	25.0	2.3	5		09/15/23 15:3		
1,2-Dichlorobenzene	ND	ug/L	25.0	1.7	5		09/15/23 15:3		
1,3-Dichlorobenzene	ND	ug/L	25.0	2.0	5		09/15/23 15:3		
1,4-Dichlorobenzene	ND	ug/L	25.0	2.0	5		09/15/23 15:3		
trans-1,4-Dichloro-2-butene	ND	ug/L	500	2.1	5		09/15/23 15:3		
Dichlorodifluoromethane	ND	ug/L	25.0	1.9	5		09/15/23 15:3		
1,1-Dichloroethane	2000	ug/L	1000	73.2	200		09/18/23 13:3		
1,2-Dichloroethane	ND	ug/L	25.0	1.7	5		09/15/23 15:3		
1,1-Dichloroethene	398	ug/L	25.0	1.9	5		09/15/23 15:3		
cis-1,2-Dichloroethene	21800	ug/L	1000	96.0	200		09/18/23 13:3		
trans-1,2-Dichloroethene	134	ug/L	25.0	2.4	5		09/15/23 15:3		
1,2-Dichloropropane	ND	ug/L	25.0	1.7	5		09/15/23 15:3		
1,3-Dichloropropane	ND	ug/L	25.0	1.5	5		09/15/23 15:3	35 142-28-9	
2,2-Dichloropropane	ND	ug/L	25.0	1.9	5		09/15/23 15:3	5 594-20-7	
1,1-Dichloropropene	ND	ug/L	25.0	1.7	5		09/15/23 15:3		
cis-1,3-Dichloropropene	ND	ug/L	25.0	1.6	5		09/15/23 15:3	35 10061-01-5	
trans-1,3-Dichloropropene	ND	ug/L	25.0	1.4	5		09/15/23 15:3	35 10061-02-6	
Ethylbenzene	ND	ug/L	25.0	2.0	5		09/15/23 15:3	35 100-41-4	
Ethyl methacrylate	ND	ug/L	500	1.6	5		09/15/23 15:3	35 97-63-2	
Hexachloro-1,3-butadiene	ND	ug/L	25.0	2.4	5		09/15/23 15:3	85 87-68-3	
n-Hexane	ND	ug/L	25.0	1.8	5		09/15/23 15:3	5 110-54-3	
2-Hexanone	ND	ug/L	125	10.8	5		09/15/23 15:3	5 591-78-6	

Project: GE Indy
Pace Project No.: 50353438

Date: 09/19/2023 04:25 PM

Sample: MW-406D-090723	Lab ID:	50353438021	Collected	d: 09/07/2	3 15:25	Received: 09	9/08/23 11:29 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Ana	lytical Services	- Indianapo	lis					
lodomethane	ND	ug/L	50.0	10.2	5		09/15/23 15:35	74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	25.0	1.8	5		09/15/23 15:35	98-82-8	
p-lsopropyltoluene	ND	ug/L	25.0	2.0	5		09/15/23 15:35	99-87-6	
Methylene Chloride	ND	ug/L	25.0	18.5	5		09/15/23 15:35	75-09-2	
1-Methylnaphthalene	ND	ug/L	50.0	10.5	5		09/15/23 15:35	90-12-0	
2-Methylnaphthalene	ND	ug/L	50.0	10.5	5		09/15/23 15:35	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	125	10.4	5		09/15/23 15:35	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	20.0	3.3	5		09/15/23 15:35	1634-04-4	
Naphthalene	ND	ug/L	6.0	2.8	5		09/15/23 15:35	91-20-3	
n-Propylbenzene	ND	ug/L	25.0	1.8	5		09/15/23 15:35	103-65-1	
Styrene	ND	ug/L	25.0	1.9	5		09/15/23 15:35	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	25.0	1.7	5		09/15/23 15:35	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	25.0	1.7	5		09/15/23 15:35	79-34-5	
Tetrachloroethene	ND	ug/L	25.0	1.8	5		09/15/23 15:35	127-18-4	
Toluene	ND	ug/L	25.0	1.9	5		09/15/23 15:35	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	25.0	2.1	5		09/15/23 15:35	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	25.0	2.1	5		09/15/23 15:35	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	25.0	1.6	5		09/15/23 15:35	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	25.0	1.7	5		09/15/23 15:35	79-00-5	
Trichloroethene	191	ug/L	25.0	2.0	5		09/15/23 15:35	79-01-6	
Trichlorofluoromethane	ND	ug/L	25.0	1.8	5		09/15/23 15:35	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	25.0	1.7	5		09/15/23 15:35	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/L	25.0	1.8	5		09/15/23 15:35	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	25.0	1.9	5		09/15/23 15:35	108-67-8	
Vinyl acetate	ND	ug/L	250	8.7	5		09/15/23 15:35	108-05-4	
Vinyl chloride	932	ug/L	400	79.0	200		09/18/23 13:30	75-01-4	
Xylene (Total)	ND	ug/L	50.0	7.5	5		09/15/23 15:35	1330-20-7	
Surrogates		- 3			-				
Dibromofluoromethane (S)	106	%.	82-128		5		09/15/23 15:35	1868-53-7	
4-Bromofluorobenzene (S)	102	%.	79-124		5		09/15/23 15:35	460-00-4	
Toluene-d8 (S)	99	%.	73-122		5		09/15/23 15:35	2037-26-5	

Project: GE Indy
Pace Project No.: 50353438

Date: 09/19/2023 04:25 PM

Sample: MW-424S-090723	Lab ID:	50353438022	Collected	d: 09/07/23	3 15:35	Received: 09	9/08/23 11:29	Matrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	•	lytical Services		lis					
Acetone	ND	ug/L	100	8.6	1		09/16/23 02:1	8 67-64-1	
Acrolein	ND	ug/L	50.0	13.4	1		09/16/23 02:1		
Acrylonitrile	ND	ug/L	100	3.0	1		09/16/23 02:1		
Benzene	ND	ug/L	5.0	0.46	1		09/16/23 02:1		
Bromobenzene	ND	ug/L	5.0	0.41	1		09/16/23 02:1		
Bromochloromethane	ND	ug/L	5.0	0.33	1		09/16/23 02:1		
Bromodichloromethane	ND	ug/L	5.0	0.29	1		09/16/23 02:1		
Bromoform	ND	ug/L	5.0	0.29	1		09/16/23 02:1		
Bromomethane	ND	ug/L	5.0	0.51	1		09/16/23 02:1		
2-Butanone (MEK)	ND ND	ug/L ug/L	25.0	3.3	1		09/16/23 02:1		
n-Butylbenzene	ND ND	ug/L	5.0	0.39	1		09/16/23 02:1		
sec-Butylbenzene	ND ND	ug/L ug/L	5.0	0.36	1		09/16/23 02:1		
ert-Butylbenzene	ND ND	ug/L	5.0	0.38	1		09/16/23 02:1		
Carbon disulfide	ND ND	ug/L	10.0	0.62	1		09/16/23 02:1		
Carbon tetrachloride	ND ND	ug/L ug/L	5.0	0.02	1		09/16/23 02:1		
Chlorobenzene	ND ND	_	5.0	0.29	1		09/16/23 02:1		
Chloroethane	723	ug/L	50.0	4.4	10		09/16/23 02:1		
Chloroform	ND	ug/L	5.0	2.6	10		09/16/23 20:4		
		ug/L			1				
Chloromethane	ND	ug/L	5.0	0.56	1		09/16/23 02:1		
2-Chlorotoluene	ND	ug/L	5.0	0.37			09/16/23 02:1		
4-Chlorotoluene	ND	ug/L	5.0	0.40	1		09/16/23 02:1		
Dibromochloromethane	ND	ug/L	5.0	0.31	1 1		09/16/23 02:1		
1,2-Dibromoethane (EDB)	ND	ug/L	5.0	0.29			09/16/23 02:1		
Dibromomethane	ND	ug/L	5.0	0.46	1		09/16/23 02:1		
1,2-Dichlorobenzene	ND	ug/L	5.0	0.34	1		09/16/23 02:1		
1,3-Dichlorobenzene	ND	ug/L	5.0	0.40	1		09/16/23 02:1		
1,4-Dichlorobenzene	ND	ug/L	5.0	0.39	1		09/16/23 02:1		
rans-1,4-Dichloro-2-butene	ND	ug/L	100	0.42	1		09/16/23 02:1		
Dichlorodifluoromethane	ND	ug/L	5.0	0.38	1		09/16/23 02:1		
1,1-Dichloroethane	45.0	ug/L	5.0	0.37	1		09/16/23 02:1		
1,2-Dichloroethane	ND	ug/L	5.0	0.34	1		09/16/23 02:1		
1,1-Dichloroethene	ND	ug/L	5.0	0.37	1		09/16/23 02:1		
cis-1,2-Dichloroethene	88.3	ug/L	5.0	0.48	1		09/16/23 02:1		
rans-1,2-Dichloroethene	19.4	ug/L	5.0	0.48	1		09/16/23 02:1		
1,2-Dichloropropane	ND	ug/L	5.0	0.33	1		09/16/23 02:1		
1,3-Dichloropropane	ND	ug/L	5.0	0.30	1		09/16/23 02:1		
2,2-Dichloropropane	ND	ug/L	5.0	0.37	1		09/16/23 02:1		
I,1-Dichloropropene	ND	ug/L	5.0	0.34	1		09/16/23 02:1		
cis-1,3-Dichloropropene	ND	ug/L	5.0	0.31	1			8 10061-01-5	
rans-1,3-Dichloropropene	ND	ug/L	5.0	0.28	1			8 10061-02-6	
Ethylbenzene	ND	ug/L	5.0	0.40	1		09/16/23 02:1		
Ethyl methacrylate	ND	ug/L	100	0.32	1		09/16/23 02:1		
Hexachloro-1,3-butadiene	ND	ug/L	5.0	0.48	1		09/16/23 02:1		
n-Hexane	ND	ug/L	5.0	0.36	1		09/16/23 02:1		
2-Hexanone	ND	ug/L	25.0	2.2	1		09/16/23 02:1	8 591-78-6	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: GE Indy
Pace Project No.: 50353438

Date: 09/19/2023 04:25 PM

Sample: MW-424S-090723	Lab ID:	50353438022	Collecte	d: 09/07/23	3 15:35	Received: 09	9/08/23 11:29 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Anal	ytical Services	- Indianapo	lis					
lodomethane	ND	ug/L	10.0	2.0	1		09/16/23 02:18	74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	5.0	0.36	1		09/16/23 02:18	98-82-8	
p-Isopropyltoluene	ND	ug/L	5.0	0.41	1		09/16/23 02:18	99-87-6	
Methylene Chloride	ND	ug/L	5.0	3.7	1		09/16/23 02:18	75-09-2	
1-Methylnaphthalene	ND	ug/L	10.0	2.1	1		09/16/23 02:18	90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	2.1	1		09/16/23 02:18	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	2.1	1		09/16/23 02:18	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	4.0	0.66	1		09/16/23 02:18	1634-04-4	
Naphthalene	ND	ug/L	1.2	0.57	1		09/16/23 02:18		
n-Propylbenzene	ND	ug/L	5.0	0.37	1		09/16/23 02:18	103-65-1	
Styrene	ND	ug/L	5.0	0.39	1		09/16/23 02:18	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.34	1		09/16/23 02:18	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.35	1		09/16/23 02:18	79-34-5	
Tetrachloroethene	ND	ug/L	5.0	0.36	1		09/16/23 02:18	127-18-4	
Toluene	ND	ug/L	5.0	0.38	1		09/16/23 02:18	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	0.42	1		09/16/23 02:18	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	5.0	0.42	1		09/16/23 02:18	120-82-1	
1,1,1-Trichloroethane	15.5	ug/L	5.0	0.31	1		09/16/23 02:18	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	5.0	0.33	1		09/16/23 02:18	79-00-5	
Trichloroethene	11.1	ug/L	5.0	0.41	1		09/16/23 02:18	79-01-6	
Trichlorofluoromethane	ND	ug/L	5.0	0.36	1		09/16/23 02:18		
1,2,3-Trichloropropane	ND	ug/L	5.0	0.33	1		09/16/23 02:18	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/L	5.0	0.37	1		09/16/23 02:18		
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.38	1		09/16/23 02:18	108-67-8	
Vinyl acetate	ND	ug/L	50.0	1.7	1		09/16/23 02:18		
Vinyl chloride	18.5	ug/L	2.0	0.40	1		09/18/23 20:10		
Xylene (Total)	ND	ug/L	10.0	1.5	1		09/16/23 02:18		
Surrogates		3 - –			•		:		
Dibromofluoromethane (S)	108	%.	82-128		1		09/16/23 02:18	1868-53-7	
4-Bromofluorobenzene (S)	103	%.	79-124		1		09/16/23 02:18	460-00-4	
Toluene-d8 (S)	99	%.	73-122		1		09/16/23 02:18	2037-26-5	

Project: GE Indy
Pace Project No.: 50353436

Date: 09/19/2023 04:25 PM

Sample: MW-424D-090723	Lab ID:	50353438023	Collecte	d: 09/07/23	15:40	Received: 09	9/08/23 11:29 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
						<u> </u>		-	
8260 MSV Indiana	-	Method: EPA 5							
	Pace Ana	llytical Services	- Indianapo	IIS					
Acetone	ND	ug/L	100	8.6	1		09/15/23 16:05	67-64-1	L1
Acrolein	ND	ug/L	50.0	13.4	1		09/15/23 16:05	107-02-8	
Acrylonitrile	ND	ug/L	100	3.0	1		09/15/23 16:05	107-13-1	
Benzene	ND	ug/L	5.0	0.46	1		09/15/23 16:05	71-43-2	
Bromobenzene	ND	ug/L	5.0	0.41	1		09/15/23 16:05	108-86-1	
Bromochloromethane	ND	ug/L	5.0	0.33	1		09/15/23 16:05	74-97-5	
Bromodichloromethane	ND	ug/L	5.0	0.29	1		09/15/23 16:05	75-27-4	
Bromoform	ND	ug/L	5.0	0.29	1		09/15/23 16:05	75-25-2	
Bromomethane	ND	ug/L	5.0	0.51	1		09/15/23 16:05	74-83-9	
2-Butanone (MEK)	ND	ug/L	25.0	3.3	1		09/15/23 16:05	78-93-3	
n-Butylbenzene	ND	ug/L	5.0	0.39	1		09/15/23 16:05	104-51-8	
sec-Butylbenzene	ND	ug/L	5.0	0.36	1		09/15/23 16:05	135-98-8	
tert-Butylbenzene	ND	ug/L	5.0	0.38	1		09/15/23 16:05	98-06-6	
Carbon disulfide	ND	ug/L	10.0	0.62	1		09/15/23 16:05	75-15-0	
Carbon tetrachloride	ND	ug/L	5.0	0.29	1		09/15/23 16:05	56-23-5	
Chlorobenzene	ND	ug/L	5.0	0.35	1		09/15/23 16:05	108-90-7	
Chloroethane	256	ug/L	5.0	0.44	1		09/18/23 14:01	75-00-3	
Chloroform	ND	ug/L	5.0	2.6	1		09/15/23 16:05	67-66-3	
Chloromethane	ND	ug/L	5.0	0.56	1		09/15/23 16:05	74-87-3	
2-Chlorotoluene	ND	ug/L	5.0	0.37	1		09/15/23 16:05	95-49-8	
4-Chlorotoluene	ND	ug/L	5.0	0.40	1		09/15/23 16:05	106-43-4	
Dibromochloromethane	ND	ug/L	5.0	0.31	1		09/15/23 16:05		
1,2-Dibromoethane (EDB)	ND	ug/L	5.0	0.29	1		09/15/23 16:05		
Dibromomethane	ND	ug/L	5.0	0.46	1		09/15/23 16:05		
1,2-Dichlorobenzene	ND	ug/L	5.0	0.34	1		09/15/23 16:05		
1,3-Dichlorobenzene	ND	ug/L	5.0	0.40	1		09/15/23 16:05		
1,4-Dichlorobenzene	ND	ug/L	5.0	0.39	1		09/15/23 16:05		
trans-1,4-Dichloro-2-butene	ND	ug/L	100	0.42	1		09/15/23 16:05		
Dichlorodifluoromethane	ND	ug/L	5.0	0.38	1		09/15/23 16:05	75-71-8	
1,1-Dichloroethane	6.1	ug/L	5.0	0.37	1		09/15/23 16:05		
1,2-Dichloroethane	ND	ug/L	5.0	0.34	1		09/15/23 16:05		
1,1-Dichloroethene	ND	ug/L	5.0	0.37	1		09/15/23 16:05	75-35-4	
cis-1,2-Dichloroethene	79.8	ug/L	5.0	0.48	1		09/15/23 16:05		
trans-1,2-Dichloroethene	13.5	ug/L	5.0	0.48	1		09/15/23 16:05		
1,2-Dichloropropane	ND	ug/L	5.0	0.33	1		09/15/23 16:05		
1,3-Dichloropropane	ND	ug/L	5.0	0.30	1		09/15/23 16:05		
2,2-Dichloropropane	ND	ug/L	5.0	0.37	1		09/15/23 16:05		
1,1-Dichloropropene	ND	ug/L	5.0	0.34	1		09/15/23 16:05		
cis-1,3-Dichloropropene	ND	ug/L	5.0	0.31	1		09/15/23 16:05		
trans-1,3-Dichloropropene	ND	ug/L	5.0	0.28	1		09/15/23 16:05		
Ethylbenzene	ND ND	ug/L	5.0	0.40	1		09/15/23 16:05		
Ethyl methacrylate	ND ND	ug/L	100	0.40	1		09/15/23 16:05		
Hexachloro-1,3-butadiene	ND ND	ug/L ug/L	5.0	0.32	1		09/15/23 16:05		
n-Hexane	8.9	ug/L ug/L	5.0	0.46	1		09/15/23 16:05		

Project: GE Indy
Pace Project No.: 50353438

Date: 09/19/2023 04:25 PM

Sample: MW-424D-090723	Lab ID:	50353438023	Collecte	d: 09/07/23	3 15:40	Received: 09	0/08/23 11:29 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	5030/8260						
	Pace Anal	ytical Services	- Indianapo	lis					
lodomethane	ND	ug/L	10.0	2.0	1		09/15/23 16:05	74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	5.0	0.36	1		09/15/23 16:05	98-82-8	
p-Isopropyltoluene	ND	ug/L	5.0	0.41	1		09/15/23 16:05	99-87-6	
Methylene Chloride	ND	ug/L	5.0	3.7	1		09/15/23 16:05	75-09-2	
1-Methylnaphthalene	ND	ug/L	10.0	2.1	1		09/15/23 16:05	90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	2.1	1		09/15/23 16:05	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	2.1	1		09/15/23 16:05	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	4.0	0.66	1		09/15/23 16:05	1634-04-4	
Naphthalene	ND	ug/L	1.2	0.57	1		09/15/23 16:05	91-20-3	
n-Propylbenzene	ND	ug/L	5.0	0.37	1		09/15/23 16:05	103-65-1	
Styrene	ND	ug/L	5.0	0.39	1		09/15/23 16:05	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.34	1		09/15/23 16:05	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.35	1		09/15/23 16:05	79-34-5	
Tetrachloroethene	ND	ug/L	5.0	0.36	1		09/15/23 16:05	127-18-4	
Toluene	ND	ug/L	5.0	0.38	1		09/15/23 16:05	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	0.42	1		09/15/23 16:05	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	5.0	0.42	1		09/15/23 16:05	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	5.0	0.31	1		09/15/23 16:05	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	5.0	0.33	1		09/15/23 16:05	79-00-5	
Trichloroethene	6.5	ug/L	5.0	0.41	1		09/15/23 16:05	79-01-6	
Trichlorofluoromethane	ND	ug/L	5.0	0.36	1		09/15/23 16:05	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	5.0	0.33	1		09/15/23 16:05	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/L	5.0	0.37	1		09/15/23 16:05	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.38	1		09/15/23 16:05	108-67-8	
Vinyl acetate	ND	ug/L	50.0	1.7	1		09/15/23 16:05		
Vinyl chloride	21.6	ug/L	2.0	0.40	1		09/18/23 14:01		
Xylene (Total)	ND	ug/L	10.0	1.5	1		09/15/23 16:05		
Surrogates		- 3		_					
Dibromofluoromethane (S)	107	%.	82-128		1		09/15/23 16:05	1868-53-7	
4-Bromofluorobenzene (S)	102	%.	79-124		1		09/15/23 16:05	460-00-4	
Toluene-d8 (S)	98	%.	73-122		1		09/15/23 16:05	2037-26-5	

Project: GE Indy
Pace Project No.: 5035343

Date: 09/19/2023 04:25 PM

Pace Project No.: 50353438									
Sample: MW-404-090723	Lab ID:	50353438024	Collected	: 09/07/23	3 15:50	Received: 09	9/08/23 11:29 N	latrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	•	lytical Services		s					
A		•			50		00/45/00 47:00	07.04.4	
Acetone	ND	ug/L	5000	430	50		09/15/23 17:06		L1
Acrolein	ND	ug/L	2500	670	50		09/15/23 17:06		
Acrylonitrile	ND	ug/L	5000	151	50		09/15/23 17:06		
Benzene	ND	ug/L	250	22.9	50		09/15/23 17:06		
Bromobenzene	ND	ug/L	250	20.4	50		09/15/23 17:06		
Bromochloromethane	ND	ug/L	250	16.4	50		09/15/23 17:06		
Bromodichloromethane	ND	ug/L	250	14.4	50		09/15/23 17:06		
Bromoform	ND	ug/L	250	14.3	50		09/15/23 17:06		
Bromomethane	ND	ug/L	250	25.5	50		09/15/23 17:06		
2-Butanone (MEK)	ND	ug/L	1250	167	50		09/15/23 17:06		
n-Butylbenzene	ND	ug/L	250	19.3	50		09/15/23 17:06		
sec-Butylbenzene	ND	ug/L	250	18.2	50		09/15/23 17:06		
tert-Butylbenzene	ND	ug/L	250	18.9	50		09/15/23 17:06	98-06-6	
Carbon disulfide	ND	ug/L	500	31.2	50		09/15/23 17:06	75-15-0	
Carbon tetrachloride	ND	ug/L	250	14.7	50		09/15/23 17:06	56-23-5	
Chlorobenzene	ND	ug/L	250	17.4	50		09/15/23 17:06	108-90-7	
Chloroethane	10500	ug/L	2500	220	500		09/18/23 14:31	75-00-3	
Chloroform	ND	ug/L	250	130	50		09/15/23 17:06	67-66-3	
Chloromethane	ND	ug/L	250	28.2	50		09/15/23 17:06	3 74-87-3	
2-Chlorotoluene	ND	ug/L	250	18.6	50		09/15/23 17:06	95-49-8	
4-Chlorotoluene	ND	ug/L	250	20.2	50		09/15/23 17:06	106-43-4	
Dibromochloromethane	ND	ug/L	250	15.3	50		09/15/23 17:06	124-48-1	
1,2-Dibromoethane (EDB)	ND	ug/L	250	14.4	50		09/15/23 17:06	106-93-4	
Dibromomethane	ND	ug/L	250	23.1	50		09/15/23 17:06	74-95-3	
1,2-Dichlorobenzene	ND	ug/L	250	17.0	50		09/15/23 17:06	95-50-1	
1,3-Dichlorobenzene	ND	ug/L	250	20.1	50		09/15/23 17:06	5 541-73-1	
1,4-Dichlorobenzene	ND	ug/L	250	19.6	50		09/15/23 17:06		
trans-1,4-Dichloro-2-butene	ND	ug/L	5000	21.1	50		09/15/23 17:06		
Dichlorodifluoromethane	ND	ug/L	250	18.8	50		09/15/23 17:06		
1.1-Dichloroethane	42400	ug/L	2500	183	500		09/18/23 14:31		
1,2-Dichloroethane	711	ug/L	250	17.0	50		09/15/23 17:06		
1,1-Dichloroethene	938	ug/L	250	18.6	50		09/15/23 17:06		
cis-1,2-Dichloroethene	47000	ug/L	2500	240	500		09/18/23 14:31		
trans-1,2-Dichloroethene	1180	ug/L	250	24.0	50		09/15/23 17:06		
1,2-Dichloropropane	ND	ug/L	250	16.6	50		09/15/23 17:06		
1,3-Dichloropropane	ND	ug/L	250	15.0	50		09/15/23 17:06		
2,2-Dichloropropane	ND ND	-	250	18.7	50		09/15/23 17:06		
	ND ND	ug/L	250 250	16.7	50 50		09/15/23 17:06		
1,1-Dichloropropene		ug/L							
cis-1,3-Dichloropropene	ND ND	ug/L	250	15.7	50 50		09/15/23 17:06		
trans-1,3-Dichloropropene	ND	ug/L	250	14.0	50		09/15/23 17:06		
Ethylbenzene	ND	ug/L	250	20.2	50		09/15/23 17:06		
Ethyl methacrylate	ND	ug/L	5000	16.1	50		09/15/23 17:06		
Hexachloro-1,3-butadiene	ND	ug/L	250	23.8	50		09/15/23 17:06		
n-Hexane	ND	ug/L	250	18.0	50		09/15/23 17:06		
2-Hexanone	ND	ug/L	1250	108	50		09/15/23 17:06	5 591-78-6	

Project: GE Indy
Pace Project No.: 50353438

Date: 09/19/2023 04:25 PM

Sample: MW-404-090723	Lab ID:	50353438024	Collected	l: 09/07/2	3 15:50	Received: 09	0/08/23 11:29 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF ——	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Ana	lytical Services	- Indianapol	is					
lodomethane	ND	ug/L	500	102	50		09/15/23 17:06	74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	250	18.0	50		09/15/23 17:06	98-82-8	
p-Isopropyltoluene	ND	ug/L	250	20.4	50		09/15/23 17:06	99-87-6	
Methylene Chloride	ND	ug/L	250	185	50		09/15/23 17:06	75-09-2	
1-Methylnaphthalene	ND	ug/L	500	105	50		09/15/23 17:06	90-12-0	
2-Methylnaphthalene	ND	ug/L	500	105	50		09/15/23 17:06	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	1250	104	50		09/15/23 17:06	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	200	32.8	50		09/15/23 17:06	1634-04-4	
Naphthalene	ND	ug/L	60.0	28.4	50		09/15/23 17:06	91-20-3	
n-Propylbenzene	ND	ug/L	250	18.4	50		09/15/23 17:06	103-65-1	
Styrene	ND	ug/L	250	19.3	50		09/15/23 17:06	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	250	17.0	50		09/15/23 17:06	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	250	17.4	50		09/15/23 17:06	79-34-5	
Tetrachloroethene	ND	ug/L	250	17.8	50		09/15/23 17:06	127-18-4	
Toluene	ND	ug/L	250	19.0	50		09/15/23 17:06	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	250	21.0	50		09/15/23 17:06	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	250	20.8	50		09/15/23 17:06	120-82-1	
1,1,1-Trichloroethane	45800	ug/L	2500	156	500		09/18/23 14:31	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	250	16.6	50		09/15/23 17:06	79-00-5	
Trichloroethene	ND	ug/L	250	20.4	50		09/15/23 17:06	79-01-6	
Trichlorofluoromethane	ND	ug/L	250	17.8	50		09/15/23 17:06	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	250	16.7	50		09/15/23 17:06	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/L	250	18.4	50		09/15/23 17:06	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	250	19.1	50		09/15/23 17:06	108-67-8	
Vinyl acetate	ND	ug/L	2500	87.0	50		09/15/23 17:06	108-05-4	
Vinyl chloride	14400	ug/L	1000	198	500		09/18/23 14:31	75-01-4	
Xylene (Total)	ND	ug/L	500	75.0	50		09/15/23 17:06	1330-20-7	
Surrogates		S							
Dibromofluoromethane (S)	109	%.	82-128		50		09/15/23 17:06	1868-53-7	
4-Bromofluorobenzene (S)	102	%.	79-124		50		09/15/23 17:06	460-00-4	
Toluene-d8 (S)	98	%.	73-122		50		09/15/23 17:06	2037-26-5	

Project: GE Indy
Pace Project No.: 5035343

Date: 09/19/2023 04:25 PM

Pace Project No.: 50353438									
Sample: MW-405S-090723	Lab ID:	50353438025	Collected	: 09/07/23	16:00	Received: 09	9/08/23 11:29 N	fatrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
		lytical Services		s					
Acetone	ND	ug/L	100	8.6	1		09/15/23 17:3	7 67-64-1	L1
Acrolein	ND	ug/L	50.0	13.4	1		09/15/23 17:3		
Acrylonitrile	ND	ug/L	100	3.0	1		09/15/23 17:3		
Benzene	ND	ug/L	5.0	0.46	1		09/15/23 17:3		
Bromobenzene	ND	ug/L	5.0	0.41	1		09/15/23 17:3		
Bromochloromethane	ND	ug/L	5.0	0.33	1		09/15/23 17:3		
Bromodichloromethane	ND ND	ug/L	5.0	0.33	1		09/15/23 17:3		
Bromoform	ND ND	ug/L	5.0	0.29	1		09/15/23 17:3		
Bromomethane	ND ND	ug/L	5.0	0.51	1		09/15/23 17:3		
2-Butanone (MEK)	ND ND	ug/L	25.0	3.3	1		09/15/23 17:3		
• •	ND ND	-	5.0	0.39	1		09/15/23 17:3		
n-Butylbenzene	ND ND	ug/L	5.0	0.39	1		09/15/23 17:3		
sec-Butylbenzene	ND ND	ug/L	5.0	0.38	1		09/15/23 17:3		
tert-Butylbenzene Carbon disulfide		ug/L		0.36					
	ND	ug/L	10.0		1		09/15/23 17:3		
Carbon tetrachloride	ND	ug/L	5.0	0.29	1		09/15/23 17:3		
Chlorobenzene	ND	ug/L	5.0	0.35	1		09/15/23 17:3		
Chloroethane	26.2	ug/L	5.0	0.44	1		09/18/23 15:0		
Chloroform	ND	ug/L	5.0	2.6	1		09/15/23 17:3		
Chloromethane	ND	ug/L	5.0	0.56	1		09/15/23 17:3		
2-Chlorotoluene	ND	ug/L	5.0	0.37	1		09/15/23 17:3		
4-Chlorotoluene	ND	ug/L	5.0	0.40	1		09/15/23 17:3		
Dibromochloromethane	ND	ug/L	5.0	0.31	1		09/15/23 17:3		
1,2-Dibromoethane (EDB)	ND	ug/L	5.0	0.29	1		09/15/23 17:3		
Dibromomethane	ND	ug/L	5.0	0.46	1		09/15/23 17:3		
1,2-Dichlorobenzene	ND	ug/L	5.0	0.34	1		09/15/23 17:3		
1,3-Dichlorobenzene	ND	ug/L	5.0	0.40	1		09/15/23 17:3		
1,4-Dichlorobenzene	ND	ug/L	5.0	0.39	1		09/15/23 17:3		
trans-1,4-Dichloro-2-butene	ND	ug/L	100	0.42	1		09/15/23 17:3		
Dichlorodifluoromethane	ND	ug/L	5.0	0.38	1		09/15/23 17:3		
1,1-Dichloroethane	ND	ug/L	5.0	0.37	1		09/15/23 17:3	7 75-34-3	
1,2-Dichloroethane	ND	ug/L	5.0	0.34	1		09/15/23 17:3	7 107-06-2	
1,1-Dichloroethene	ND	ug/L	5.0	0.37	1		09/15/23 17:3	7 75-35-4	
cis-1,2-Dichloroethene	ND	ug/L	5.0	0.48	1		09/15/23 17:3	7 156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	5.0	0.48	1		09/15/23 17:3	7 156-60-5	
1,2-Dichloropropane	ND	ug/L	5.0	0.33	1		09/15/23 17:3	7 78-87-5	
1,3-Dichloropropane	ND	ug/L	5.0	0.30	1		09/15/23 17:3	7 142-28-9	
2,2-Dichloropropane	ND	ug/L	5.0	0.37	1		09/15/23 17:3	7 594-20-7	
1,1-Dichloropropene	ND	ug/L	5.0	0.34	1		09/15/23 17:3	7 563-58-6	
cis-1,3-Dichloropropene	ND	ug/L	5.0	0.31	1		09/15/23 17:3	7 10061-01-5	
trans-1,3-Dichloropropene	ND	ug/L	5.0	0.28	1		09/15/23 17:3	7 10061-02-6	
Ethylbenzene	ND	ug/L	5.0	0.40	1		09/15/23 17:3		
Ethyl methacrylate	ND	ug/L	100	0.32	1		09/15/23 17:3		
Hexachloro-1,3-butadiene	ND	ug/L	5.0	0.48	1		09/15/23 17:3		
n-Hexane	ND	ug/L	5.0	0.36	1		09/15/23 17:3		
		· J. –							

Project: GE Indy
Pace Project No.: 50353438

Date: 09/19/2023 04:25 PM

Sample: MW-405S-090723	Lab ID:	50353438025	Collected:	09/07/2	3 16:00	Received: 09)/08/23 11:29 M	atrix: Water	
	-		Report					0.0.1	
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Ana	lytical Services	- Indianapolis	S					
lodomethane	ND	ug/L	10.0	2.0	1		09/15/23 17:37	74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	5.0	0.36	1		09/15/23 17:37	98-82-8	
p-Isopropyltoluene	ND	ug/L	5.0	0.41	1		09/15/23 17:37	99-87-6	
Methylene Chloride	ND	ug/L	5.0	3.7	1		09/15/23 17:37	75-09-2	
1-Methylnaphthalene	ND	ug/L	10.0	2.1	1		09/15/23 17:37	90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	2.1	1		09/15/23 17:37	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	2.1	1		09/15/23 17:37	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	4.0	0.66	1		09/15/23 17:37	1634-04-4	
Naphthalene	ND	ug/L	1.2	0.57	1		09/15/23 17:37	91-20-3	
n-Propylbenzene	ND	ug/L	5.0	0.37	1		09/15/23 17:37	103-65-1	
Styrene	ND	ug/L	5.0	0.39	1		09/15/23 17:37	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.34	1		09/15/23 17:37	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.35	1		09/15/23 17:37	79-34-5	
Tetrachloroethene	ND	ug/L	5.0	0.36	1		09/15/23 17:37	127-18-4	
Toluene	ND	ug/L	5.0	0.38	1		09/15/23 17:37	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	0.42	1		09/15/23 17:37	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	5.0	0.42	1		09/15/23 17:37	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	5.0	0.31	1		09/15/23 17:37	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	5.0	0.33	1		09/15/23 17:37	79-00-5	
Trichloroethene	ND	ug/L	5.0	0.41	1		09/15/23 17:37	79-01-6	
Trichlorofluoromethane	ND	ug/L	5.0	0.36	1		09/15/23 17:37		
1,2,3-Trichloropropane	ND	ug/L	5.0	0.33	1		09/15/23 17:37	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/L	5.0	0.37	1		09/15/23 17:37	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.38	1		09/15/23 17:37	108-67-8	
Vinyl acetate	ND	ug/L	50.0	1.7	1		09/15/23 17:37		
Vinyl chloride	ND	ug/L	2.0	0.40	1		09/15/23 17:37		
Xylene (Total)	ND	ug/L	10.0	1.5	1		09/15/23 17:37		
Surrogates		-			•			·	
Dibromofluoromethane (S)	108	%.	82-128		1		09/15/23 17:37	1868-53-7	
4-Bromofluorobenzene (S)	102	%.	79-124		1		09/15/23 17:37	460-00-4	
Toluene-d8 (S)	97	%.	73-122		1		09/15/23 17:37		

Project: GE Indy
Pace Project No.: 50353436

Date: 09/19/2023 04:25 PM

Sample: MW-405D-090723	Lab ID:	50353438026	Collecte	d: 09/07/2	3 16:05	Received: 09	9/08/23 11:29 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5							
	•	lytical Services		lis					
A 1		•	•				00/45/00 40 00	07.04.4	
Acetone	ND	ug/L	100	8.6	1		09/15/23 19:09		L1
Acrolein	ND	ug/L	50.0	13.4	1		09/15/23 19:09		
Acrylonitrile	ND	ug/L	100	3.0	1		09/15/23 19:09		
Benzene	7.3	ug/L	5.0	0.46	1		09/15/23 19:09		
Bromobenzene	ND	ug/L	5.0	0.41	1		09/15/23 19:09		
Bromochloromethane	ND	ug/L	5.0	0.33	1		09/15/23 19:09		
Bromodichloromethane	ND	ug/L	5.0	0.29	1		09/15/23 19:09		
Bromoform	ND	ug/L	5.0	0.29	1		09/15/23 19:09		
Bromomethane	ND	ug/L	5.0	0.51	1		09/15/23 19:09		
2-Butanone (MEK)	ND	ug/L	25.0	3.3	1		09/15/23 19:09		
n-Butylbenzene	ND	ug/L	5.0	0.39	1		09/15/23 19:09	104-51-8	
sec-Butylbenzene	ND	ug/L	5.0	0.36	1		09/15/23 19:09		
tert-Butylbenzene	ND	ug/L	5.0	0.38	1		09/15/23 19:09	98-06-6	
Carbon disulfide	ND	ug/L	10.0	0.62	1		09/15/23 19:09	75-15-0	
Carbon tetrachloride	ND	ug/L	5.0	0.29	1		09/15/23 19:09	56-23-5	
Chlorobenzene	ND	ug/L	5.0	0.35	1		09/15/23 19:09	108-90-7	
Chloroethane	3330	ug/L	500	43.9	100		09/18/23 15:33	75-00-3	
Chloroform	ND	ug/L	5.0	2.6	1		09/15/23 19:09	67-66-3	
Chloromethane	ND	ug/L	5.0	0.56	1		09/15/23 19:09	74-87-3	
2-Chlorotoluene	ND	ug/L	5.0	0.37	1		09/15/23 19:09	95-49-8	
4-Chlorotoluene	ND	ug/L	5.0	0.40	1		09/15/23 19:09	106-43-4	
Dibromochloromethane	ND	ug/L	5.0	0.31	1		09/15/23 19:09	124-48-1	
1,2-Dibromoethane (EDB)	ND	ug/L	5.0	0.29	1		09/15/23 19:09		
Dibromomethane	ND	ug/L	5.0	0.46	1		09/15/23 19:09		
1,2-Dichlorobenzene	ND	ug/L	5.0	0.34	1		09/15/23 19:09		
1,3-Dichlorobenzene	ND	ug/L	5.0	0.40	1		09/15/23 19:09		
1,4-Dichlorobenzene	ND	ug/L	5.0	0.39	1		09/15/23 19:09		
rans-1,4-Dichloro-2-butene	ND	ug/L	100	0.42	1		09/15/23 19:09		
Dichlorodifluoromethane	ND	ug/L	5.0	0.38	1		09/15/23 19:09		
1,1-Dichloroethane	3030	ug/L	500	36.6	100		09/18/23 15:33		
1,2-Dichloroethane	8.3	ug/L	5.0	0.34	1		09/15/23 19:09		
1,1-Dichloroethene	8.7	ug/L	5.0	0.34	1		09/15/23 19:09		
cis-1,2-Dichloroethene	2890	ug/L	500	48.0	100		09/18/23 15:33		
rans-1,2-Dichloroethene	72.9	Ū	5.0	0.48	1		09/15/23 19:09		
•		ug/L							
1,2-Dichloropropane	ND	ug/L	5.0	0.33	1		09/15/23 19:09		
1,3-Dichloropropane	ND	ug/L	5.0	0.30	1		09/15/23 19:09		
2,2-Dichloropropane	ND	ug/L	5.0	0.37	1		09/15/23 19:09		
1,1-Dichloropropene	ND	ug/L	5.0	0.34	1		09/15/23 19:09		
cis-1,3-Dichloropropene	ND	ug/L	5.0	0.31	1		09/15/23 19:09		
trans-1,3-Dichloropropene	ND	ug/L	5.0	0.28	1		09/15/23 19:09		
Ethylbenzene	ND	ug/L	5.0	0.40	1		09/15/23 19:09		
Ethyl methacrylate	ND	ug/L	100	0.32	1		09/15/23 19:09		
Hexachloro-1,3-butadiene	ND	ug/L	5.0	0.48	1		09/15/23 19:09		
n-Hexane	ND	ug/L	5.0	0.36	1		09/15/23 19:09	110-54-3	
2-Hexanone	ND	ug/L	25.0	2.2	1		09/15/23 19:09	591-78-6	

Project: GE Indy
Pace Project No.: 50353438

Date: 09/19/2023 04:25 PM

Sample: MW-405D-090723	Lab ID:	50353438026	Collected	I: 09/07/23	3 16:05	Received: 09	9/08/23 11:29 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA	5030/8260						
	Pace Ana	lytical Services	s - Indianapol	is					
lodomethane	ND	ug/L	10.0	2.0	1		09/15/23 19:09	74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	5.0	0.36	1		09/15/23 19:09	98-82-8	
p-Isopropyltoluene	ND	ug/L	5.0	0.41	1		09/15/23 19:09	99-87-6	
Methylene Chloride	ND	ug/L	5.0	3.7	1		09/15/23 19:09	75-09-2	
1-Methylnaphthalene	ND	ug/L	10.0	2.1	1		09/15/23 19:09	90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	2.1	1		09/15/23 19:09	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	2.1	1		09/15/23 19:09	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	4.0	0.66	1		09/15/23 19:09	1634-04-4	
Naphthalene	ND	ug/L	1.2	0.57	1		09/15/23 19:09	91-20-3	
n-Propylbenzene	ND	ug/L	5.0	0.37	1		09/15/23 19:09	103-65-1	
Styrene	ND	ug/L	5.0	0.39	1		09/15/23 19:09	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.34	1		09/15/23 19:09	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.35	1		09/15/23 19:09	79-34-5	
Tetrachloroethene	ND	ug/L	5.0	0.36	1		09/15/23 19:09	127-18-4	
Toluene	ND	ug/L	5.0	0.38	1		09/15/23 19:09	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	0.42	1		09/15/23 19:09	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	5.0	0.42	1		09/15/23 19:09	120-82-1	
1,1,1-Trichloroethane	44.5	ug/L	5.0	0.31	1		09/15/23 19:09	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	5.0	0.33	1		09/15/23 19:09	79-00-5	
Trichloroethene	ND	ug/L	5.0	0.41	1		09/15/23 19:09	79-01-6	
Trichlorofluoromethane	ND	ug/L	5.0	0.36	1		09/15/23 19:09	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	5.0	0.33	1		09/15/23 19:09	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/L	5.0	0.37	1		09/15/23 19:09	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.38	1		09/15/23 19:09	108-67-8	
Vinyl acetate	ND	ug/L	50.0	1.7	1		09/15/23 19:09	108-05-4	
Vinyl chloride	920	ug/L	200	39.5	100		09/18/23 15:33	75-01-4	
Xylene (Total)	ND	ug/L	10.0	1.5	1		09/15/23 19:09	1330-20-7	
Surrogates									
Dibromofluoromethane (S)	107	%.	82-128		1		09/15/23 19:09		
4-Bromofluorobenzene (S)	101	%.	79-124		1		09/15/23 19:09	460-00-4	
Toluene-d8 (S)	97	%.	73-122		1		09/15/23 19:09	2037-26-5	

Project: GE Indy
Pace Project No.: 50353438

Date: 09/19/2023 04:25 PM

Sample: MW-403-090723	Lab ID:	50353438027	Collected	d: 09/07/23	3 16:20	Received: 09	9/08/23 11:29 I	Matrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	•	ytical Services		lis					
Acetone	ND	ug/L	100	8.6	1		09/15/23 19:3	9 67-64-1	L1
Acrolein	ND	ug/L	50.0	13.4	1		09/15/23 19:3	9 107-02-8	
Acrylonitrile	ND	ug/L	100	3.0	1		09/15/23 19:3	9 107-13-1	
Benzene	ND	ug/L	5.0	0.46	1		09/15/23 19:3	9 71-43-2	
Bromobenzene	ND	ug/L	5.0	0.41	1		09/15/23 19:3	9 108-86-1	
Bromochloromethane	ND	ug/L	5.0	0.33	1		09/15/23 19:3	9 74-97-5	
Bromodichloromethane	ND	ug/L	5.0	0.29	1		09/15/23 19:3	9 75-27-4	
Bromoform	ND	ug/L	5.0	0.29	1		09/15/23 19:3	9 75-25-2	
Bromomethane	ND	ug/L	5.0	0.51	1		09/15/23 19:3	9 74-83-9	
2-Butanone (MEK)	ND	ug/L	25.0	3.3	1		09/15/23 19:3	9 78-93-3	
n-Butylbenzene	ND	ug/L	5.0	0.39	1		09/15/23 19:3		
sec-Butylbenzene	ND	ug/L	5.0	0.36	1		09/15/23 19:3	9 135-98-8	
ert-Butylbenzene	ND	ug/L	5.0	0.38	1		09/15/23 19:3		
Carbon disulfide	ND	ug/L	10.0	0.62	1		09/15/23 19:3		
Carbon tetrachloride	ND	ug/L	5.0	0.29	1		09/15/23 19:3		
Chlorobenzene	ND	ug/L	5.0	0.35	1		09/15/23 19:3	9 108-90-7	
Chloroethane	354	ug/L	50.0	4.4	10		09/18/23 16:3		
Chloroform	ND	ug/L	5.0	2.6	1		09/15/23 19:3		
Chloromethane	ND	ug/L	5.0	0.56	1		09/15/23 19:3		
2-Chlorotoluene	ND	ug/L	5.0	0.37	1		09/15/23 19:3		
4-Chlorotoluene	ND	ug/L	5.0	0.40	1		09/15/23 19:3		
Dibromochloromethane	ND	ug/L	5.0	0.31	1		09/15/23 19:3	9 124-48-1	
1,2-Dibromoethane (EDB)	ND	ug/L	5.0	0.29	1		09/15/23 19:3		
Dibromomethane	ND	ug/L	5.0	0.46	1		09/15/23 19:3		
1,2-Dichlorobenzene	ND	ug/L	5.0	0.34	1		09/15/23 19:3		
1,3-Dichlorobenzene	ND	ug/L	5.0	0.40	1		09/15/23 19:3		
1,4-Dichlorobenzene	ND	ug/L	5.0	0.39	1		09/15/23 19:3		
rans-1,4-Dichloro-2-butene	ND	ug/L	100	0.42	1		09/15/23 19:3		
Dichlorodifluoromethane	ND	ug/L	5.0	0.38	1		09/15/23 19:3		
1,1-Dichloroethane	140	ug/L	5.0	0.37	1		09/15/23 19:3		
1,2-Dichloroethane	ND	ug/L	5.0	0.34	1		09/15/23 19:3		
1,1-Dichloroethene	ND	ug/L	5.0	0.37	1		09/15/23 19:3		
cis-1,2-Dichloroethene	74.4	ug/L	5.0	0.48	1		09/15/23 19:3		
rans-1,2-Dichloroethene	ND	ug/L	5.0	0.48	1		09/15/23 19:3		
1,2-Dichloropropane	ND	ug/L	5.0	0.33	1		09/15/23 19:3		
1,3-Dichloropropane	ND	ug/L	5.0	0.30	1		09/15/23 19:3		
2,2-Dichloropropane	ND	ug/L	5.0	0.37	1		09/15/23 19:3		
1,1-Dichloropropene	ND	ug/L	5.0	0.34	1		09/15/23 19:3		
cis-1,3-Dichloropropene	ND	ug/L	5.0	0.31	1			9 10061-01-5	
trans-1,3-Dichloropropene	ND	ug/L	5.0	0.28	1			9 10061-02-6	
Ethylbenzene	ND	ug/L	5.0	0.40	1		09/15/23 19:3		
Ethyl methacrylate	ND	ug/L	100	0.32	1		09/15/23 19:3		
Hexachloro-1,3-butadiene	ND ND	ug/L ug/L	5.0	0.48	1		09/15/23 19:3		
n-Hexane	ND	ug/L	5.0	0.36	1		09/15/23 19:3		
2-Hexanone	ND ND	ug/L ug/L	25.0	2.2	1		09/15/23 19:3		

Project: GE Indy
Pace Project No.: 50353438

Date: 09/19/2023 04:25 PM

Sample: MW-403-090723	Lab ID:	50353438027	Collecte	d: 09/07/23	3 16:20	Received: 09	0/08/23 11:29 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Anal	ytical Services	- Indianapo	lis					
lodomethane	ND	ug/L	10.0	2.0	1		09/15/23 19:39	74-88-4	
sopropylbenzene (Cumene)	ND	ug/L	5.0	0.36	1		09/15/23 19:39	98-82-8	
p-Isopropyltoluene	ND	ug/L	5.0	0.41	1		09/15/23 19:39	99-87-6	
Methylene Chloride	ND	ug/L	5.0	3.7	1		09/15/23 19:39	75-09-2	
1-Methylnaphthalene	ND	ug/L	10.0	2.1	1		09/15/23 19:39	90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	2.1	1		09/15/23 19:39	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	2.1	1		09/15/23 19:39	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	4.0	0.66	1		09/15/23 19:39	1634-04-4	
Naphthalene	ND	ug/L	1.2	0.57	1		09/15/23 19:39	91-20-3	
n-Propylbenzene	ND	ug/L	5.0	0.37	1		09/15/23 19:39		
Styrene	ND	ug/L	5.0	0.39	1		09/15/23 19:39	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.34	1		09/15/23 19:39	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.35	1		09/15/23 19:39	79-34-5	
Tetrachloroethene	ND	ug/L	5.0	0.36	1		09/15/23 19:39	127-18-4	
Toluene	ND	ug/L	5.0	0.38	1		09/15/23 19:39	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	0.42	1		09/15/23 19:39	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	5.0	0.42	1		09/15/23 19:39	120-82-1	
1,1,1-Trichloroethane	40.2	ug/L	5.0	0.31	1		09/15/23 19:39	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	5.0	0.33	1		09/15/23 19:39	79-00-5	
Trichloroethene	ND	ug/L	5.0	0.41	1		09/15/23 19:39	79-01-6	
Trichlorofluoromethane	ND	ug/L	5.0	0.36	1		09/15/23 19:39	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	5.0	0.33	1		09/15/23 19:39		
1,2,4-Trimethylbenzene	ND	ug/L	5.0	0.37	1		09/15/23 19:39		
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.38	1		09/15/23 19:39	108-67-8	
Vinyl acetate	ND	ug/L	50.0	1.7	1		09/15/23 19:39		
Vinyl chloride	39.6	ug/L	2.0	0.40	1		09/18/23 16:04		
Xylene (Total)	ND	ug/L	10.0	1.5	1		09/15/23 19:39		
Surrogates		- 3 -		_					
Dibromofluoromethane (S)	108	%.	82-128		1		09/15/23 19:39	1868-53-7	
4-Bromofluorobenzene (S)	102	%.	79-124		1		09/15/23 19:39	460-00-4	
Toluene-d8 (S)	98	%.	73-122		1		09/15/23 19:39	2037-26-5	

Project: GE Indy
Pace Project No.: 50353438

Date: 09/19/2023 04:25 PM

Sample: MW-414S-090723	Lab ID:	50353438028	Collected:	09/07/23	16:30	Received: 09	9/08/23 11:29 N	fatrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Ana	lytical Services	- Indianapolis	8					
Acetone	ND	ug/L	100	8.6	1		09/15/23 20:10	67-64-1	L1
Acrolein	ND	ug/L	50.0	13.4	1		09/15/23 20:10		
Acrylonitrile	ND	ug/L	100	3.0	1		09/15/23 20:10		
Benzene	ND	ug/L	5.0	0.46	1		09/15/23 20:10		
Bromobenzene	ND	ug/L	5.0	0.41	1		09/15/23 20:10	-	
Bromochloromethane	ND	ug/L	5.0	0.33	1		09/15/23 20:10		
Bromodichloromethane	ND	ug/L	5.0	0.29	1		09/15/23 20:10		
Bromoform	ND	ug/L	5.0	0.29	1		09/15/23 20:10		
Bromomethane	ND	ug/L	5.0	0.51	1		09/15/23 20:10		
2-Butanone (MEK)	ND	ug/L	25.0	3.3	1		09/15/23 20:10		
n-Butylbenzene	ND	ug/L	5.0	0.39	1		09/15/23 20:10		
sec-Butylbenzene	ND	ug/L	5.0	0.36	1		09/15/23 20:10		
ert-Butylbenzene	ND ND	ug/L	5.0	0.38	1		09/15/23 20:10		
Carbon disulfide	ND ND	ug/L	10.0	0.62	1		09/15/23 20:10		
Carbon tetrachloride	ND ND	ug/L	5.0	0.02	1		09/15/23 20:10		
Chlorobenzene	ND ND	-	5.0	0.29	1		09/15/23 20:10		
		ug/L	5.0 5.0	0.33	1		09/18/23 17:06		
Chloroethane Chloroform	291 ND	ug/L	5.0 5.0	2.6	1		09/15/23 17:00		
		ug/L							
Chloromethane	ND	ug/L	5.0	0.56	1		09/15/23 20:10		
2-Chlorotoluene	ND	ug/L	5.0	0.37	1		09/15/23 20:10		
4-Chlorotoluene	ND	ug/L	5.0	0.40	1		09/15/23 20:10		
Dibromochloromethane	ND	ug/L	5.0	0.31	1		09/15/23 20:10		
1,2-Dibromoethane (EDB)	ND	ug/L	5.0	0.29	1		09/15/23 20:10		
Dibromomethane	ND	ug/L	5.0	0.46	1		09/15/23 20:10		
1,2-Dichlorobenzene	ND	ug/L	5.0	0.34	1		09/15/23 20:10		
1,3-Dichlorobenzene	ND	ug/L	5.0	0.40	1		09/15/23 20:10		
1,4-Dichlorobenzene	ND	ug/L	5.0	0.39	1		09/15/23 20:10		
rans-1,4-Dichloro-2-butene	ND	ug/L	100	0.42	1		09/15/23 20:10		
Dichlorodifluoromethane	ND	ug/L	5.0	0.38	1		09/15/23 20:10		
1,1-Dichloroethane	ND	ug/L	5.0	0.37	1		09/15/23 20:10		
1,2-Dichloroethane	ND	ug/L	5.0	0.34	1		09/15/23 20:10		
1,1-Dichloroethene	ND	ug/L	5.0	0.37	1		09/15/23 20:10		
cis-1,2-Dichloroethene	7.5	ug/L	5.0	0.48	1		09/15/23 20:10		
rans-1,2-Dichloroethene	ND	ug/L	5.0	0.48	1		09/15/23 20:10		
1,2-Dichloropropane	ND	ug/L	5.0	0.33	1		09/15/23 20:10		
1,3-Dichloropropane	ND	ug/L	5.0	0.30	1		09/15/23 20:10		
2,2-Dichloropropane	ND	ug/L	5.0	0.37	1		09/15/23 20:10		
,1-Dichloropropene	ND	ug/L	5.0	0.34	1		09/15/23 20:10		
cis-1,3-Dichloropropene	ND	ug/L	5.0	0.31	1		09/15/23 20:10		
rans-1,3-Dichloropropene	ND	ug/L	5.0	0.28	1		09/15/23 20:10	10061-02-6	
Ethylbenzene	ND	ug/L	5.0	0.40	1		09/15/23 20:10		
Ethyl methacrylate	ND	ug/L	100	0.32	1		09/15/23 20:10		
Hexachloro-1,3-butadiene	ND	ug/L	5.0	0.48	1		09/15/23 20:10	87-68-3	
n-Hexane	ND	ug/L	5.0	0.36	1		09/15/23 20:10	110-54-3	
2-Hexanone	ND	ug/L	25.0	2.2	1		09/15/23 20:10	591-78-6	

Project: GE Indy
Pace Project No.: 50353438

Date: 09/19/2023 04:25 PM

Sample: MW-414S-090723	Lab ID:	50353438028	Collecte	d: 09/07/23	3 16:30	Received: 09	0/08/23 11:29 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	5030/8260						
	Pace Anal	ytical Services	- Indianapo	lis					
lodomethane	ND	ug/L	10.0	2.0	1		09/15/23 20:10	74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	5.0	0.36	1		09/15/23 20:10	98-82-8	
p-Isopropyltoluene	ND	ug/L	5.0	0.41	1		09/15/23 20:10	99-87-6	
Methylene Chloride	ND	ug/L	5.0	3.7	1		09/15/23 20:10	75-09-2	
1-Methylnaphthalene	ND	ug/L	10.0	2.1	1		09/15/23 20:10	90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	2.1	1		09/15/23 20:10	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	2.1	1		09/15/23 20:10	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	4.0	0.66	1		09/15/23 20:10	1634-04-4	
Naphthalene	ND	ug/L	1.2	0.57	1		09/15/23 20:10	91-20-3	
n-Propylbenzene	ND	ug/L	5.0	0.37	1		09/15/23 20:10	103-65-1	
Styrene	ND	ug/L	5.0	0.39	1		09/15/23 20:10	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.34	1		09/15/23 20:10	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.35	1		09/15/23 20:10	79-34-5	
Tetrachloroethene	ND	ug/L	5.0	0.36	1		09/15/23 20:10	127-18-4	
Toluene	ND	ug/L	5.0	0.38	1		09/15/23 20:10	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	0.42	1		09/15/23 20:10	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	5.0	0.42	1		09/15/23 20:10	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	5.0	0.31	1		09/15/23 20:10	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	5.0	0.33	1		09/15/23 20:10	79-00-5	
Trichloroethene	ND	ug/L	5.0	0.41	1		09/15/23 20:10	79-01-6	
Trichlorofluoromethane	ND	ug/L	5.0	0.36	1		09/15/23 20:10	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	5.0	0.33	1		09/15/23 20:10	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/L	5.0	0.37	1		09/15/23 20:10	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.38	1		09/15/23 20:10	108-67-8	
Vinyl acetate	ND	ug/L	50.0	1.7	1		09/15/23 20:10	108-05-4	
Vinyl chloride	ND	ug/L	2.0	0.40	1		09/15/23 20:10	75-01-4	
Xylene (Total)	ND	ug/L	10.0	1.5	1		09/15/23 20:10	1330-20-7	
Surrogates		-							
Dibromofluoromethane (S)	107	%.	82-128		1		09/15/23 20:10	1868-53-7	
4-Bromofluorobenzene (S)	104	%.	79-124		1		09/15/23 20:10	460-00-4	
Toluene-d8 (S)	99	%.	73-122		1		09/15/23 20:10	2037-26-5	

Project: GE Indy
Pace Project No.: 5035343

Date: 09/19/2023 04:25 PM

Sample: MW-414D-090723	Lab ID:	50353438029	Collected	1: 09/07/23	16:35	Received: 09	9/08/23 11:29 M	latrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	-	lytical Services		is					
Acetone	ND	ug/L	100	8.6	1		09/15/23 21:11	67-64-1	L1
Acrolein	ND	ug/L	50.0	13.4	1		09/15/23 21:11	107-02-8	
Acrylonitrile	ND	ug/L	100	3.0	1		09/15/23 21:11	107-13-1	
Benzene	ND	ug/L	5.0	0.46	1		09/15/23 21:11	71-43-2	
Bromobenzene	ND	ug/L	5.0	0.41	1		09/15/23 21:11	108-86-1	
Bromochloromethane	ND	ug/L	5.0	0.33	1		09/15/23 21:11	74-97-5	
Bromodichloromethane	ND	ug/L	5.0	0.29	1		09/15/23 21:11	75-27-4	
Bromoform	ND	ug/L	5.0	0.29	1		09/15/23 21:11		
Bromomethane	ND	ug/L	5.0	0.51	1		09/15/23 21:11		
2-Butanone (MEK)	ND	ug/L	25.0	3.3	1		09/15/23 21:11		
n-Butylbenzene	ND	ug/L	5.0	0.39	1		09/15/23 21:11		
sec-Butylbenzene	ND	ug/L	5.0	0.36	1		09/15/23 21:11		
ert-Butylbenzene	ND	ug/L	5.0	0.38	1		09/15/23 21:11		
Carbon disulfide	ND	ug/L	10.0	0.62	1		09/15/23 21:11		
Carbon tetrachloride	ND	ug/L	5.0	0.02	1		09/15/23 21:11		
Chlorobenzene	ND ND	ug/L	5.0	0.25	1		09/15/23 21:11		
Chloroethane	10.0	ug/L	5.0	0.33	1		09/18/23 17:36		
Chloroform	ND	•	5.0	2.6	1		09/15/23 17:30		
		ug/L							
Chloromethane	ND	ug/L	5.0	0.56	1		09/15/23 21:11		
2-Chlorotoluene	ND	ug/L	5.0	0.37	1		09/15/23 21:11		
4-Chlorotoluene	ND	ug/L	5.0	0.40	1		09/15/23 21:11		
Dibromochloromethane	ND	ug/L	5.0	0.31	1		09/15/23 21:11		
1,2-Dibromoethane (EDB)	ND	ug/L	5.0	0.29	1		09/15/23 21:11		
Dibromomethane	ND	ug/L	5.0	0.46	1		09/15/23 21:11		
1,2-Dichlorobenzene	ND	ug/L	5.0	0.34	1		09/15/23 21:11		
1,3-Dichlorobenzene	ND	ug/L	5.0	0.40	1		09/15/23 21:11		
1,4-Dichlorobenzene	ND	ug/L	5.0	0.39	1		09/15/23 21:11		
rans-1,4-Dichloro-2-butene	ND	ug/L	100	0.42	1		09/15/23 21:11		
Dichlorodifluoromethane	ND	ug/L	5.0	0.38	1		09/15/23 21:11		
1,1-Dichloroethane	ND	ug/L	5.0	0.37	1		09/15/23 21:11	75-34-3	
1,2-Dichloroethane	ND	ug/L	5.0	0.34	1		09/15/23 21:11	107-06-2	
1,1-Dichloroethene	ND	ug/L	5.0	0.37	1		09/15/23 21:11	75-35-4	
cis-1,2-Dichloroethene	5.1	ug/L	5.0	0.48	1		09/15/23 21:11	156-59-2	
rans-1,2-Dichloroethene	ND	ug/L	5.0	0.48	1		09/15/23 21:11	156-60-5	
1,2-Dichloropropane	ND	ug/L	5.0	0.33	1		09/15/23 21:11	78-87-5	
,3-Dichloropropane	ND	ug/L	5.0	0.30	1		09/15/23 21:11	142-28-9	
2,2-Dichloropropane	ND	ug/L	5.0	0.37	1		09/15/23 21:11	594-20-7	
1,1-Dichloropropene	ND	ug/L	5.0	0.34	1		09/15/23 21:11	563-58-6	
cis-1,3-Dichloropropene	ND	ug/L	5.0	0.31	1		09/15/23 21:11	10061-01-5	
trans-1,3-Dichloropropene	ND	ug/L	5.0	0.28	1		09/15/23 21:11		
Ethylbenzene	ND	ug/L	5.0	0.40	1		09/15/23 21:11		
Ethyl methacrylate	ND	ug/L	100	0.32	1		09/15/23 21:11		
Hexachloro-1,3-butadiene	ND	ug/L	5.0	0.48	1		09/15/23 21:11		
n-Hexane	ND	ug/L	5.0	0.36	1		09/15/23 21:11		
2-Hexanone	ND	ug/L	25.0	2.2	1		09/15/23 21:11		

Project: GE Indy
Pace Project No.: 50353438

Date: 09/19/2023 04:25 PM

Sample: MW-414D-090723	Lab ID:	50353438029	Collecte	d: 09/07/23	3 16:35	Received: 09	0/08/23 11:29 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Ana	lytical Services	- Indianapo	lis					
lodomethane	ND	ug/L	10.0	2.0	1		09/15/23 21:11	74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	5.0	0.36	1		09/15/23 21:11	98-82-8	
p-lsopropyltoluene	ND	ug/L	5.0	0.41	1		09/15/23 21:11	99-87-6	
Methylene Chloride	ND	ug/L	5.0	3.7	1		09/15/23 21:11	75-09-2	
1-Methylnaphthalene	ND	ug/L	10.0	2.1	1		09/15/23 21:11	90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	2.1	1		09/15/23 21:11		
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	2.1	1		09/15/23 21:11	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	4.0	0.66	1		09/15/23 21:11	1634-04-4	
Naphthalene	ND	ug/L	1.2	0.57	1		09/15/23 21:11		
n-Propylbenzene	ND	ug/L	5.0	0.37	1		09/15/23 21:11	103-65-1	
Styrene	ND	ug/L	5.0	0.39	1		09/15/23 21:11	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.34	1		09/15/23 21:11	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.35	1		09/15/23 21:11		
Tetrachloroethene	ND	ug/L	5.0	0.36	1		09/15/23 21:11		
Toluene	ND	ug/L	5.0	0.38	1		09/15/23 21:11	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	0.42	1		09/15/23 21:11		
1,2,4-Trichlorobenzene	ND	ug/L	5.0	0.42	1		09/15/23 21:11	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	5.0	0.31	1		09/15/23 21:11	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	5.0	0.33	1		09/15/23 21:11	79-00-5	
Trichloroethene	ND	ug/L	5.0	0.41	1		09/15/23 21:11	79-01-6	
Trichlorofluoromethane	ND	ug/L	5.0	0.36	1		09/15/23 21:11	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	5.0	0.33	1		09/15/23 21:11		
1,2,4-Trimethylbenzene	ND	ug/L	5.0	0.37	1		09/15/23 21:11	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.38	1		09/15/23 21:11	108-67-8	
Vinyl acetate	ND	ug/L	50.0	1.7	1		09/15/23 21:11		
Vinyl chloride	ND	ug/L	2.0	0.40	1		09/15/23 21:11		
Xylene (Total)	ND	ug/L	10.0	1.5	1		09/15/23 21:11		
Surrogates		J						-	
Dibromofluoromethane (S)	108	%.	82-128		1		09/15/23 21:11	1868-53-7	
4-Bromofluorobenzene (S)	102	%.	79-124		1		09/15/23 21:11	460-00-4	
Toluene-d8 (S)	99	%.	73-122		1		09/15/23 21:11	2037-26-5	

Project: GE Indy
Pace Project No.: 50353438

Date: 09/19/2023 04:25 PM

Pace Project No.: 50353438									
Sample: MW-321-090723	Lab ID:	50353438030	Collected	: 09/07/23	16:45	Received: 09	9/08/23 11:29	Matrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Indiana	Analytical	I Method: EPA 5	030/8260						
		alytical Services		is					
Acetone	ND	ug/L	100	8.6	1		09/15/23 21:4	2 67-64-1	L1
Acrolein	ND ND	ug/L	50.0	13.4	1		09/15/23 21:4		LI
Acrylonitrile	ND ND	ug/L ug/L	100	3.0	1		09/15/23 21:4		
Benzene	ND ND	ug/L ug/L	5.0	0.46	1		09/15/23 21:4		
Bromobenzene	ND ND	ug/L	5.0	0.40	1		09/15/23 21:4		
Bromochloromethane	ND ND		5.0	0.41	1		09/15/23 21:4		
		ug/L			1				
Bromodichloromethane	ND	ug/L	5.0	0.29 0.29	1		09/15/23 21:4		
Bromoform	ND	ug/L	5.0				09/15/23 21:4		
Bromomethane	ND	ug/L	5.0	0.51	1		09/15/23 21:4		
2-Butanone (MEK)	ND	ug/L	25.0	3.3	1		09/15/23 21:4		
n-Butylbenzene	ND	ug/L	5.0	0.39	1		09/15/23 21:4		
sec-Butylbenzene	ND	ug/L	5.0	0.36	1		09/15/23 21:4		
tert-Butylbenzene	ND	ug/L	5.0	0.38	1		09/15/23 21:4		
Carbon disulfide	ND	ug/L	10.0	0.62	1		09/15/23 21:4		
Carbon tetrachloride	ND	ug/L	5.0	0.29	1		09/15/23 21:4		
Chlorobenzene	ND	ug/L	5.0	0.35	1		09/15/23 21:4	2 108-90-7	
Chloroethane	243	ug/L	5.0	0.44	1		09/18/23 18:0	7 75-00-3	
Chloroform	ND	ug/L	5.0	2.6	1		09/15/23 21:4	2 67-66-3	
Chloromethane	ND	ug/L	5.0	0.56	1		09/15/23 21:4	2 74-87-3	
2-Chlorotoluene	ND	ug/L	5.0	0.37	1		09/15/23 21:4	2 95-49-8	
4-Chlorotoluene	ND	ug/L	5.0	0.40	1		09/15/23 21:4	2 106-43-4	
Dibromochloromethane	ND	ug/L	5.0	0.31	1		09/15/23 21:4	2 124-48-1	
1,2-Dibromoethane (EDB)	ND	ug/L	5.0	0.29	1		09/15/23 21:4	2 106-93-4	
Dibromomethane	ND	ug/L	5.0	0.46	1		09/15/23 21:4	2 74-95-3	
1,2-Dichlorobenzene	ND	ug/L	5.0	0.34	1		09/15/23 21:4	2 95-50-1	
1,3-Dichlorobenzene	ND	ug/L	5.0	0.40	1		09/15/23 21:4	2 541-73-1	
1,4-Dichlorobenzene	ND	ug/L	5.0	0.39	1		09/15/23 21:4	2 106-46-7	
trans-1,4-Dichloro-2-butene	ND	ug/L	100	0.42	1		09/15/23 21:4	2 110-57-6	
Dichlorodifluoromethane	ND	ug/L	5.0	0.38	1		09/15/23 21:4	2 75-71-8	
1,1-Dichloroethane	5.5	ug/L	5.0	0.37	1		09/15/23 21:4	2 75-34-3	
1,2-Dichloroethane	ND	ug/L	5.0	0.34	1		09/15/23 21:4		
1,1-Dichloroethene	ND	ug/L	5.0	0.37	1		09/15/23 21:4		
cis-1,2-Dichloroethene	5.3	ug/L	5.0	0.48	1		09/15/23 21:4	2 156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	5.0	0.48	1		09/15/23 21:4		
1,2-Dichloropropane	ND	ug/L	5.0	0.33	1		09/15/23 21:4		
1,3-Dichloropropane	ND	ug/L	5.0	0.30	1		09/15/23 21:4		
2,2-Dichloropropane	ND	ug/L	5.0	0.37	1		09/15/23 21:4		
1,1-Dichloropropene	ND	ug/L	5.0	0.34	1		09/15/23 21:4		
cis-1,3-Dichloropropene	ND	ug/L	5.0	0.31	1			2 10061-01-5	
trans-1,3-Dichloropropene	ND ND	ug/L ug/L	5.0	0.31	1			2 10061-01-3	
Ethylbenzene		ug/L ug/L	5.0	0.28	1		09/15/23 21:4		
•	ND								
Ethyl methacrylate Hexachloro-1,3-butadiene	ND ND	ug/L	100 5.0	0.32	1 1		09/15/23 21:4		
,	ND ND	ug/L	5.0	0.48			09/15/23 21:4		
n-Hexane	ND	ug/L	5.0	0.36	1		09/15/23 21:4		
2-Hexanone	ND	ug/L	25.0	2.2	1		09/15/23 21:4	∠ 591-78-6	

Project: GE Indy
Pace Project No.: 50353438

Date: 09/19/2023 04:25 PM

Sample: MW-321-090723	Lab ID:	50353438030	Collecte	d: 09/07/23	3 16:45	Received: 09	0/08/23 11:29 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	5030/8260						
	Pace Anal	ytical Services	- Indianapo	lis					
lodomethane	ND	ug/L	10.0	2.0	1		09/15/23 21:42	74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	5.0	0.36	1		09/15/23 21:42	98-82-8	
p-Isopropyltoluene	ND	ug/L	5.0	0.41	1		09/15/23 21:42	99-87-6	
Methylene Chloride	ND	ug/L	5.0	3.7	1		09/15/23 21:42	75-09-2	
1-Methylnaphthalene	ND	ug/L	10.0	2.1	1		09/15/23 21:42	90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	2.1	1		09/15/23 21:42	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	2.1	1		09/15/23 21:42	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	4.0	0.66	1		09/15/23 21:42	1634-04-4	
Naphthalene	ND	ug/L	1.2	0.57	1		09/15/23 21:42	91-20-3	
n-Propylbenzene	ND	ug/L	5.0	0.37	1		09/15/23 21:42	103-65-1	
Styrene	ND	ug/L	5.0	0.39	1		09/15/23 21:42	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.34	1		09/15/23 21:42	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.35	1		09/15/23 21:42	79-34-5	
Tetrachloroethene	ND	ug/L	5.0	0.36	1		09/15/23 21:42	127-18-4	
Toluene	ND	ug/L	5.0	0.38	1		09/15/23 21:42	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	0.42	1		09/15/23 21:42	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	5.0	0.42	1		09/15/23 21:42	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	5.0	0.31	1		09/15/23 21:42	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	5.0	0.33	1		09/15/23 21:42	79-00-5	
Trichloroethene	ND	ug/L	5.0	0.41	1		09/15/23 21:42	79-01-6	
Trichlorofluoromethane	ND	ug/L	5.0	0.36	1		09/15/23 21:42	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	5.0	0.33	1		09/15/23 21:42		
1,2,4-Trimethylbenzene	ND	ug/L	5.0	0.37	1		09/15/23 21:42		
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.38	1		09/15/23 21:42	108-67-8	
Vinyl acetate	ND	ug/L	50.0	1.7	1		09/15/23 21:42		
Vinyl chloride	6.1	ug/L	2.0	0.40	1		09/18/23 18:07		
Xylene (Total)	ND	ug/L	10.0	1.5	1		09/15/23 21:42		
Surrogates		· J ·		_					
Dibromofluoromethane (S)	106	%.	82-128		1		09/15/23 21:42	1868-53-7	
4-Bromofluorobenzene (S)	102	%.	79-124		1		09/15/23 21:42	460-00-4	
Toluene-d8 (S)	99	%.	73-122		1		09/15/23 21:42	2037-26-5	

Project: GE Indy
Pace Project No.: 50353438

Date: 09/19/2023 04:25 PM

Sample: AD-101-090723	Lab ID:	50353438031	Collected	I: 09/07/23	12:00	Received: 09	9/08/23 11:29 N	latrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
3260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	-	lytical Services		is					
Acetone	ND	ug/L	100	8.6	1		09/15/23 22:12	2 67-64-1	L1
Acrolein	ND	ug/L	50.0	13.4	1		09/15/23 22:12	107-02-8	
Acrylonitrile	ND	ug/L	100	3.0	1		09/15/23 22:12	107-13-1	
Benzene	ND	ug/L	5.0	0.46	1		09/15/23 22:12	2 71-43-2	
Bromobenzene	ND	ug/L	5.0	0.41	1		09/15/23 22:12		
Bromochloromethane	ND	ug/L	5.0	0.33	1		09/15/23 22:12		
Bromodichloromethane	ND	ug/L	5.0	0.29	1		09/15/23 22:12		
Bromoform	ND	ug/L	5.0	0.29	1		09/15/23 22:12		
Bromomethane	ND	ug/L	5.0	0.51	1		09/15/23 22:12		
2-Butanone (MEK)	ND ND	ug/L	25.0	3.3	1		09/15/23 22:12		
n-Butylbenzene	ND ND	ug/L	5.0	0.39	1		09/15/23 22:12		
sec-Butylbenzene	ND ND	ug/L	5.0	0.36	1		09/15/23 22:12		
ert-Butylbenzene	ND ND	ug/L ug/L	5.0	0.38	1		09/15/23 22:12		
Carbon disulfide	ND ND	_	10.0	0.62	1		09/15/23 22:12		
		ug/L		0.02			09/15/23 22:12		
Carbon tetrachloride	ND	ug/L	5.0		1				
Chlorobenzene	ND	ug/L	5.0	0.35	1		09/15/23 22:12		
Chloroethane	168	ug/L	5.0	0.44	1		09/18/23 18:38		
Chloroform	ND	ug/L	5.0	2.6	1		09/15/23 22:12		
Chloromethane	ND	ug/L	5.0	0.56	1		09/15/23 22:12		
2-Chlorotoluene	ND	ug/L	5.0	0.37	1		09/15/23 22:12		
4-Chlorotoluene	ND	ug/L	5.0	0.40	1		09/15/23 22:12		
Dibromochloromethane	ND	ug/L	5.0	0.31	1		09/15/23 22:12		
1,2-Dibromoethane (EDB)	ND	ug/L	5.0	0.29	1		09/15/23 22:12		
Dibromomethane	ND	ug/L	5.0	0.46	1		09/15/23 22:12	2 74-95-3	
1,2-Dichlorobenzene	ND	ug/L	5.0	0.34	1		09/15/23 22:12	95-50-1	
1,3-Dichlorobenzene	ND	ug/L	5.0	0.40	1		09/15/23 22:12	2 541-73-1	
1,4-Dichlorobenzene	ND	ug/L	5.0	0.39	1		09/15/23 22:12	106-46-7	
rans-1,4-Dichloro-2-butene	ND	ug/L	100	0.42	1		09/15/23 22:12	110-57-6	
Dichlorodifluoromethane	ND	ug/L	5.0	0.38	1		09/15/23 22:12	? 75-71-8	
1,1-Dichloroethane	ND	ug/L	5.0	0.37	1		09/15/23 22:12	75-34-3	
1,2-Dichloroethane	ND	ug/L	5.0	0.34	1		09/15/23 22:12	107-06-2	
1,1-Dichloroethene	ND	ug/L	5.0	0.37	1		09/15/23 22:12	75-35-4	
cis-1,2-Dichloroethene	19.8	ug/L	5.0	0.48	1		09/15/23 22:12	156-59-2	
rans-1,2-Dichloroethene	8.0	ug/L	5.0	0.48	1		09/15/23 22:12	156-60-5	
1,2-Dichloropropane	ND	ug/L	5.0	0.33	1		09/15/23 22:12	2 78-87-5	
1,3-Dichloropropane	ND	ug/L	5.0	0.30	1		09/15/23 22:12	142-28-9	
2,2-Dichloropropane	ND	ug/L	5.0	0.37	1		09/15/23 22:12		
1,1-Dichloropropene	ND	ug/L	5.0	0.34	1		09/15/23 22:12		
cis-1,3-Dichloropropene	ND	ug/L	5.0	0.31	1		09/15/23 22:12		
trans-1,3-Dichloropropene	ND	ug/L	5.0	0.28	1		09/15/23 22:12		
Ethylbenzene	ND	ug/L	5.0	0.40	1		09/15/23 22:12		
Ethyl methacrylate	ND	ug/L	100	0.40	1		09/15/23 22:12		
Hexachloro-1,3-butadiene	ND	ug/L	5.0	0.32	1		09/15/23 22:12		
n-Hexane	ND ND	ug/L	5.0	0.46	1		09/15/23 22:12		
2-Hexanone	ND ND	ug/L ug/L	25.0	2.2	1		09/15/23 22:12		

Project: GE Indy
Pace Project No.: 50353438

Date: 09/19/2023 04:25 PM

Sample: AD-101-090723	Lab ID:	50353438031	Collected	l: 09/07/23	3 12:00	Received: 09	9/08/23 11:29 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF ——	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Ana	ytical Services	- Indianapol	is					
lodomethane	ND	ug/L	10.0	2.0	1		09/15/23 22:12	74-88-4	
sopropylbenzene (Cumene)	ND	ug/L	5.0	0.36	1		09/15/23 22:12	98-82-8	
p-Isopropyltoluene	ND	ug/L	5.0	0.41	1		09/15/23 22:12	99-87-6	
Methylene Chloride	ND	ug/L	5.0	3.7	1		09/15/23 22:12	75-09-2	
1-Methylnaphthalene	ND	ug/L	10.0	2.1	1		09/15/23 22:12	90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	2.1	1		09/15/23 22:12	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	2.1	1		09/15/23 22:12	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	4.0	0.66	1		09/15/23 22:12	1634-04-4	
Naphthalene	ND	ug/L	1.2	0.57	1		09/15/23 22:12	91-20-3	
n-Propylbenzene	ND	ug/L	5.0	0.37	1		09/15/23 22:12	103-65-1	
Styrene	ND	ug/L	5.0	0.39	1		09/15/23 22:12	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.34	1		09/15/23 22:12	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.35	1		09/15/23 22:12	79-34-5	
Tetrachloroethene	ND	ug/L	5.0	0.36	1		09/15/23 22:12	127-18-4	
Toluene	ND	ug/L	5.0	0.38	1		09/15/23 22:12	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	0.42	1		09/15/23 22:12	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	5.0	0.42	1		09/15/23 22:12	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	5.0	0.31	1		09/15/23 22:12	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	5.0	0.33	1		09/15/23 22:12	79-00-5	
Trichloroethene	ND	ug/L	5.0	0.41	1		09/15/23 22:12	79-01-6	
Trichlorofluoromethane	ND	ug/L	5.0	0.36	1		09/15/23 22:12	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	5.0	0.33	1		09/15/23 22:12	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/L	5.0	0.37	1		09/15/23 22:12	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.38	1		09/15/23 22:12		
Vinyl acetate	ND	ug/L	50.0	1.7	1		09/15/23 22:12	108-05-4	
Vinyl chloride	4.8	ug/L	2.0	0.40	1		09/18/23 18:38		
Xylene (Total)	ND	ug/L	10.0	1.5	1		09/15/23 22:12		
Surrogates		- J							
Dibromofluoromethane (S)	109	%.	82-128		1		09/15/23 22:12	1868-53-7	
4-Bromofluorobenzene (S)	100	%.	79-124		1		09/15/23 22:12	460-00-4	
Toluene-d8 (S)	98	%.	73-122		1		09/15/23 22:12	2037-26-5	

Project: GE Indy
Pace Project No.: 50353436

Date: 09/19/2023 04:25 PM

Sample: MW-183-090823	Lab ID:	50353438032	Collecte	d: 09/08/23	8 08:30	Received: 09	/08/23 11:29 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
		 -							
8260 MSV Indiana		Method: EPA 5							
	Pace Ana	llytical Services	 Indianapo 	olis					
Acetone	ND	ug/L	100	8.6	1		09/15/23 22:43	67-64-1	L1
Acrolein	ND	ug/L	50.0	13.4	1		09/15/23 22:43	107-02-8	
Acrylonitrile	ND	ug/L	100	3.0	1		09/15/23 22:43	107-13-1	
Benzene	ND	ug/L	5.0	0.46	1		09/15/23 22:43	71-43-2	
Bromobenzene	ND	ug/L	5.0	0.41	1		09/15/23 22:43	108-86-1	
Bromochloromethane	ND	ug/L	5.0	0.33	1		09/15/23 22:43	74-97-5	
Bromodichloromethane	ND	ug/L	5.0	0.29	1		09/15/23 22:43	75-27-4	
Bromoform	ND	ug/L	5.0	0.29	1		09/15/23 22:43	75-25-2	
Bromomethane	ND	ug/L	5.0	0.51	1		09/15/23 22:43		
2-Butanone (MEK)	ND	ug/L	25.0	3.3	1		09/15/23 22:43		
n-Butylbenzene	ND	ug/L	5.0	0.39	1		09/15/23 22:43		
sec-Butylbenzene	ND	ug/L	5.0	0.36	1		09/15/23 22:43		
tert-Butylbenzene	ND	ug/L	5.0	0.38	1		09/15/23 22:43		
Carbon disulfide	ND	ug/L	10.0	0.62	1		09/15/23 22:43		
Carbon tetrachloride	ND	ug/L	5.0	0.29	1		09/15/23 22:43		
Chlorobenzene	ND	ug/L	5.0	0.25	1		09/15/23 22:43		
Chloroethane	ND	ug/L	5.0	0.44	1		09/15/23 22:43		
Chloroform	ND ND	ug/L ug/L	5.0	2.6	1		09/15/23 22:43		
Chloromethane	ND ND	ug/L ug/L	5.0	0.56	1		09/15/23 22:43		
2-Chlorotoluene	ND ND	-	5.0	0.30	1		09/15/23 22:43		
		ug/L							
4-Chlorotoluene	ND	ug/L	5.0	0.40	1		09/15/23 22:43		
Dibromochloromethane	ND	ug/L	5.0	0.31	1		09/15/23 22:43		
1,2-Dibromoethane (EDB)	ND	ug/L	5.0	0.29	1		09/15/23 22:43		
Dibromomethane	ND	ug/L	5.0	0.46	1		09/15/23 22:43		
1,2-Dichlorobenzene	ND	ug/L	5.0	0.34	1		09/15/23 22:43		
1,3-Dichlorobenzene	ND	ug/L	5.0	0.40	1		09/15/23 22:43		
1,4-Dichlorobenzene	ND	ug/L	5.0	0.39	1		09/15/23 22:43		
trans-1,4-Dichloro-2-butene	ND	ug/L	100	0.42	1		09/15/23 22:43		
Dichlorodifluoromethane	ND	ug/L	5.0	0.38	1		09/15/23 22:43		
1,1-Dichloroethane	ND	ug/L	5.0	0.37	1		09/15/23 22:43		
1,2-Dichloroethane	ND	ug/L	5.0	0.34	1		09/15/23 22:43		
1,1-Dichloroethene	ND	ug/L	5.0	0.37	1		09/15/23 22:43		
cis-1,2-Dichloroethene	ND	ug/L	5.0	0.48	1		09/15/23 22:43		
trans-1,2-Dichloroethene	ND	ug/L	5.0	0.48	1		09/15/23 22:43		
1,2-Dichloropropane	ND	ug/L	5.0	0.33	1		09/15/23 22:43	78-87-5	
1,3-Dichloropropane	ND	ug/L	5.0	0.30	1		09/15/23 22:43	142-28-9	
2,2-Dichloropropane	ND	ug/L	5.0	0.37	1		09/15/23 22:43	594-20-7	
1,1-Dichloropropene	ND	ug/L	5.0	0.34	1		09/15/23 22:43	563-58-6	
cis-1,3-Dichloropropene	ND	ug/L	5.0	0.31	1		09/15/23 22:43	10061-01-5	
trans-1,3-Dichloropropene	ND	ug/L	5.0	0.28	1		09/15/23 22:43	10061-02-6	
Ethylbenzene	ND	ug/L	5.0	0.40	1		09/15/23 22:43	100-41-4	
Ethyl methacrylate	ND	ug/L	100	0.32	1		09/15/23 22:43	97-63-2	
Hexachloro-1,3-butadiene	ND	ug/L	5.0	0.48	1		09/15/23 22:43		
n-Hexane	ND	ug/L	5.0	0.36	1		09/15/23 22:43	110-54-3	
2-Hexanone	ND	ug/L	25.0	2.2	1		09/15/23 22:43		

Project: GE Indy
Pace Project No.: 50353438

Date: 09/19/2023 04:25 PM

Sample: MW-183-090823	Lab ID:	50353438032	Collected	: 09/08/23	3 08:30	Received: 09	/08/23 11:29 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Ana	lytical Services	- Indianapoli	is					
lodomethane	ND	ug/L	10.0	2.0	1		09/15/23 22:43	74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	5.0	0.36	1		09/15/23 22:43	98-82-8	
p-Isopropyltoluene	ND	ug/L	5.0	0.41	1		09/15/23 22:43	99-87-6	
Methylene Chloride	ND	ug/L	5.0	3.7	1		09/15/23 22:43	75-09-2	
1-Methylnaphthalene	ND	ug/L	10.0	2.1	1		09/15/23 22:43	90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	2.1	1		09/15/23 22:43	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	2.1	1		09/15/23 22:43	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	4.0	0.66	1		09/15/23 22:43	1634-04-4	
Naphthalene	ND	ug/L	1.2	0.57	1		09/15/23 22:43	91-20-3	
n-Propylbenzene	ND	ug/L	5.0	0.37	1		09/15/23 22:43	103-65-1	
Styrene	ND	ug/L	5.0	0.39	1		09/15/23 22:43	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.34	1		09/15/23 22:43	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.35	1		09/15/23 22:43	79-34-5	
Tetrachloroethene	ND	ug/L	5.0	0.36	1		09/15/23 22:43	127-18-4	
Toluene	ND	ug/L	5.0	0.38	1		09/15/23 22:43	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	0.42	1		09/15/23 22:43	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	5.0	0.42	1		09/15/23 22:43	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	5.0	0.31	1		09/15/23 22:43	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	5.0	0.33	1		09/15/23 22:43		
Trichloroethene	ND	ug/L	5.0	0.41	1		09/15/23 22:43		
Trichlorofluoromethane	ND	ug/L	5.0	0.36	1		09/15/23 22:43		
1,2,3-Trichloropropane	ND	ug/L	5.0	0.33	1		09/15/23 22:43		
1,2,4-Trimethylbenzene	ND	ug/L	5.0	0.37	1		09/15/23 22:43		
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.38	1		09/15/23 22:43		
Vinyl acetate	ND	ug/L	50.0	1.7	1		09/15/23 22:43		
Vinyl chloride	5.8	ug/L	2.0	0.40	1		09/18/23 19:08		
Xylene (Total)	ND	ug/L	10.0	1.5	1		09/15/23 22:43		
Surrogates	.15	~ <i>5</i> , –		0	•		237.07.20.22.10	. 300 20 7	
Dibromofluoromethane (S)	108	%.	82-128		1		09/15/23 22:43	1868-53-7	
4-Bromofluorobenzene (S)	100	%.	79-124		1		09/15/23 22:43		
Toluene-d8 (S)	97	%.	73-122		1		09/15/23 22:43		

Project: GE Indy
Pace Project No.: 50353436

Date: 09/19/2023 04:25 PM

Sample: MW-22-090823	Lab ID:	50353438033	Collecte	d: 09/08/23	8 08:45	Received: 09	0/08/23 11:29 M	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	— ——— - Analvtica	I Method: EPA 5					•		_
		llytical Services		olis					
Acetone	ND	ug/L	100	8.6	1		09/15/23 23:14	67-64-1	L1
Acrolein	ND	ug/L	50.0	13.4	1		09/15/23 23:14		LI
Acrylonitrile	ND ND	ug/L	100	3.0	1		09/15/23 23:14		
Benzene	ND	ug/L	5.0	0.46	1		09/15/23 23:14		
Bromobenzene	ND	ug/L	5.0	0.40	1		09/15/23 23:14		
Bromochloromethane	ND	ug/L	5.0	0.33	1		09/15/23 23:14		
Bromodichloromethane	ND ND	ug/L ug/L	5.0	0.33	1		09/15/23 23:14		
Bromoform	ND ND	ug/L ug/L	5.0	0.29	1		09/15/23 23:14		
Bromomethane	ND ND	-	5.0	0.29	1		09/15/23 23:14		
2-Butanone (MEK)	ND ND	ug/L ug/L	25.0	3.3	1		09/15/23 23:14		
, ,		-			1				
n-Butylbenzene	ND	ug/L	5.0	0.39			09/15/23 23:14		
sec-Butylbenzene	ND	ug/L	5.0	0.36	1 1		09/15/23 23:14		
tert-Butylbenzene	ND	ug/L	5.0	0.38			09/15/23 23:14		
Carbon disulfide	ND	ug/L	10.0	0.62	1		09/15/23 23:14		
Carbon tetrachloride	ND	ug/L	5.0	0.29	1		09/15/23 23:14		
Chlorobenzene	ND	ug/L	5.0	0.35	1		09/15/23 23:14		
Chloroethane	ND	ug/L	5.0	0.44	1		09/15/23 23:14		
Chloroform	ND	ug/L	5.0	2.6	1		09/15/23 23:14		
Chloromethane	ND	ug/L	5.0	0.56	1		09/15/23 23:14		
2-Chlorotoluene	ND	ug/L	5.0	0.37	1		09/15/23 23:14		
4-Chlorotoluene	ND	ug/L	5.0	0.40	1		09/15/23 23:14		
Dibromochloromethane	ND	ug/L	5.0	0.31	1		09/15/23 23:14		
1,2-Dibromoethane (EDB)	ND	ug/L	5.0	0.29	1		09/15/23 23:14		
Dibromomethane	ND	ug/L	5.0	0.46	1		09/15/23 23:14		
1,2-Dichlorobenzene	ND	ug/L	5.0	0.34	1		09/15/23 23:14		
1,3-Dichlorobenzene	ND	ug/L	5.0	0.40	1		09/15/23 23:14		
1,4-Dichlorobenzene	ND	ug/L	5.0	0.39	1		09/15/23 23:14		
trans-1,4-Dichloro-2-butene	ND	ug/L	100	0.42	1		09/15/23 23:14		
Dichlorodifluoromethane	ND	ug/L	5.0	0.38	1		09/15/23 23:14		
1,1-Dichloroethane	ND	ug/L	5.0	0.37	1		09/15/23 23:14		
1,2-Dichloroethane	ND	ug/L	5.0	0.34	1		09/15/23 23:14		
1,1-Dichloroethene	ND	ug/L	5.0	0.37	1		09/15/23 23:14		
cis-1,2-Dichloroethene	139	ug/L	5.0	0.48	1		09/15/23 23:14	156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	5.0	0.48	1		09/15/23 23:14		
1,2-Dichloropropane	ND	ug/L	5.0	0.33	1		09/15/23 23:14	78-87-5	
1,3-Dichloropropane	ND	ug/L	5.0	0.30	1		09/15/23 23:14	142-28-9	
2,2-Dichloropropane	ND	ug/L	5.0	0.37	1		09/15/23 23:14	594-20-7	
1,1-Dichloropropene	ND	ug/L	5.0	0.34	1		09/15/23 23:14	563-58-6	
cis-1,3-Dichloropropene	ND	ug/L	5.0	0.31	1		09/15/23 23:14	10061-01-5	
trans-1,3-Dichloropropene	ND	ug/L	5.0	0.28	1		09/15/23 23:14	10061-02-6	
Ethylbenzene	ND	ug/L	5.0	0.40	1		09/15/23 23:14	100-41-4	
Ethyl methacrylate	ND	ug/L	100	0.32	1		09/15/23 23:14	97-63-2	
Hexachloro-1,3-butadiene	ND	ug/L	5.0	0.48	1		09/15/23 23:14	87-68-3	
n-Hexane	ND	ug/L	5.0	0.36	1		09/15/23 23:14	110-54-3	
2-Hexanone	ND	ug/L	25.0	2.2	1		09/15/23 23:14	591-78-6	

Project: GE Indy
Pace Project No.: 50353438

Date: 09/19/2023 04:25 PM

Sample: MW-22-090823	Lab ID:	50353438033	Collected	l: 09/08/23	3 08:45	Received: 09	9/08/23 11:29 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF ———	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Ana	lytical Services	- Indianapol	is					
Iodomethane	ND	ug/L	10.0	2.0	1		09/15/23 23:14	74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	5.0	0.36	1		09/15/23 23:14	98-82-8	
p-Isopropyltoluene	ND	ug/L	5.0	0.41	1		09/15/23 23:14	99-87-6	
Methylene Chloride	ND	ug/L	5.0	3.7	1		09/15/23 23:14	75-09-2	
1-Methylnaphthalene	ND	ug/L	10.0	2.1	1		09/15/23 23:14	90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	2.1	1		09/15/23 23:14	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	2.1	1		09/15/23 23:14	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	4.0	0.66	1		09/15/23 23:14	1634-04-4	
Naphthalene	ND	ug/L	1.2	0.57	1		09/15/23 23:14	91-20-3	
n-Propylbenzene	ND	ug/L	5.0	0.37	1		09/15/23 23:14	103-65-1	
Styrene	ND	ug/L	5.0	0.39	1		09/15/23 23:14	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.34	1		09/15/23 23:14	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.35	1		09/15/23 23:14	79-34-5	
Tetrachloroethene	ND	ug/L	5.0	0.36	1		09/15/23 23:14	127-18-4	
Toluene	ND	ug/L	5.0	0.38	1		09/15/23 23:14	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	0.42	1		09/15/23 23:14	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	5.0	0.42	1		09/15/23 23:14	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	5.0	0.31	1		09/15/23 23:14	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	5.0	0.33	1		09/15/23 23:14	79-00-5	
Trichloroethene	ND	ug/L	5.0	0.41	1		09/15/23 23:14	79-01-6	
Trichlorofluoromethane	ND	ug/L	5.0	0.36	1		09/15/23 23:14	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	5.0	0.33	1		09/15/23 23:14	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/L	5.0	0.37	1		09/15/23 23:14	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.38	1		09/15/23 23:14	108-67-8	
Vinyl acetate	ND	ug/L	50.0	1.7	1		09/15/23 23:14	108-05-4	
Vinyl chloride	153	ug/L	2.0	0.40	1		09/18/23 19:39		
Xylene (Total)	ND	ug/L	10.0	1.5	1		09/15/23 23:14	1330-20-7	
Surrogates		Ü							
Dibromofluoromethane (S)	109	%.	82-128		1		09/15/23 23:14	1868-53-7	
4-Bromofluorobenzene (S)	102	%.	79-124		1		09/15/23 23:14	460-00-4	
Toluene-d8 (S)	97	%.	73-122		1		09/15/23 23:14	2037-26-5	

Project: GE Indy
Pace Project No.: 50353438

Date: 09/19/2023 04:25 PM

Sample: W-9-090823	Lab ID:	50353438034	Collected:	09/08/23	8 08:50	Received: 09	9/08/23 11:29 N	latrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
RSK 175 Headspace	Analytical	Method: RSK 1	175 Modified						
	Pace Ana	lytical Services	- Indianapolis	S					
Ethane	328	ug/L	50.0	19.1	5		09/14/23 09:53	3 74-84-0	
Ethene	ND	ug/L	50.0	35.5	5		09/14/23 09:53		
Methane	47000	ug/L	50.0	27.5	5		09/14/23 09:53		
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Ana	lytical Services	- Indianapoli	S					
Acetone	ND	ug/L	100	8.6	1		09/15/23 23:44	1 67-64-1	L1
Acrolein	ND	ug/L	50.0	13.4	1		09/15/23 23:44	107-02-8	
Acrylonitrile	ND	ug/L	100	3.0	1		09/15/23 23:44	107-13-1	
Benzene	ND	ug/L	5.0	0.46	1		09/15/23 23:44	1 71-43-2	
Bromobenzene	ND	ug/L	5.0	0.41	1		09/15/23 23:44	1 108-86-1	
Bromochloromethane	ND	ug/L	5.0	0.33	1		09/15/23 23:44	1 74-97-5	
Bromodichloromethane	ND	ug/L	5.0	0.29	1		09/15/23 23:44	75-27-4	
Bromoform	ND	ug/L	5.0	0.29	1		09/15/23 23:44	75-25-2	
Bromomethane	ND	ug/L	5.0	0.51	1		09/15/23 23:44	1 74-83-9	
2-Butanone (MEK)	ND	ug/L	25.0	3.3	1		09/15/23 23:44	78-93-3	
n-Butylbenzene	ND	ug/L	5.0	0.39	1		09/15/23 23:44	1 104-51-8	
sec-Butylbenzene	ND	ug/L	5.0	0.36	1		09/15/23 23:44	1 135-98-8	
tert-Butylbenzene	ND	ug/L	5.0	0.38	1		09/15/23 23:44	98-06-6	
Carbon disulfide	ND	ug/L	10.0	0.62	1		09/15/23 23:44	75-15-0	
Carbon tetrachloride	ND	ug/L	5.0	0.29	1		09/15/23 23:44	56-23-5	
Chlorobenzene	ND	ug/L	5.0	0.35	1		09/15/23 23:44	108-90-7	
Chloroethane	ND	ug/L	5.0	0.44	1		09/15/23 23:44	75-00-3	
Chloroform	ND	ug/L	5.0	2.6	1		09/15/23 23:44	1 67-66-3	
Chloromethane	ND	ug/L	5.0	0.56	1		09/15/23 23:44	1 74-87-3	
2-Chlorotoluene	ND	ug/L	5.0	0.37	1		09/15/23 23:44	95-49-8	
4-Chlorotoluene	ND	ug/L	5.0	0.40	1		09/15/23 23:44	106-43-4	
Dibromochloromethane	ND	ug/L	5.0	0.31	1		09/15/23 23:44	1 124-48-1	
1,2-Dibromoethane (EDB)	ND	ug/L	5.0	0.29	1		09/15/23 23:44	106-93-4	
Dibromomethane	ND	ug/L	5.0	0.46	1		09/15/23 23:44	1 74-95-3	
1,2-Dichlorobenzene	ND	ug/L	5.0	0.34	1		09/15/23 23:44	95-50-1	
1,3-Dichlorobenzene	ND	ug/L	5.0	0.40	1		09/15/23 23:44	541-73-1	
1,4-Dichlorobenzene	ND	ug/L	5.0	0.39	1		09/15/23 23:44	1 106-46-7	
trans-1,4-Dichloro-2-butene	ND	ug/L	100	0.42	1		09/15/23 23:44	110-57-6	
Dichlorodifluoromethane	ND	ug/L	5.0	0.38	1		09/15/23 23:44	75-71-8	
1,1-Dichloroethane	ND	ug/L	5.0	0.37	1		09/15/23 23:44	75-34-3	
1,2-Dichloroethane	ND	ug/L	5.0	0.34	1		09/15/23 23:44	107-06-2	
1,1-Dichloroethene	ND	ug/L	5.0	0.37	1		09/15/23 23:44		
cis-1,2-Dichloroethene	ND	ug/L	5.0	0.48	1		09/15/23 23:44		
trans-1,2-Dichloroethene	ND	ug/L	5.0	0.48	1		09/15/23 23:44		
1,2-Dichloropropane	ND	ug/L	5.0	0.33	1		09/15/23 23:44		
1,3-Dichloropropane	ND	ug/L	5.0	0.30	1		09/15/23 23:44		
2,2-Dichloropropane	ND	ug/L	5.0	0.37	1		09/15/23 23:44		
1,1-Dichloropropene	ND	ug/L	5.0	0.34	1		09/15/23 23:44		
cis-1,3-Dichloropropene	ND	ug/L	5.0	0.31	1		09/15/23 23:44		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: GE Indy
Pace Project No.: 50353438

Date: 09/19/2023 04:25 PM

Parameters 8260 MSV Indiana trans-1,3-Dichloropropene	•	Units	Report Limit	MDL					
3260 MSV Indiana	- ————————————————————————————————————		Limit	MDI					
	•			.,,,,,,	DF ——	Prepared	Analyzed	CAS No.	Qua
rans-1 3-Dichloronronana	Pace Ana	Method: EPA 5	030/8260						
rans-1 3-Dichloropropene		lytical Services	- Indianapolis	3					
rans 1,5 Dicinoroproperie	ND	ug/L	5.0	0.28	1		09/15/23 23:44	1 10061-02-6	
Ethylbenzene	ND	ug/L	5.0	0.40	1		09/15/23 23:44	1 100-41-4	
Ethyl methacrylate	ND	ug/L	100	0.32	1		09/15/23 23:44	1 97-63-2	
Hexachloro-1,3-butadiene	ND	ug/L	5.0	0.48	1		09/15/23 23:44	4 87-68-3	
n-Hexane	ND	ug/L	5.0	0.36	1		09/15/23 23:44	1 110-54-3	
2-Hexanone	ND	ug/L	25.0	2.2	1		09/15/23 23:44	1 591-78-6	
odomethane	ND	ug/L	10.0	2.0	1		09/15/23 23:44	1 74-88-4	
sopropylbenzene (Cumene)	ND	ug/L	5.0	0.36	1		09/15/23 23:44	1 98-82-8	
o-Isopropyltoluene	ND	ug/L	5.0	0.41	1		09/15/23 23:44	1 99-87-6	
Methylene Chloride	ND	ug/L	5.0	3.7	1		09/15/23 23:44	1 75-09-2	
1-Methylnaphthalene	ND	ug/L	10.0	2.1	1		09/15/23 23:44	1 90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	2.1	1		09/15/23 23:44	1 91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	2.1	1		09/15/23 23:44		
Methyl-tert-butyl ether	ND	ug/L	4.0	0.66	1		09/15/23 23:44		
Naphthalene	ND	ug/L	1.2	0.57	1		09/15/23 23:44		
n-Propylbenzene	ND	ug/L	5.0	0.37	1		09/15/23 23:44		
Styrene	ND	ug/L	5.0	0.39	1		09/15/23 23:44		
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.34	1		09/15/23 23:44		
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.35	1		09/15/23 23:44		
Tetrachloroethene	ND	ug/L	5.0	0.36	1		09/15/23 23:44		
Toluene	ND	ug/L	5.0	0.38	1		09/15/23 23:44	_	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	0.42	1		09/15/23 23:44		
1,2,4-Trichlorobenzene	ND ND	ug/L	5.0	0.42	1		09/15/23 23:44		
1,1,1-Trichloroethane	ND ND	ug/L	5.0	0.42	1		09/15/23 23:44		
1,1,2-Trichloroethane	ND ND	ug/L	5.0	0.33	1		09/15/23 23:44		
Trichloroethene	ND ND	ug/L ug/L	5.0	0.33	1		09/15/23 23:44		
Trichlorofluoromethane	ND ND	-	5.0 5.0	0.41	1		09/15/23 23:44		
	ND ND	ug/L	5.0 5.0	0.36	1				
1,2,3-Trichloropropane		ug/L					09/15/23 23:44		
1,2,4-Trimethylbenzene	ND	ug/L	5.0	0.37	1		09/15/23 23:44		
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.38	1		09/15/23 23:44		
Vinyl acetate	ND	ug/L	50.0	1.7	1		09/15/23 23:44		
Vinyl chloride	ND	ug/L	2.0	0.40	1		09/15/23 23:44		
Xylene (Total)	ND	ug/L	10.0	1.5	1		09/15/23 23:44	1330-20-7	
Surrogates	440	0/	00.400		4		00/45/00 00 4	1 1000 50 7	
Dibromofluoromethane (S)	110	%.	82-128		1		09/15/23 23:44		
4-Bromofluorobenzene (S) Toluene-d8 (S)	106 97	%. %.	79-124 73-122		1 1		09/15/23 23:44 09/15/23 23:44		

Project: GE Indy
Pace Project No.: 50353438

Date: 09/19/2023 04:25 PM

Sample: W-82-090823	Lab ID:	50353438035	Collected	d: 09/08/23	3 09:00	Received: 09	9/08/23 11:29	Matrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	•	lytical Services		lis					
Acetone	ND	ug/L	100	8.6	1		09/16/23 03:	19 67-64-1	
Acrolein	ND	ug/L	50.0	13.4	1		09/16/23 03:	19 107-02-8	
Acrylonitrile	ND	ug/L	100	3.0	1		09/16/23 03:	19 107-13-1	
Benzene	ND	ug/L	5.0	0.46	1		09/16/23 03:	19 71-43-2	
Bromobenzene	ND	ug/L	5.0	0.41	1		09/16/23 03:	19 108-86-1	
Bromochloromethane	ND	ug/L	5.0	0.33	1		09/16/23 03:		
Bromodichloromethane	ND	ug/L	5.0	0.29	1		09/16/23 03:		
Bromoform	ND	ug/L	5.0	0.29	1		09/16/23 03:		
Bromomethane	ND	ug/L	5.0	0.51	1		09/16/23 03:		
2-Butanone (MEK)	ND	ug/L	25.0	3.3	1		09/16/23 03:		
n-Butylbenzene	ND	ug/L	5.0	0.39	1		09/16/23 03:		
sec-Butylbenzene	ND	ug/L	5.0	0.36	1		09/16/23 03:		
ert-Butylbenzene	ND	ug/L	5.0	0.38	1		09/16/23 03:		
Carbon disulfide	ND	ug/L	10.0	0.62	1		09/16/23 03:		
Carbon tetrachloride	ND	ug/L	5.0	0.29	1		09/16/23 03:		
Chlorobenzene	ND	ug/L	5.0	0.25	1		09/16/23 03:		
Chloroethane	ND ND	ug/L ug/L	5.0	0.33	1		09/16/23 03:		
Chloroform	ND ND	ug/L ug/L	5.0	2.6	1		09/16/23 03:		
Chloromethane	ND ND	_	5.0	0.56	1		09/16/23 03:		
		ug/L			1				
2-Chlorotoluene	ND	ug/L	5.0	0.37			09/16/23 03:		
1-Chlorotoluene	ND	ug/L	5.0	0.40	1		09/16/23 03:		
Dibromochloromethane	ND	ug/L	5.0	0.31	1		09/16/23 03:		
1,2-Dibromoethane (EDB)	ND	ug/L	5.0	0.29	1		09/16/23 03:		
Dibromomethane	ND	ug/L	5.0	0.46	1		09/16/23 03:		
1,2-Dichlorobenzene	ND	ug/L	5.0	0.34	1		09/16/23 03:		
1,3-Dichlorobenzene	ND	ug/L	5.0	0.40	1		09/16/23 03:		
1,4-Dichlorobenzene	ND	ug/L	5.0	0.39	1		09/16/23 03:		
rans-1,4-Dichloro-2-butene	ND	ug/L	100	0.42	1		09/16/23 03:		
Dichlorodifluoromethane	ND	ug/L	5.0	0.38	1		09/16/23 03:		
1,1-Dichloroethane	ND	ug/L	5.0	0.37	1		09/16/23 03:		
1,2-Dichloroethane	ND	ug/L	5.0	0.34	1			19 107-06-2	
I,1-Dichloroethene	ND	ug/L	5.0	0.37	1		09/16/23 03:		
cis-1,2-Dichloroethene	ND	ug/L	5.0	0.48	1		09/16/23 03:		
rans-1,2-Dichloroethene	ND	ug/L	5.0	0.48	1		09/16/23 03:		
,2-Dichloropropane	ND	ug/L	5.0	0.33	1		09/16/23 03:		
1,3-Dichloropropane	ND	ug/L	5.0	0.30	1		09/16/23 03:	19 142-28-9	
2,2-Dichloropropane	ND	ug/L	5.0	0.37	1			19 594-20-7	
,1-Dichloropropene	ND	ug/L	5.0	0.34	1		09/16/23 03:		
cis-1,3-Dichloropropene	ND	ug/L	5.0	0.31	1			19 10061-01-5	
rans-1,3-Dichloropropene	ND	ug/L	5.0	0.28	1		09/16/23 03:	19 10061-02-6	
Ethylbenzene	ND	ug/L	5.0	0.40	1		09/16/23 03:	19 100-41-4	
Ethyl methacrylate	ND	ug/L	100	0.32	1		09/16/23 03:	19 97-63-2	
Hexachloro-1,3-butadiene	ND	ug/L	5.0	0.48	1		09/16/23 03:	19 87-68-3	
n-Hexane	ND	ug/L	5.0	0.36	1		09/16/23 03:	19 110-54-3	
2-Hexanone	ND	ug/L	25.0	2.2	1		09/16/23 03:	19 591-78-6	

Project: GE Indy
Pace Project No.: 50353438

Date: 09/19/2023 04:25 PM

Sample: W-82-090823	Lab ID:	50353438035	Collected	d: 09/08/23	3 09:00	Received: 09	9/08/23 11:29 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Ana	lytical Services	- Indianapo	lis					
lodomethane	ND	ug/L	10.0	2.0	1		09/16/23 03:19	74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	5.0	0.36	1		09/16/23 03:19	98-82-8	
p-Isopropyltoluene	ND	ug/L	5.0	0.41	1		09/16/23 03:19	99-87-6	
Methylene Chloride	ND	ug/L	5.0	3.7	1		09/16/23 03:19	75-09-2	
1-Methylnaphthalene	ND	ug/L	10.0	2.1	1		09/16/23 03:19	90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	2.1	1		09/16/23 03:19	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	2.1	1		09/16/23 03:19	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	4.0	0.66	1		09/16/23 03:19	1634-04-4	
Naphthalene	ND	ug/L	1.2	0.57	1		09/16/23 03:19	91-20-3	
n-Propylbenzene	ND	ug/L	5.0	0.37	1		09/16/23 03:19	103-65-1	
Styrene	ND	ug/L	5.0	0.39	1		09/16/23 03:19	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.34	1		09/16/23 03:19	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.35	1		09/16/23 03:19	79-34-5	
Tetrachloroethene	ND	ug/L	5.0	0.36	1		09/16/23 03:19	127-18-4	
Toluene	ND	ug/L	5.0	0.38	1		09/16/23 03:19	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	0.42	1		09/16/23 03:19	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	5.0	0.42	1		09/16/23 03:19		
1,1,1-Trichloroethane	ND	ug/L	5.0	0.31	1		09/16/23 03:19	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	5.0	0.33	1		09/16/23 03:19	79-00-5	
Trichloroethene	ND	ug/L	5.0	0.41	1		09/16/23 03:19	79-01-6	
Trichlorofluoromethane	ND	ug/L	5.0	0.36	1		09/16/23 03:19	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	5.0	0.33	1		09/16/23 03:19		
1,2,4-Trimethylbenzene	ND	ug/L	5.0	0.37	1		09/16/23 03:19	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.38	1		09/16/23 03:19	108-67-8	
Vinyl acetate	ND	ug/L	50.0	1.7	1		09/16/23 03:19	108-05-4	
Vinyl chloride	ND	ug/L	2.0	0.40	1		09/16/23 03:19	75-01-4	
Xylene (Total)	ND	ug/L	10.0	1.5	1		09/16/23 03:19		
Surrogates		Č							
Dibromofluoromethane (S)	110	%.	82-128		1		09/16/23 03:19	1868-53-7	
4-Bromofluorobenzene (S)	102	%.	79-124		1		09/16/23 03:19	460-00-4	
Toluene-d8 (S)	98	%.	73-122		1		09/16/23 03:19	2037-26-5	

Project: GE Indy
Pace Project No.: 50353436

Date: 09/19/2023 04:25 PM

Sample: MW-173-090823	Lab ID:	50353438036	Collected	I: 09/08/23	09:15	Received: 09	9/08/23 11:29 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	-	lytical Services		is					
Acetone	ND	ug/L	100	8.6	1		09/16/23 03:50	67-64-1	
Acrolein	ND	ug/L	50.0	13.4	1		09/16/23 03:50	107-02-8	
Acrylonitrile	ND	ug/L	100	3.0	1		09/16/23 03:50	107-13-1	
Benzene	ND	ug/L	5.0	0.46	1		09/16/23 03:50	71-43-2	
Bromobenzene	ND	ug/L	5.0	0.41	1		09/16/23 03:50		
Bromochloromethane	ND	ug/L	5.0	0.33	1		09/16/23 03:50		
Bromodichloromethane	ND	ug/L	5.0	0.29	1		09/16/23 03:50		
Bromoform	ND	ug/L	5.0	0.29	1		09/16/23 03:50		
Bromomethane	ND	ug/L	5.0	0.51	1		09/16/23 03:50		
2-Butanone (MEK)	ND	ug/L	25.0	3.3	1		09/16/23 03:50		
n-Butylbenzene	ND ND	ug/L	5.0	0.39	1		09/16/23 03:50		
sec-Butylbenzene	ND ND	ug/L	5.0	0.36	1		09/16/23 03:50		
ert-Butylbenzene	ND ND	ug/L ug/L	5.0	0.38	1		09/16/23 03:50		
Carbon disulfide	ND ND	-	10.0	0.62	1		09/16/23 03:50		
		ug/L							
Carbon tetrachloride	ND	ug/L	5.0	0.29	1		09/16/23 03:50		
Chlorobenzene	ND	ug/L	5.0	0.35	1		09/16/23 03:50		
Chloroethane	ND	ug/L	5.0	0.44	1		09/16/23 03:50		
Chloroform	ND	ug/L	5.0	2.6	1		09/16/23 03:50		
Chloromethane	ND	ug/L	5.0	0.56	1		09/16/23 03:50		
2-Chlorotoluene	ND	ug/L	5.0	0.37	1		09/16/23 03:50		
4-Chlorotoluene	ND	ug/L	5.0	0.40	1		09/16/23 03:50		
Dibromochloromethane	ND	ug/L	5.0	0.31	1		09/16/23 03:50		
1,2-Dibromoethane (EDB)	ND	ug/L	5.0	0.29	1		09/16/23 03:50		
Dibromomethane	ND	ug/L	5.0	0.46	1		09/16/23 03:50	74-95-3	
1,2-Dichlorobenzene	ND	ug/L	5.0	0.34	1		09/16/23 03:50	95-50-1	
1,3-Dichlorobenzene	ND	ug/L	5.0	0.40	1		09/16/23 03:50	541-73-1	
1,4-Dichlorobenzene	ND	ug/L	5.0	0.39	1		09/16/23 03:50	106-46-7	
rans-1,4-Dichloro-2-butene	ND	ug/L	100	0.42	1		09/16/23 03:50	110-57-6	
Dichlorodifluoromethane	ND	ug/L	5.0	0.38	1		09/16/23 03:50	75-71-8	
1,1-Dichloroethane	ND	ug/L	5.0	0.37	1		09/16/23 03:50	75-34-3	
1,2-Dichloroethane	9.9	ug/L	5.0	0.34	1		09/16/23 03:50	107-06-2	
1,1-Dichloroethene	ND	ug/L	5.0	0.37	1		09/16/23 03:50	75-35-4	
cis-1,2-Dichloroethene	1080	ug/L	100	9.6	20		09/18/23 21:11	156-59-2	
rans-1,2-Dichloroethene	16.9	ug/L	5.0	0.48	1		09/16/23 03:50	156-60-5	
,2-Dichloropropane	ND	ug/L	5.0	0.33	1		09/16/23 03:50		
, 3-Dichloropropane	ND	ug/L	5.0	0.30	1		09/16/23 03:50	142-28-9	
2,2-Dichloropropane	ND	ug/L	5.0	0.37	1		09/16/23 03:50		
1,1-Dichloropropene	ND	ug/L	5.0	0.34	1		09/16/23 03:50		
cis-1,3-Dichloropropene	ND	ug/L	5.0	0.31	1		09/16/23 03:50		
trans-1,3-Dichloropropene	ND	ug/L	5.0	0.28	1		09/16/23 03:50		
Ethylbenzene	ND	ug/L	5.0	0.40	1		09/16/23 03:50		
Ethyl methacrylate	ND ND	ug/L	100	0.32	1		09/16/23 03:50		
Hexachloro-1,3-butadiene	ND ND	ug/L	5.0	0.48	1		09/16/23 03:50		
n-Hexane	ND ND	ug/L ug/L	5.0	0.46	1		09/16/23 03:50		
2-Hexanone	ND ND	ug/L ug/L	25.0	2.2	1		09/16/23 03:50		

Project: GE Indy
Pace Project No.: 50353438

Date: 09/19/2023 04:25 PM

Sample: MW-173-090823	Lab ID:	50353438036	Collected	d: 09/08/23	3 09:15	Received: 09	9/08/23 11:29 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA	5030/8260						
	Pace Anal	ytical Services	s - Indianapo	lis					
lodomethane	ND	ug/L	10.0	2.0	1		09/16/23 03:50	74-88-4	
sopropylbenzene (Cumene)	ND	ug/L	5.0	0.36	1		09/16/23 03:50	98-82-8	
o-Isopropyltoluene	ND	ug/L	5.0	0.41	1		09/16/23 03:50	99-87-6	
Methylene Chloride	ND	ug/L	5.0	3.7	1		09/16/23 03:50	75-09-2	
1-Methylnaphthalene	ND	ug/L	10.0	2.1	1		09/16/23 03:50	90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	2.1	1		09/16/23 03:50	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	2.1	1		09/16/23 03:50	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	4.0	0.66	1		09/16/23 03:50	1634-04-4	
Naphthalene	ND	ug/L	1.2	0.57	1		09/16/23 03:50	91-20-3	
n-Propylbenzene	ND	ug/L	5.0	0.37	1		09/16/23 03:50	103-65-1	
Styrene	ND	ug/L	5.0	0.39	1		09/16/23 03:50	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.34	1		09/16/23 03:50	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.35	1		09/16/23 03:50	79-34-5	
Tetrachloroethene	ND	ug/L	5.0	0.36	1		09/16/23 03:50	127-18-4	
Toluene	ND	ug/L	5.0	0.38	1		09/16/23 03:50	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	0.42	1		09/16/23 03:50	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	5.0	0.42	1		09/16/23 03:50	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	5.0	0.31	1		09/16/23 03:50	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	5.0	0.33	1		09/16/23 03:50	79-00-5	
Trichloroethene	ND	ug/L	5.0	0.41	1		09/16/23 03:50	79-01-6	
Trichlorofluoromethane	ND	ug/L	5.0	0.36	1		09/16/23 03:50	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	5.0	0.33	1		09/16/23 03:50	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/L	5.0	0.37	1		09/16/23 03:50	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.38	1		09/16/23 03:50	108-67-8	
Vinyl acetate	ND	ug/L	50.0	1.7	1		09/16/23 03:50	108-05-4	
√inyl chloride	64.6	ug/L	2.0	0.40	1		09/16/23 03:50	75-01-4	2d,CL
Xylene (Total)	ND	ug/L	10.0	1.5	1		09/16/23 03:50	1330-20-7	
Surrogates									
Dibromofluoromethane (S)	110	%.	82-128		1		09/16/23 03:50		
4-Bromofluorobenzene (S)	102	%.	79-124		1		09/16/23 03:50	460-00-4	
Toluene-d8 (S)	99	%.	73-122		1		09/16/23 03:50	2037-26-5	

Project: GE Indy
Pace Project No.: 5035343

Date: 09/19/2023 04:25 PM

Sample: MW-426-090823	Lab ID:	50353438037	Collected	1: 09/08/23	3 09:20	Received: 09	9/08/23 11:29 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
3260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	-	lytical Services		is					
Acetone	ND	ug/L	100	8.6	1		09/16/23 04:20	67-64-1	
Acrolein	ND	ug/L	50.0	13.4	1		09/16/23 04:20	107-02-8	
Acrylonitrile	ND	ug/L	100	3.0	1		09/16/23 04:20	107-13-1	
Benzene	ND	ug/L	5.0	0.46	1		09/16/23 04:20	71-43-2	
Bromobenzene	ND	ug/L	5.0	0.41	1		09/16/23 04:20	108-86-1	
Bromochloromethane	ND	ug/L	5.0	0.33	1		09/16/23 04:20		
Bromodichloromethane	ND	ug/L	5.0	0.29	1		09/16/23 04:20		
Bromoform	ND	ug/L	5.0	0.29	1		09/16/23 04:20		
Bromomethane	ND	ug/L	5.0	0.51	1		09/16/23 04:20		
2-Butanone (MEK)	ND	ug/L	25.0	3.3	1		09/16/23 04:20		
n-Butylbenzene	ND ND	ug/L	5.0	0.39	1		09/16/23 04:20		
sec-Butylbenzene	ND ND	ug/L	5.0	0.36	1		09/16/23 04:20		
ert-Butylbenzene	ND ND	ug/L ug/L	5.0	0.38	1		09/16/23 04:20		
Carbon disulfide	ND ND	_	10.0	0.62	1		09/16/23 04:20		
		ug/L					09/16/23 04:20		
Carbon tetrachloride	ND	ug/L	5.0	0.29	1				
Chlorobenzene	ND	ug/L	5.0	0.35	1		09/16/23 04:20		
Chloroethane	5210	ug/L	250	22.0	50		09/18/23 21:42		
Chloroform	ND	ug/L	5.0	2.6	1		09/16/23 04:20		
Chloromethane	ND	ug/L	5.0	0.56	1		09/16/23 04:20		
2-Chlorotoluene	ND	ug/L	5.0	0.37	1		09/16/23 04:20		
4-Chlorotoluene	ND	ug/L	5.0	0.40	1		09/16/23 04:20		
Dibromochloromethane	ND	ug/L	5.0	0.31	1		09/16/23 04:20		
1,2-Dibromoethane (EDB)	ND	ug/L	5.0	0.29	1		09/16/23 04:20		
Dibromomethane	ND	ug/L	5.0	0.46	1		09/16/23 04:20	74-95-3	
1,2-Dichlorobenzene	ND	ug/L	5.0	0.34	1		09/16/23 04:20	95-50-1	
1,3-Dichlorobenzene	ND	ug/L	5.0	0.40	1		09/16/23 04:20	541-73-1	
1,4-Dichlorobenzene	ND	ug/L	5.0	0.39	1		09/16/23 04:20	106-46-7	
rans-1,4-Dichloro-2-butene	ND	ug/L	100	0.42	1		09/16/23 04:20	110-57-6	
Dichlorodifluoromethane	ND	ug/L	5.0	0.38	1		09/16/23 04:20	75-71-8	
1,1-Dichloroethane	42.2	ug/L	5.0	0.37	1		09/16/23 04:20	75-34-3	
1,2-Dichloroethane	10.5	ug/L	5.0	0.34	1		09/16/23 04:20	107-06-2	
1,1-Dichloroethene	ND	ug/L	5.0	0.37	1		09/16/23 04:20	75-35-4	
cis-1,2-Dichloroethene	1170	ug/L	250	24.0	50		09/18/23 21:42	156-59-2	
rans-1,2-Dichloroethene	16.6	ug/L	5.0	0.48	1		09/16/23 04:20	156-60-5	
1,2-Dichloropropane	ND	ug/L	5.0	0.33	1		09/16/23 04:20	78-87-5	
, 3-Dichloropropane	ND	ug/L	5.0	0.30	1		09/16/23 04:20	142-28-9	
2,2-Dichloropropane	ND	ug/L	5.0	0.37	1		09/16/23 04:20		
I,1-Dichloropropene	ND	ug/L	5.0	0.34	1		09/16/23 04:20		
cis-1,3-Dichloropropene	ND	ug/L	5.0	0.31	1		09/16/23 04:20		
trans-1,3-Dichloropropene	ND	ug/L	5.0	0.28	1		09/16/23 04:20		
Ethylbenzene	ND	ug/L	5.0	0.40	1		09/16/23 04:20		
Ethyl methacrylate	ND ND	ug/L	100	0.32	1		09/16/23 04:20		
Hexachloro-1,3-butadiene	ND ND	ug/L	5.0	0.48	1		09/16/23 04:20		
n-Hexane	ND ND	ug/L ug/L	5.0	0.46	1		09/16/23 04:20		
2-Hexanone	ND ND	ug/L ug/L	25.0	2.2	1		09/16/23 04:20		

Project: GE Indy
Pace Project No.: 50353438

Date: 09/19/2023 04:25 PM

Sample: MW-426-090823	Lab ID:	50353438037	Collected	d: 09/08/23	3 09:20	Received: 09	9/08/23 11:29 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Anal	ytical Services	- Indianapo	lis					
lodomethane	ND	ug/L	10.0	2.0	1		09/16/23 04:20	74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	5.0	0.36	1		09/16/23 04:20	98-82-8	
p-Isopropyltoluene	ND	ug/L	5.0	0.41	1		09/16/23 04:20	99-87-6	
Methylene Chloride	ND	ug/L	5.0	3.7	1		09/16/23 04:20	75-09-2	
1-Methylnaphthalene	ND	ug/L	10.0	2.1	1		09/16/23 04:20	90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	2.1	1		09/16/23 04:20	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	2.1	1		09/16/23 04:20	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	4.0	0.66	1		09/16/23 04:20	1634-04-4	
Naphthalene	ND	ug/L	1.2	0.57	1		09/16/23 04:20	91-20-3	
n-Propylbenzene	ND	ug/L	5.0	0.37	1		09/16/23 04:20	103-65-1	
Styrene	ND	ug/L	5.0	0.39	1		09/16/23 04:20	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.34	1		09/16/23 04:20	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.35	1		09/16/23 04:20	79-34-5	
Tetrachloroethene	ND	ug/L	5.0	0.36	1		09/16/23 04:20	127-18-4	
Toluene	ND	ug/L	5.0	0.38	1		09/16/23 04:20	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	0.42	1		09/16/23 04:20	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	5.0	0.42	1		09/16/23 04:20	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	5.0	0.31	1		09/16/23 04:20	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	5.0	0.33	1		09/16/23 04:20	79-00-5	
Trichloroethene	ND	ug/L	5.0	0.41	1		09/16/23 04:20	79-01-6	
Trichlorofluoromethane	ND	ug/L	5.0	0.36	1		09/16/23 04:20	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	5.0	0.33	1		09/16/23 04:20	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/L	5.0	0.37	1		09/16/23 04:20	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.38	1		09/16/23 04:20	108-67-8	
Vinyl acetate	ND	ug/L	50.0	1.7	1		09/16/23 04:20	108-05-4	
Vinyl chloride	759	ug/L	100	19.8	50		09/18/23 21:42	75-01-4	
Xylene (Total)	ND	ug/L	10.0	1.5	1		09/16/23 04:20	1330-20-7	
Surrogates		-							
Dibromofluoromethane (S)	108	%.	82-128		1		09/16/23 04:20	1868-53-7	
4-Bromofluorobenzene (S)	102	%.	79-124		1		09/16/23 04:20	460-00-4	
Toluene-d8 (S)	98	%.	73-122		1		09/16/23 04:20	2037-26-5	

Project: GE Indy
Pace Project No.: 50353436

Date: 09/19/2023 04:25 PM

Pace Project No.: 50353438									
Sample: W-8D-090823	Lab ID:	50353438038	Collected	: 09/08/23	09:30	Received: 09/0	08/23 11:29 M	fatrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
ozoo mov malana		lytical Services		s					
		•	•						
Acetone	ND	ug/L	100	8.6	1		09/16/23 04:51		
Acrolein	ND	ug/L	50.0	13.4	1		09/16/23 04:51		
Acrylonitrile	ND	ug/L	100	3.0	1		09/16/23 04:51		
Benzene	ND	ug/L	5.0	0.46	1		09/16/23 04:51	_	
Bromobenzene	ND	ug/L	5.0	0.41	1		09/16/23 04:51		
Bromochloromethane	ND	ug/L	5.0	0.33	1		09/16/23 04:51		
Bromodichloromethane	ND	ug/L	5.0	0.29	1		09/16/23 04:51		
Bromoform	ND	ug/L	5.0	0.29	1		09/16/23 04:51	1 75-25-2	
Bromomethane	ND	ug/L	5.0	0.51	1		09/16/23 04:51	1 74-83-9	
2-Butanone (MEK)	ND	ug/L	25.0	3.3	1		09/16/23 04:51	1 78-93-3	
n-Butylbenzene	ND	ug/L	5.0	0.39	1		09/16/23 04:51	1 104-51-8	
sec-Butylbenzene	ND	ug/L	5.0	0.36	1		09/16/23 04:51	1 135-98-8	
tert-Butylbenzene	ND	ug/L	5.0	0.38	1		09/16/23 04:51	1 98-06-6	
Carbon disulfide	ND	ug/L	10.0	0.62	1		09/16/23 04:51	1 75-15-0	
Carbon tetrachloride	ND	ug/L	5.0	0.29	1		09/16/23 04:51	1 56-23-5	
Chlorobenzene	ND	ug/L	5.0	0.35	1		09/16/23 04:51	1 108-90-7	
Chloroethane	ND	ug/L	5.0	0.44	1		09/16/23 04:51	1 75-00-3	
Chloroform	ND	ug/L	5.0	2.6	1		09/16/23 04:51	1 67-66-3	
Chloromethane	ND	ug/L	5.0	0.56	1		09/16/23 04:51	1 74-87-3	
2-Chlorotoluene	ND	ug/L	5.0	0.37	1		09/16/23 04:51		
4-Chlorotoluene	ND	ug/L	5.0	0.40	1		09/16/23 04:51		
Dibromochloromethane	ND	ug/L	5.0	0.31	1		09/16/23 04:51		
1,2-Dibromoethane (EDB)	ND	ug/L	5.0	0.29	1		09/16/23 04:51		
Dibromomethane	ND	ug/L	5.0	0.46	1		09/16/23 04:51		
1,2-Dichlorobenzene	ND	ug/L	5.0	0.34	1		09/16/23 04:51		
1,3-Dichlorobenzene	ND	ug/L	5.0	0.40	1		09/16/23 04:51		
1,4-Dichlorobenzene	ND	ug/L	5.0	0.39	1		09/16/23 04:51		
trans-1,4-Dichloro-2-butene	ND ND	ug/L ug/L	100	0.39	1		09/16/23 04:51		
Dichlorodifluoromethane	ND ND	ug/L ug/L	5.0	0.42	1		09/16/23 04:51		
1.1-Dichloroethane	ND ND	-	5.0	0.38	1		09/16/23 04:51		
,		ug/L							
1,2-Dichloroethane	ND	ug/L	5.0	0.34	1		09/16/23 04:51		
1,1-Dichloroethene	ND	ug/L	5.0	0.37	1		09/16/23 04:51		
cis-1,2-Dichloroethene	34.7	ug/L	5.0	0.48	1		09/16/23 04:51		
trans-1,2-Dichloroethene	ND	ug/L	5.0	0.48	1		09/16/23 04:51		
1,2-Dichloropropane	ND	ug/L	5.0	0.33	1		09/16/23 04:51		
1,3-Dichloropropane	ND	ug/L	5.0	0.30	1		09/16/23 04:51		
2,2-Dichloropropane	ND	ug/L	5.0	0.37	1		09/16/23 04:51		
1,1-Dichloropropene	ND	ug/L	5.0	0.34	1		09/16/23 04:51		
cis-1,3-Dichloropropene	ND	ug/L	5.0	0.31	1		09/16/23 04:51		
trans-1,3-Dichloropropene	ND	ug/L	5.0	0.28	1		09/16/23 04:51		
Ethylbenzene	ND	ug/L	5.0	0.40	1		09/16/23 04:51	1 100-41-4	
Ethyl methacrylate	ND	ug/L	100	0.32	1		09/16/23 04:51	1 97-63-2	
Hexachloro-1,3-butadiene	ND	ug/L	5.0	0.48	1		09/16/23 04:51	1 87-68-3	
n-Hexane	ND	ug/L	5.0	0.36	1		09/16/23 04:51	1 110-54-3	
2-Hexanone	ND	ug/L	25.0	2.2	1		09/16/23 04:51	1 591-78-6	

Project: GE Indy
Pace Project No.: 50353438

Date: 09/19/2023 04:25 PM

Sample: W-8D-090823	Lab ID:	50353438038	Collected	d: 09/08/23	3 09:30	Received: 09	9/08/23 11:29 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Ana	lytical Services	- Indianapo	lis					
lodomethane	ND	ug/L	10.0	2.0	1		09/16/23 04:51	74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	5.0	0.36	1		09/16/23 04:51	98-82-8	
p-Isopropyltoluene	ND	ug/L	5.0	0.41	1		09/16/23 04:51	99-87-6	
Methylene Chloride	ND	ug/L	5.0	3.7	1		09/16/23 04:51	75-09-2	
1-Methylnaphthalene	ND	ug/L	10.0	2.1	1		09/16/23 04:51	90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	2.1	1		09/16/23 04:51		
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	2.1	1		09/16/23 04:51	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	4.0	0.66	1		09/16/23 04:51	1634-04-4	
Naphthalene	ND	ug/L	1.2	0.57	1		09/16/23 04:51		
n-Propylbenzene	ND	ug/L	5.0	0.37	1		09/16/23 04:51	103-65-1	
Styrene	ND	ug/L	5.0	0.39	1		09/16/23 04:51	100-42-5	
1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.34	1		09/16/23 04:51	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.35	1		09/16/23 04:51		
Tetrachloroethene	ND	ug/L	5.0	0.36	1		09/16/23 04:51		
Toluene	ND	ug/L	5.0	0.38	1		09/16/23 04:51	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	0.42	1		09/16/23 04:51	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	5.0	0.42	1		09/16/23 04:51		
1,1,1-Trichloroethane	ND	ug/L	5.0	0.31	1		09/16/23 04:51		
1,1,2-Trichloroethane	ND	ug/L	5.0	0.33	1		09/16/23 04:51	79-00-5	
Trichloroethene	ND	ug/L	5.0	0.41	1		09/16/23 04:51		
Trichlorofluoromethane	ND	ug/L	5.0	0.36	1		09/16/23 04:51		
1,2,3-Trichloropropane	ND	ug/L	5.0	0.33	1		09/16/23 04:51		
1,2,4-Trimethylbenzene	ND	ug/L	5.0	0.37	1		09/16/23 04:51	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.38	1		09/16/23 04:51		
Vinyl acetate	ND	ug/L	50.0	1.7	1		09/16/23 04:51		
Vinyl chloride	77.8	ug/L	2.0	0.35	1		09/18/23 12:44		
Xylene (Total)	ND	ug/L	10.0	1.5	1		09/16/23 04:51		
Surrogates		- J							
Dibromofluoromethane (S)	109	%.	82-128		1		09/16/23 04:51	1868-53-7	
4-Bromofluorobenzene (S)	102	%.	79-124		1		09/16/23 04:51	460-00-4	
Toluene-d8 (S)	97	%.	73-122		1		09/16/23 04:51	2037-26-5	

Project: GE Indy
Pace Project No.: 50353436

Date: 09/19/2023 04:25 PM

Sample: MW-131-090823	Lab ID:	50353438039	Collected	d: 09/08/23	09:40	Received: 09)/08/23 11:29 M	latrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	-	lytical Services		is					
Acetone	ND	ug/L	100	8.6	1		09/16/23 05:22	67-64-1	
Acrolein	ND	ug/L	50.0	13.4	1		09/16/23 05:22	107-02-8	
Acrylonitrile	ND	ug/L	100	3.0	1		09/16/23 05:22	107-13-1	
Benzene	ND	ug/L	5.0	0.46	1		09/16/23 05:22	71-43-2	
Bromobenzene	ND	ug/L	5.0	0.41	1		09/16/23 05:22	108-86-1	
Bromochloromethane	ND	ug/L	5.0	0.33	1		09/16/23 05:22	74-97-5	
Bromodichloromethane	ND	ug/L	5.0	0.29	1		09/16/23 05:22		
Bromoform	ND	ug/L	5.0	0.29	1		09/16/23 05:22		
Bromomethane	ND	ug/L	5.0	0.51	1		09/16/23 05:22		
2-Butanone (MEK)	ND	ug/L	25.0	3.3	1		09/16/23 05:22		
n-Butylbenzene	ND	ug/L	5.0	0.39	1		09/16/23 05:22		
sec-Butylbenzene	ND	ug/L	5.0	0.36	1		09/16/23 05:22		
ert-Butylbenzene	ND	ug/L	5.0	0.38	1		09/16/23 05:22		
Carbon disulfide	ND	ug/L	10.0	0.62	1		09/16/23 05:22		
Carbon tetrachloride	5.7	ug/L	5.0	0.02	1		09/16/23 05:22		
Chlorobenzene		-			1				
	ND	ug/L	5.0	0.35			09/16/23 05:22		
Chloroethane	ND	ug/L	5.0	0.44	1		09/16/23 05:22		
Chloroform	11.1	ug/L	5.0	2.6	1		09/16/23 05:22		
Chloromethane	ND	ug/L	5.0	0.56	1		09/16/23 05:22		
2-Chlorotoluene	ND	ug/L	5.0	0.37	1		09/16/23 05:22		
4-Chlorotoluene	ND	ug/L	5.0	0.40	1		09/16/23 05:22		
Dibromochloromethane	ND	ug/L	5.0	0.31	1		09/16/23 05:22		
1,2-Dibromoethane (EDB)	ND	ug/L	5.0	0.29	1		09/16/23 05:22		
Dibromomethane	ND	ug/L	5.0	0.46	1		09/16/23 05:22		
1,2-Dichlorobenzene	ND	ug/L	5.0	0.34	1		09/16/23 05:22		
1,3-Dichlorobenzene	ND	ug/L	5.0	0.40	1		09/16/23 05:22		
1,4-Dichlorobenzene	ND	ug/L	5.0	0.39	1		09/16/23 05:22		
rans-1,4-Dichloro-2-butene	ND	ug/L	100	0.42	1		09/16/23 05:22		
Dichlorodifluoromethane	ND	ug/L	5.0	0.38	1		09/16/23 05:22		
1,1-Dichloroethane	16.4	ug/L	5.0	0.37	1		09/16/23 05:22	75-34-3	
1,2-Dichloroethane	ND	ug/L	5.0	0.34	1		09/16/23 05:22	107-06-2	
1,1-Dichloroethene	ND	ug/L	5.0	0.37	1		09/16/23 05:22	75-35-4	
cis-1,2-Dichloroethene	6.2	ug/L	5.0	0.48	1		09/16/23 05:22	156-59-2	
rans-1,2-Dichloroethene	ND	ug/L	5.0	0.48	1		09/16/23 05:22	156-60-5	
1,2-Dichloropropane	ND	ug/L	5.0	0.33	1		09/16/23 05:22	78-87-5	
1,3-Dichloropropane	ND	ug/L	5.0	0.30	1		09/16/23 05:22	142-28-9	
2,2-Dichloropropane	ND	ug/L	5.0	0.37	1		09/16/23 05:22	594-20-7	
1,1-Dichloropropene	ND	ug/L	5.0	0.34	1		09/16/23 05:22	563-58-6	
cis-1,3-Dichloropropene	ND	ug/L	5.0	0.31	1		09/16/23 05:22	10061-01-5	
trans-1,3-Dichloropropene	ND	ug/L	5.0	0.28	1		09/16/23 05:22		
Ethylbenzene	ND	ug/L	5.0	0.40	1		09/16/23 05:22		
Ethyl methacrylate	ND	ug/L	100	0.32	1		09/16/23 05:22		
Hexachloro-1,3-butadiene	ND	ug/L	5.0	0.48	1		09/16/23 05:22		
n-Hexane	ND	ug/L	5.0	0.36	1		09/16/23 05:22		
2-Hexanone	ND	ug/L	25.0	2.2	1		09/16/23 05:22		

Project: GE Indy
Pace Project No.: 50353438

Date: 09/19/2023 04:25 PM

Sample: MW-131-090823	Lab ID:	50353438039	Collected	d: 09/08/23	3 09:40	Received: 09	9/08/23 11:29 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Ana	lytical Services	- Indianapo	lis					
lodomethane	ND	ug/L	10.0	2.0	1		09/16/23 05:22	74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	5.0	0.36	1		09/16/23 05:22	98-82-8	
p-Isopropyltoluene	ND	ug/L	5.0	0.41	1		09/16/23 05:22	99-87-6	
Methylene Chloride	ND	ug/L	5.0	3.7	1		09/16/23 05:22	75-09-2	
1-Methylnaphthalene	ND	ug/L	10.0	2.1	1		09/16/23 05:22	90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	2.1	1		09/16/23 05:22	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	2.1	1		09/16/23 05:22	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	4.0	0.66	1		09/16/23 05:22	1634-04-4	
Naphthalene	ND	ug/L	1.2	0.57	1		09/16/23 05:22	91-20-3	
n-Propylbenzene	ND	ug/L	5.0	0.37	1		09/16/23 05:22	103-65-1	
Styrene	ND	ug/L	5.0	0.39	1		09/16/23 05:22	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.34	1		09/16/23 05:22	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.35	1		09/16/23 05:22		
Tetrachloroethene	ND	ug/L	5.0	0.36	1		09/16/23 05:22	127-18-4	
Toluene	ND	ug/L	5.0	0.38	1		09/16/23 05:22	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	0.42	1		09/16/23 05:22	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	5.0	0.42	1		09/16/23 05:22	120-82-1	
1,1,1-Trichloroethane	155	ug/L	5.0	0.31	1		09/16/23 05:22	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	5.0	0.33	1		09/16/23 05:22	79-00-5	
Trichloroethene	44.9	ug/L	5.0	0.41	1		09/16/23 05:22	79-01-6	
Trichlorofluoromethane	ND	ug/L	5.0	0.36	1		09/16/23 05:22	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	5.0	0.33	1		09/16/23 05:22		
1,2,4-Trimethylbenzene	ND	ug/L	5.0	0.37	1		09/16/23 05:22	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.38	1		09/16/23 05:22		
Vinyl acetate	ND	ug/L	50.0	1.7	1		09/16/23 05:22		
Vinyl chloride	ND	ug/L	2.0	0.40	1		09/16/23 05:22		
Xylene (Total)	ND	ug/L	10.0	1.5	1		09/16/23 05:22		
Surrogates		- J							
Dibromofluoromethane (S)	112	%.	82-128		1		09/16/23 05:22	1868-53-7	
4-Bromofluorobenzene (S)	100	%.	79-124		1		09/16/23 05:22	460-00-4	
Toluene-d8 (S)	97	%.	73-122		1		09/16/23 05:22	2037-26-5	

Project: GE Indy
Pace Project No.: 50353436

Date: 09/19/2023 04:25 PM

Pace Project No.: 50353438									
Sample: MW-133-090823	Lab ID:	50353438040	Collected	: 09/08/23	09:45	Received: 09/0	08/23 11:29 N	Matrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL .	DF_	Prepared	Analyzed	CAS No.	Qual
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
		lytical Services		s					
A		•	•		4		00/40/00 05.5	0.07.04.4	
Acetone	ND	ug/L	100	8.6	1		09/16/23 05:52		
Acrolein	ND	ug/L	50.0	13.4	1		09/16/23 05:52		
Acrylonitrile	ND	ug/L	100	3.0	1		09/16/23 05:52		
Benzene	ND	ug/L	5.0	0.46	1		09/16/23 05:52		
Bromobenzene	ND	ug/L	5.0	0.41	1		09/16/23 05:52		
Bromochloromethane	ND	ug/L	5.0	0.33	1		09/16/23 05:52		
Bromodichloromethane	ND	ug/L	5.0	0.29	1		09/16/23 05:52		
Bromoform	ND	ug/L	5.0	0.29	1		09/16/23 05:52		
Bromomethane	ND	ug/L	5.0	0.51	1		09/16/23 05:52		
2-Butanone (MEK)	ND	ug/L	25.0	3.3	1		09/16/23 05:52		
n-Butylbenzene	ND	ug/L	5.0	0.39	1		09/16/23 05:52		
sec-Butylbenzene	ND	ug/L	5.0	0.36	1		09/16/23 05:52	2 135-98-8	
tert-Butylbenzene	ND	ug/L	5.0	0.38	1		09/16/23 05:52	2 98-06-6	
Carbon disulfide	ND	ug/L	10.0	0.62	1		09/16/23 05:52	2 75-15-0	
Carbon tetrachloride	ND	ug/L	5.0	0.29	1		09/16/23 05:52	2 56-23-5	
Chlorobenzene	ND	ug/L	5.0	0.35	1		09/16/23 05:52	2 108-90-7	
Chloroethane	ND	ug/L	5.0	0.44	1		09/16/23 05:52	2 75-00-3	
Chloroform	ND	ug/L	5.0	2.6	1		09/16/23 05:52	2 67-66-3	
Chloromethane	ND	ug/L	5.0	0.56	1		09/16/23 05:52	2 74-87-3	
2-Chlorotoluene	ND	ug/L	5.0	0.37	1		09/16/23 05:52	2 95-49-8	
4-Chlorotoluene	ND	ug/L	5.0	0.40	1		09/16/23 05:52	2 106-43-4	
Dibromochloromethane	ND	ug/L	5.0	0.31	1		09/16/23 05:52	2 124-48-1	
1,2-Dibromoethane (EDB)	ND	ug/L	5.0	0.29	1		09/16/23 05:52		
Dibromomethane	ND	ug/L	5.0	0.46	1		09/16/23 05:52		
1,2-Dichlorobenzene	ND	ug/L	5.0	0.34	1		09/16/23 05:52		
1,3-Dichlorobenzene	ND	ug/L	5.0	0.40	1		09/16/23 05:52		
1,4-Dichlorobenzene	ND	ug/L	5.0	0.39	1		09/16/23 05:52		
trans-1,4-Dichloro-2-butene	ND	ug/L	100	0.42	1		09/16/23 05:52		
Dichlorodifluoromethane	ND	ug/L	5.0	0.38	1		09/16/23 05:52		
1,1-Dichloroethane	19.9	ug/L	5.0	0.37	1		09/16/23 05:52		
1,2-Dichloroethane	ND	-	5.0	0.37	1		09/16/23 05:52		
1.1-Dichloroethene		ug/L			1				
,	ND	ug/L	5.0 5.0	0.37	1		09/16/23 05:52		
cis-1,2-Dichloroethene	16.8	ug/L		0.48			09/16/23 05:52		
trans-1,2-Dichloroethene	ND	ug/L	5.0	0.48	1		09/16/23 05:52		
1,2-Dichloropropane	ND	ug/L	5.0	0.33	1		09/16/23 05:52		
1,3-Dichloropropane	ND	ug/L	5.0	0.30	1		09/16/23 05:52		
2,2-Dichloropropane	ND	ug/L	5.0	0.37	1		09/16/23 05:52		
1,1-Dichloropropene	ND	ug/L	5.0	0.34	1		09/16/23 05:52		
cis-1,3-Dichloropropene	ND	ug/L	5.0	0.31	1		09/16/23 05:52		
trans-1,3-Dichloropropene	ND	ug/L	5.0	0.28	1		09/16/23 05:52		
Ethylbenzene	ND	ug/L	5.0	0.40	1		09/16/23 05:52	2 100-41-4	
Ethyl methacrylate	ND	ug/L	100	0.32	1		09/16/23 05:52		
Hexachloro-1,3-butadiene	ND	ug/L	5.0	0.48	1		09/16/23 05:52	2 87-68-3	
n-Hexane	ND	ug/L	5.0	0.36	1		09/16/23 05:52	2 110-54-3	
2-Hexanone	ND	ug/L	25.0	2.2	1		09/16/23 05:52	2 591-78-6	

Project: GE Indy
Pace Project No.: 50353438

Date: 09/19/2023 04:25 PM

Sample: MW-133-090823	Lab ID:	50353438040	Collected	d: 09/08/23	3 09:45	Received: 09	0/08/23 11:29 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Anal	ytical Services	- Indianapo	lis					
lodomethane	ND	ug/L	10.0	2.0	1		09/16/23 05:52	74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	5.0	0.36	1		09/16/23 05:52	98-82-8	
p-Isopropyltoluene	ND	ug/L	5.0	0.41	1		09/16/23 05:52	99-87-6	
Methylene Chloride	ND	ug/L	5.0	3.7	1		09/16/23 05:52	75-09-2	
1-Methylnaphthalene	ND	ug/L	10.0	2.1	1		09/16/23 05:52	90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	2.1	1		09/16/23 05:52	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	2.1	1		09/16/23 05:52	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	4.0	0.66	1		09/16/23 05:52	1634-04-4	
Naphthalene	ND	ug/L	1.2	0.57	1		09/16/23 05:52	91-20-3	
n-Propylbenzene	ND	ug/L	5.0	0.37	1		09/16/23 05:52	103-65-1	
Styrene	ND	ug/L	5.0	0.39	1		09/16/23 05:52	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.34	1		09/16/23 05:52	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.35	1		09/16/23 05:52	79-34-5	
Tetrachloroethene	ND	ug/L	5.0	0.36	1		09/16/23 05:52	127-18-4	
Toluene	ND	ug/L	5.0	0.38	1		09/16/23 05:52	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	0.42	1		09/16/23 05:52	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	5.0	0.42	1		09/16/23 05:52	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	5.0	0.31	1		09/16/23 05:52	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	5.0	0.33	1		09/16/23 05:52	79-00-5	
Trichloroethene	ND	ug/L	5.0	0.41	1		09/16/23 05:52	79-01-6	
Trichlorofluoromethane	ND	ug/L	5.0	0.36	1		09/16/23 05:52		
1,2,3-Trichloropropane	ND	ug/L	5.0	0.33	1		09/16/23 05:52	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/L	5.0	0.37	1		09/16/23 05:52	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.38	1		09/16/23 05:52	108-67-8	
Vinyl acetate	ND	ug/L	50.0	1.7	1		09/16/23 05:52		
Vinyl chloride	ND	ug/L	2.0	0.40	1		09/16/23 05:52		
Xylene (Total)	ND	ug/L	10.0	1.5	1		09/16/23 05:52		
Surrogates		- J		-					
Dibromofluoromethane (S)	112	%.	82-128		1		09/16/23 05:52	1868-53-7	
4-Bromofluorobenzene (S)	102	%.	79-124		1		09/16/23 05:52	460-00-4	
Toluene-d8 (S)	98	%.	73-122		1		09/16/23 05:52	2037-26-5	

Project: GE Indy
Pace Project No.: 50353436

Date: 09/19/2023 04:25 PM

Sample: MW-302-090823	Lab ID:	50353438041	Collected	d: 09/08/23	3 09:50	Received: 09)/08/23 11:29 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
3260 MSV Indiana	Analytical	Method: EPA 5	5030/8260						
	Pace Ana	lytical Services	- Indianapol	lis					
Acetone	ND	ug/L	100	8.6	1		09/16/23 06:23	67-64-1	
Acrolein	ND	ug/L	50.0	13.4	1		09/16/23 06:23	107-02-8	
Acrylonitrile	ND	ug/L	100	3.0	1		09/16/23 06:23	107-13-1	
Benzene	ND	ug/L	5.0	0.46	1		09/16/23 06:23	71-43-2	
Bromobenzene	ND	ug/L	5.0	0.41	1		09/16/23 06:23	108-86-1	
Bromochloromethane	ND	ug/L	5.0	0.33	1		09/16/23 06:23	74-97-5	
Bromodichloromethane	ND	ug/L	5.0	0.29	1		09/16/23 06:23	75-27-4	
Bromoform	ND	ug/L	5.0	0.29	1		09/16/23 06:23		
Bromomethane	ND	ug/L	5.0	0.51	1		09/16/23 06:23		
2-Butanone (MEK)	ND	ug/L	25.0	3.3	1		09/16/23 06:23		
n-Butylbenzene	ND	ug/L	5.0	0.39	1		09/16/23 06:23		
sec-Butylbenzene	ND	ug/L	5.0	0.36	1		09/16/23 06:23		
ert-Butylbenzene	ND	ug/L	5.0	0.38	1		09/16/23 06:23		
Carbon disulfide	ND	ug/L	10.0	0.62	1		09/16/23 06:23		
Carbon tetrachloride	ND	ug/L	5.0	0.29	1		09/16/23 06:23		
Chlorobenzene	ND	ug/L	5.0	0.25	1		09/16/23 06:23		
Chloroethane	ND ND	ug/L	5.0	0.33	1		09/16/23 06:23		
Chloroform	ND ND	ug/L ug/L	5.0	2.6	1		09/16/23 06:23		
Chloromethane	ND ND	_	5.0	0.56	1		09/16/23 06:23		
		ug/L			1				
2-Chlorotoluene	ND	ug/L	5.0	0.37			09/16/23 06:23		
1-Chlorotoluene	ND	ug/L	5.0	0.40	1		09/16/23 06:23		
Dibromochloromethane	ND	ug/L	5.0	0.31	1		09/16/23 06:23		
1,2-Dibromoethane (EDB)	ND	ug/L	5.0	0.29	1		09/16/23 06:23		
Dibromomethane	ND	ug/L	5.0	0.46	1		09/16/23 06:23		
1,2-Dichlorobenzene	ND	ug/L	5.0	0.34	1		09/16/23 06:23		
1,3-Dichlorobenzene	ND	ug/L	5.0	0.40	1		09/16/23 06:23		
1,4-Dichlorobenzene	ND	ug/L	5.0	0.39	1		09/16/23 06:23		
rans-1,4-Dichloro-2-butene	ND	ug/L	100	0.42	1		09/16/23 06:23		
Dichlorodifluoromethane	ND	ug/L	5.0	0.38	1		09/16/23 06:23		
1,1-Dichloroethane	ND	ug/L	5.0	0.37	1		09/16/23 06:23		
1,2-Dichloroethane	ND	ug/L	5.0	0.34	1		09/16/23 06:23		
1,1-Dichloroethene	ND	ug/L	5.0	0.37	1		09/16/23 06:23		
cis-1,2-Dichloroethene	ND	ug/L	5.0	0.48	1		09/16/23 06:23		
rans-1,2-Dichloroethene	ND	ug/L	5.0	0.48	1		09/16/23 06:23		
1,2-Dichloropropane	ND	ug/L	5.0	0.33	1		09/16/23 06:23		
1,3-Dichloropropane	ND	ug/L	5.0	0.30	1		09/16/23 06:23	142-28-9	
2,2-Dichloropropane	ND	ug/L	5.0	0.37	1		09/16/23 06:23	594-20-7	
1,1-Dichloropropene	ND	ug/L	5.0	0.34	1		09/16/23 06:23	563-58-6	
cis-1,3-Dichloropropene	ND	ug/L	5.0	0.31	1		09/16/23 06:23	10061-01-5	
rans-1,3-Dichloropropene	ND	ug/L	5.0	0.28	1		09/16/23 06:23	10061-02-6	
Ethylbenzene	ND	ug/L	5.0	0.40	1		09/16/23 06:23	100-41-4	
Ethyl methacrylate	ND	ug/L	100	0.32	1		09/16/23 06:23	97-63-2	
Hexachloro-1,3-butadiene	ND	ug/L	5.0	0.48	1		09/16/23 06:23	87-68-3	
n-Hexane	ND	ug/L	5.0	0.36	1		09/16/23 06:23	110-54-3	
2-Hexanone	ND	ug/L	25.0	2.2	1		09/16/23 06:23	591-78-6	

Project: GE Indy
Pace Project No.: 50353438

Date: 09/19/2023 04:25 PM

Sample: MW-302-090823	Lab ID:	50353438041	Collected	d: 09/08/23	09:50	Received: 09	0/08/23 11:29 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	5030/8260						
	Pace Anal	ytical Services	- Indianapo	lis					
lodomethane	ND	ug/L	10.0	2.0	1		09/16/23 06:23	74-88-4	
sopropylbenzene (Cumene)	ND	ug/L	5.0	0.36	1		09/16/23 06:23	98-82-8	
o-Isopropyltoluene	ND	ug/L	5.0	0.41	1		09/16/23 06:23	99-87-6	
Methylene Chloride	ND	ug/L	5.0	3.7	1		09/16/23 06:23	75-09-2	
1-Methylnaphthalene	ND	ug/L	10.0	2.1	1		09/16/23 06:23	90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	2.1	1		09/16/23 06:23	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	2.1	1		09/16/23 06:23	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	4.0	0.66	1		09/16/23 06:23	1634-04-4	
Naphthalene	ND	ug/L	1.2	0.57	1		09/16/23 06:23	91-20-3	
r-Propylbenzene	ND	ug/L	5.0	0.37	1		09/16/23 06:23	103-65-1	
Styrene	ND	ug/L	5.0	0.39	1		09/16/23 06:23	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.34	1		09/16/23 06:23	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.35	1		09/16/23 06:23	79-34-5	
Tetrachloroethene	ND	ug/L	5.0	0.36	1		09/16/23 06:23	127-18-4	
Toluene	ND	ug/L	5.0	0.38	1		09/16/23 06:23	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	0.42	1		09/16/23 06:23	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	5.0	0.42	1		09/16/23 06:23	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	5.0	0.31	1		09/16/23 06:23	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	5.0	0.33	1		09/16/23 06:23		
Trichloroethene	ND	ug/L	5.0	0.41	1		09/16/23 06:23	79-01-6	
Trichlorofluoromethane	ND	ug/L	5.0	0.36	1		09/16/23 06:23	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	5.0	0.33	1		09/16/23 06:23	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/L	5.0	0.37	1		09/16/23 06:23		
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.38	1		09/16/23 06:23	108-67-8	
Vinyl acetate	ND	ug/L	50.0	1.7	1		09/16/23 06:23		
Vinyl chloride	ND	ug/L	2.0	0.40	1		09/16/23 06:23		
Xylene (Total)	ND	ug/L	10.0	1.5	1		09/16/23 06:23		
Surrogates		· J ·							
Dibromofluoromethane (S)	110	%.	82-128		1		09/16/23 06:23	1868-53-7	
4-Bromofluorobenzene (S)	102	%.	79-124		1		09/16/23 06:23	460-00-4	
Toluene-d8 (S)	98	%.	73-122		1		09/16/23 06:23	2037-26-5	

Project: GE Indy
Pace Project No.: 5035343

Date: 09/19/2023 04:25 PM

Pace Project No.: 50353438									
Sample: MW-303-090823	Lab ID:	50353438042	Collected	: 09/08/23	3 09:55	Received: 09/08	/23 11:29 N	latrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
		lytical Services		is					
Acatana	ND	ua/l	100	0.6	1	0	0/16/22 06:5/	1 67 64 1	
Acetone Acrolein		ug/L	100	8.6	1 1		19/16/23 06:54 19/16/23 06:54		
	ND	ug/L	50.0	13.4	1	-	19/16/23 06:54 19/16/23 06:54		
Acrylonitrile	ND	ug/L	100	3.0		-	19/16/23 06:54 19/16/23 06:54		
Benzene	ND	ug/L	5.0	0.46	1	-		_	
Bromobenzene	ND	ug/L	5.0	0.41	1	-	9/16/23 06:54		
Bromochloromethane	ND	ug/L	5.0	0.33	1		9/16/23 06:54		
Bromodichloromethane	ND	ug/L	5.0	0.29	1		9/16/23 06:54		
Bromoform	ND	ug/L	5.0	0.29	1		9/16/23 06:54		
Bromomethane	ND	ug/L	5.0	0.51	1		9/16/23 06:54		
2-Butanone (MEK)	ND	ug/L	25.0	3.3	1		9/16/23 06:54		
n-Butylbenzene	ND	ug/L	5.0	0.39	1	-	9/16/23 06:54		
sec-Butylbenzene	ND	ug/L	5.0	0.36	1	0	9/16/23 06:54	135-98-8	
tert-Butylbenzene	ND	ug/L	5.0	0.38	1	0	9/16/23 06:54	98-06-6	
Carbon disulfide	ND	ug/L	10.0	0.62	1	0	9/16/23 06:54	75-15-0	
Carbon tetrachloride	ND	ug/L	5.0	0.29	1	0	9/16/23 06:54	1 56-23-5	
Chlorobenzene	ND	ug/L	5.0	0.35	1	0	9/16/23 06:54	108-90-7	
Chloroethane	ND	ug/L	5.0	0.44	1	0	9/16/23 06:54	75-00-3	
Chloroform	ND	ug/L	5.0	2.6	1	0	9/16/23 06:54	1 67-66-3	
Chloromethane	ND	ug/L	5.0	0.56	1	0	9/16/23 06:54	1 74-87-3	
2-Chlorotoluene	ND	ug/L	5.0	0.37	1	0	9/16/23 06:54	1 95-49-8	
4-Chlorotoluene	ND	ug/L	5.0	0.40	1		9/16/23 06:54		
Dibromochloromethane	ND	ug/L	5.0	0.31	1		9/16/23 06:54		
1,2-Dibromoethane (EDB)	ND	ug/L	5.0	0.29	1		9/16/23 06:54		
Dibromomethane	ND	ug/L	5.0	0.46	1		9/16/23 06:54		
1,2-Dichlorobenzene	ND	ug/L	5.0	0.34	1		9/16/23 06:54		
1,3-Dichlorobenzene	ND	ug/L	5.0	0.40	1		9/16/23 06:54		
1,4-Dichlorobenzene	ND	ug/L	5.0	0.39	1		9/16/23 06:54		
trans-1,4-Dichloro-2-butene	ND ND	ug/L ug/L	100	0.39	1		9/16/23 06:54 9/16/23 06:54		
Dichlorodifluoromethane	ND ND	-	5.0	0.42	1	-	9/16/23 06:54 9/16/23 06:54		
1.1-Dichloroethane		ug/L			1				
,	ND	ug/L	5.0	0.37			9/16/23 06:54		
1,2-Dichloroethane	ND	ug/L	5.0	0.34	1		9/16/23 06:54		
1,1-Dichloroethene	ND	ug/L	5.0	0.37	1		9/16/23 06:54		
cis-1,2-Dichloroethene	917	ug/L	50.0	3.4	10		9/18/23 13:15		
trans-1,2-Dichloroethene	5.2	ug/L	5.0	0.48	1		9/16/23 06:54		
1,2-Dichloropropane	ND	ug/L	5.0	0.33	1		9/16/23 06:54		
1,3-Dichloropropane	ND	ug/L	5.0	0.30	1		9/16/23 06:54		
2,2-Dichloropropane	ND	ug/L	5.0	0.37	1		9/16/23 06:54		
1,1-Dichloropropene	ND	ug/L	5.0	0.34	1		9/16/23 06:54		
cis-1,3-Dichloropropene	ND	ug/L	5.0	0.31	1			10061-01-5	
trans-1,3-Dichloropropene	ND	ug/L	5.0	0.28	1	0	9/16/23 06:54	1 10061-02-6	
Ethylbenzene	ND	ug/L	5.0	0.40	1	0	9/16/23 06:54	1 100-41-4	
Ethyl methacrylate	ND	ug/L	100	0.32	1	0	9/16/23 06:54	97-63-2	
Hexachloro-1,3-butadiene	ND	ug/L	5.0	0.48	1	0	9/16/23 06:54	87-68-3	
n-Hexane	ND	ug/L	5.0	0.36	1	0	9/16/23 06:54	110-54-3	
2-Hexanone	ND	ug/L	25.0	2.2	1	0	9/16/23 06:54	1 591-78-6	

Project: GE Indy
Pace Project No.: 50353438

Date: 09/19/2023 04:25 PM

Sample: MW-303-090823	Lab ID:	50353438042	Collected:	09/08/23	3 09:55	Received: 09	/08/23 11:29 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA	5030/8260						
	Pace Ana	lytical Services	- Indianapoli	s					
lodomethane	ND	ug/L	10.0	2.0	1		09/16/23 06:54	74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	5.0	0.36	1		09/16/23 06:54	98-82-8	
p-Isopropyltoluene	ND	ug/L	5.0	0.41	1		09/16/23 06:54	99-87-6	
Methylene Chloride	ND	ug/L	5.0	3.7	1		09/16/23 06:54	75-09-2	
1-Methylnaphthalene	ND	ug/L	10.0	2.1	1		09/16/23 06:54	90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	2.1	1		09/16/23 06:54	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	2.1	1		09/16/23 06:54	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	4.0	0.66	1		09/16/23 06:54	1634-04-4	
Naphthalene	ND	ug/L	1.2	0.57	1		09/16/23 06:54	91-20-3	
n-Propylbenzene	ND	ug/L	5.0	0.37	1		09/16/23 06:54	103-65-1	
Styrene	ND	ug/L	5.0	0.39	1		09/16/23 06:54	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.34	1		09/16/23 06:54	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.35	1		09/16/23 06:54	79-34-5	
Tetrachloroethene	ND	ug/L	5.0	0.36	1		09/16/23 06:54	127-18-4	
Toluene	ND	ug/L	5.0	0.38	1		09/16/23 06:54	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	0.42	1		09/16/23 06:54	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	5.0	0.42	1		09/16/23 06:54	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	5.0	0.31	1		09/16/23 06:54	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	5.0	0.33	1		09/16/23 06:54	79-00-5	
Trichloroethene	ND	ug/L	5.0	0.41	1		09/16/23 06:54	79-01-6	
Trichlorofluoromethane	ND	ug/L	5.0	0.36	1		09/16/23 06:54	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	5.0	0.33	1		09/16/23 06:54	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/L	5.0	0.37	1		09/16/23 06:54	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.38	1		09/16/23 06:54	108-67-8	
Vinyl acetate	ND	ug/L	50.0	1.7	1		09/16/23 06:54	108-05-4	
Vinyl chloride	540	ug/L	20.0	3.5	10		09/18/23 13:15	75-01-4	
Xylene (Total)	ND	ug/L	10.0	1.5	1		09/16/23 06:54	1330-20-7	
Surrogates									
Dibromofluoromethane (S)	109	%.	82-128		1		09/16/23 06:54		
4-Bromofluorobenzene (S)	102	%.	79-124		1		09/16/23 06:54	460-00-4	
Toluene-d8 (S)	99	%.	73-122		1		09/16/23 06:54	2037-26-5	

Project: GE Indy
Pace Project No.: 50353436

Date: 09/19/2023 04:25 PM

Pace Project No.: 50353438									
Sample: MW-92-090823	Lab ID:	50353438043	Collected	: 09/08/23	10:10	Received: 09	/08/23 11:29 N	Matrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Indiana	Analytical	Method: EPA 5	5030/8260						
ozoo mor malana		llytical Services		is					
		•	•						
Acetone	ND	ug/L	100	8.6	1		09/16/23 07:24		
Acrolein	ND	ug/L	50.0	13.4	1		09/16/23 07:24		
Acrylonitrile	ND	ug/L	100	3.0	1		09/16/23 07:24		
Benzene	ND	ug/L	5.0	0.46	1		09/16/23 07:24		
Bromobenzene	ND	ug/L	5.0	0.41	1		09/16/23 07:24		
Bromochloromethane	ND	ug/L	5.0	0.33	1		09/16/23 07:24		
Bromodichloromethane	ND	ug/L	5.0	0.29	1		09/16/23 07:24		
Bromoform	ND	ug/L	5.0	0.29	1		09/16/23 07:24		
Bromomethane	ND	ug/L	5.0	0.51	1		09/16/23 07:24	4 74-83-9	
2-Butanone (MEK)	ND	ug/L	25.0	3.3	1		09/16/23 07:24	4 78-93-3	
n-Butylbenzene	ND	ug/L	5.0	0.39	1		09/16/23 07:24	4 104-51-8	
sec-Butylbenzene	ND	ug/L	5.0	0.36	1		09/16/23 07:24	4 135-98-8	
tert-Butylbenzene	ND	ug/L	5.0	0.38	1		09/16/23 07:24	4 98-06-6	
Carbon disulfide	ND	ug/L	10.0	0.62	1		09/16/23 07:24	4 75-15-0	
Carbon tetrachloride	ND	ug/L	5.0	0.29	1		09/16/23 07:24	4 56-23-5	
Chlorobenzene	ND	ug/L	5.0	0.35	1		09/16/23 07:24	4 108-90-7	
Chloroethane	ND	ug/L	5.0	0.44	1		09/16/23 07:24	4 75-00-3	
Chloroform	ND	ug/L	5.0	2.6	1		09/16/23 07:24	4 67-66-3	
Chloromethane	ND	ug/L	5.0	0.56	1		09/16/23 07:24	4 74-87-3	
2-Chlorotoluene	ND	ug/L	5.0	0.37	1		09/16/23 07:24		
4-Chlorotoluene	ND	ug/L	5.0	0.40	1		09/16/23 07:24		
Dibromochloromethane	ND	ug/L	5.0	0.31	1		09/16/23 07:24		
1,2-Dibromoethane (EDB)	ND	ug/L	5.0	0.29	1		09/16/23 07:24		
Dibromomethane	ND	ug/L	5.0	0.46	1		09/16/23 07:24		
1,2-Dichlorobenzene	ND	ug/L	5.0	0.34	1		09/16/23 07:24		
1,3-Dichlorobenzene	ND	ug/L	5.0	0.40	1		09/16/23 07:24		
1,4-Dichlorobenzene	ND ND	ug/L	5.0	0.40	1		09/16/23 07:24		
trans-1,4-Dichloro-2-butene	ND ND	ug/L ug/L	100	0.39	1		09/16/23 07:24		
Dichlorodifluoromethane	ND ND	ug/L ug/L	5.0	0.42	1		09/16/23 07:24		
1.1-Dichloroethane	ND ND	-	5.0	0.37	1		09/16/23 07:24		
,		ug/L							
1,2-Dichloroethane	ND	ug/L	5.0	0.34	1		09/16/23 07:24		
1,1-Dichloroethene	ND	ug/L	5.0	0.37	1		09/16/23 07:24		
cis-1,2-Dichloroethene	106	ug/L	5.0	0.48	1		09/16/23 07:24		
trans-1,2-Dichloroethene	ND	ug/L	5.0	0.48	1		09/16/23 07:24		
1,2-Dichloropropane	ND	ug/L	5.0	0.33	1		09/16/23 07:24		
1,3-Dichloropropane	ND	ug/L	5.0	0.30	1		09/16/23 07:24		
2,2-Dichloropropane	ND	ug/L	5.0	0.37	1		09/16/23 07:24		
1,1-Dichloropropene	ND	ug/L	5.0	0.34	1		09/16/23 07:24		
cis-1,3-Dichloropropene	ND	ug/L	5.0	0.31	1		09/16/23 07:24		
trans-1,3-Dichloropropene	ND	ug/L	5.0	0.28	1		09/16/23 07:24		
Ethylbenzene	ND	ug/L	5.0	0.40	1		09/16/23 07:24	4 100-41-4	
Ethyl methacrylate	ND	ug/L	100	0.32	1		09/16/23 07:24	4 97-63-2	
Hexachloro-1,3-butadiene	ND	ug/L	5.0	0.48	1		09/16/23 07:24	4 87-68-3	
n-Hexane	ND	ug/L	5.0	0.36	1		09/16/23 07:24	4 110-54-3	
2-Hexanone	ND	ug/L	25.0	2.2	1		09/16/23 07:24	4 591-78-6	

Project: GE Indy
Pace Project No.: 50353438

Date: 09/19/2023 04:25 PM

Sample: MW-92-090823	Lab ID:	50353438043	Collected	: 09/08/23	3 10:10	Received: 09)/08/23 11:29 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL .	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA	5030/8260						
	Pace Ana	ytical Services	- Indianapoli	s					
lodomethane	ND	ug/L	10.0	2.0	1		09/16/23 07:24	74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	5.0	0.36	1		09/16/23 07:24	98-82-8	
p-Isopropyltoluene	ND	ug/L	5.0	0.41	1		09/16/23 07:24	99-87-6	
Methylene Chloride	ND	ug/L	5.0	3.7	1		09/16/23 07:24	75-09-2	
1-Methylnaphthalene	ND	ug/L	10.0	2.1	1		09/16/23 07:24	90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	2.1	1		09/16/23 07:24	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	2.1	1		09/16/23 07:24	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	4.0	0.66	1		09/16/23 07:24	1634-04-4	
Naphthalene	ND	ug/L	1.2	0.57	1		09/16/23 07:24	91-20-3	
n-Propylbenzene	ND	ug/L	5.0	0.37	1		09/16/23 07:24	103-65-1	
Styrene	ND	ug/L	5.0	0.39	1		09/16/23 07:24	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.34	1		09/16/23 07:24	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.35	1		09/16/23 07:24	79-34-5	
Tetrachloroethene	ND	ug/L	5.0	0.36	1		09/16/23 07:24	127-18-4	
Toluene	ND	ug/L	5.0	0.38	1		09/16/23 07:24	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	0.42	1		09/16/23 07:24	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	5.0	0.42	1		09/16/23 07:24	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	5.0	0.31	1		09/16/23 07:24	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	5.0	0.33	1		09/16/23 07:24	79-00-5	
Trichloroethene	ND	ug/L	5.0	0.41	1		09/16/23 07:24	79-01-6	
Trichlorofluoromethane	ND	ug/L	5.0	0.36	1		09/16/23 07:24	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	5.0	0.33	1		09/16/23 07:24	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/L	5.0	0.37	1		09/16/23 07:24	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.38	1		09/16/23 07:24	108-67-8	
Vinyl acetate	ND	ug/L	50.0	1.7	1		09/16/23 07:24	108-05-4	
Vinyl chloride	36.8	ug/L	2.0	0.35	1		09/18/23 13:45	75-01-4	
Xylene (Total)	ND	ug/L	10.0	1.5	1		09/16/23 07:24	1330-20-7	
Surrogates		-							
Dibromofluoromethane (S)	111	%.	82-128		1		09/16/23 07:24	1868-53-7	
4-Bromofluorobenzene (S)	101	%.	79-124		1		09/16/23 07:24	460-00-4	
Toluene-d8 (S)	97	%.	73-122		1		09/16/23 07:24	2037-26-5	

Project: GE Indy
Pace Project No.: 50353438

Date: 09/19/2023 04:25 PM

Sample: AD-201-090823	Lab ID:	50353438044	Collected	d: 09/08/23	8 08:00	Received: 09	9/08/23 11:29	Matrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 50	030/8260						
	•	ytical Services -		is					
Acetone	ND	ug/L	100	8.6	1		09/16/23 07:5	55 67-64-1	
Acrolein	ND	ug/L	50.0	13.4	1		09/16/23 07:5	55 107-02-8	
Acrylonitrile	ND	ug/L	100	3.0	1		09/16/23 07:5	55 107-13-1	
Benzene	ND	ug/L	5.0	0.46	1		09/16/23 07:5	55 71-43-2	
Bromobenzene	ND	ug/L	5.0	0.41	1		09/16/23 07:5	55 108-86-1	
Bromochloromethane	ND	ug/L	5.0	0.33	1		09/16/23 07:5	55 74-97-5	
Bromodichloromethane	ND	ug/L	5.0	0.29	1		09/16/23 07:5		
Bromoform	ND	ug/L	5.0	0.29	1		09/16/23 07:5		
Bromomethane	ND	ug/L	5.0	0.51	1		09/16/23 07:5		
2-Butanone (MEK)	ND	ug/L	25.0	3.3	1		09/16/23 07:5		
n-Butylbenzene	ND	ug/L	5.0	0.39	1		09/16/23 07:5		
sec-Butylbenzene	ND	ug/L	5.0	0.36	1		09/16/23 07:5		
ert-Butylbenzene	ND	ug/L	5.0	0.38	1		09/16/23 07:5		
Carbon disulfide	ND	ug/L	10.0	0.62	1		09/16/23 07:5		
Carbon tetrachloride	5.4	ug/L	5.0	0.29	1		09/16/23 07:5		
Chlorobenzene	ND	ug/L	5.0	0.35	1		09/16/23 07:5		
Chloroethane	ND	ug/L	5.0	0.44	1		09/16/23 07:5		
Chloroform	10.8	ug/L ug/L	5.0	2.6	1		09/16/23 07:5		
Chloromethane	ND	ug/L	5.0	0.56	1		09/16/23 07:5		
2-Chlorotoluene	ND ND	ug/L ug/L	5.0	0.37	1		09/16/23 07:5		
I-Chlorotoluene	ND ND	ug/L ug/L	5.0	0.37	1		09/16/23 07:5		
Dibromochloromethane	ND ND	_	5.0	0.40	1		09/16/23 07:5		
	ND ND	ug/L	5.0	0.31	1		09/16/23 07:5		
1,2-Dibromoethane (EDB)		ug/L			1				
Dibromomethane	ND	ug/L	5.0	0.46	1		09/16/23 07:5		
1,2-Dichlorobenzene	ND	ug/L	5.0	0.34			09/16/23 07:5		
1,3-Dichlorobenzene	ND	ug/L	5.0	0.40	1		09/16/23 07:5		
1,4-Dichlorobenzene	ND	ug/L	5.0	0.39	1		09/16/23 07:5		
rans-1,4-Dichloro-2-butene	ND	ug/L	100	0.42	1		09/16/23 07:5		
Dichlorodifluoromethane	ND	ug/L	5.0	0.38	1		09/16/23 07:5		
1,1-Dichloroethane	15.7	ug/L	5.0	0.37	1		09/16/23 07:5		
1,2-Dichloroethane	ND	ug/L	5.0	0.34	1		09/16/23 07:5		
I,1-Dichloroethene	ND	ug/L	5.0	0.37	1		09/16/23 07:5		
cis-1,2-Dichloroethene	5.9	ug/L	5.0	0.48	1		09/16/23 07:5		
rans-1,2-Dichloroethene	ND	ug/L	5.0	0.48	1		09/16/23 07:5		
I,2-Dichloropropane	ND	ug/L	5.0	0.33	1		09/16/23 07:5		
,3-Dichloropropane	ND	ug/L	5.0	0.30	1		09/16/23 07:5		
2,2-Dichloropropane	ND	ug/L	5.0	0.37	1		09/16/23 07:5		
,1-Dichloropropene	ND	ug/L	5.0	0.34	1		09/16/23 07:5		
cis-1,3-Dichloropropene	ND	ug/L	5.0	0.31	1			55 10061-01-5	
rans-1,3-Dichloropropene	ND	ug/L	5.0	0.28	1			55 10061-02-6	
Ethylbenzene	ND	ug/L	5.0	0.40	1		09/16/23 07:5	55 100-41-4	
Ethyl methacrylate	ND	ug/L	100	0.32	1		09/16/23 07:5		
Hexachloro-1,3-butadiene	ND	ug/L	5.0	0.48	1		09/16/23 07:5	55 87-68-3	
n-Hexane	ND	ug/L	5.0	0.36	1		09/16/23 07:5	55 110-54-3	
2-Hexanone	ND	ug/L	25.0	2.2	1		09/16/23 07:5	55 591-78-6	

Project: GE Indy
Pace Project No.: 50353438

Date: 09/19/2023 04:25 PM

Sample: AD-201-090823	Lab ID:	50353438044	Collected:	09/08/23	3 08:00	Received: 09)/08/23 11:29 M	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5						<u>.</u>	
8260 MSV maiana	•	lytical Services		•					
		iyiicai Services							
lodomethane	ND	ug/L	10.0	2.0	1		09/16/23 07:55		
Isopropylbenzene (Cumene)	ND	ug/L	5.0	0.36	1		09/16/23 07:55		
p-Isopropyltoluene	ND	ug/L	5.0	0.41	1		09/16/23 07:55		
Methylene Chloride	ND	ug/L	5.0	3.7	1		09/16/23 07:55	75-09-2	
1-Methylnaphthalene	ND	ug/L	10.0	2.1	1		09/16/23 07:55	90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	2.1	1		09/16/23 07:55	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	2.1	1		09/16/23 07:55	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	4.0	0.66	1		09/16/23 07:55	1634-04-4	
Naphthalene	ND	ug/L	1.2	0.57	1		09/16/23 07:55	91-20-3	
n-Propylbenzene	ND	ug/L	5.0	0.37	1		09/16/23 07:55	103-65-1	
Styrene	ND	ug/L	5.0	0.39	1		09/16/23 07:55	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.34	1		09/16/23 07:55	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.35	1		09/16/23 07:55	79-34-5	
Tetrachloroethene	ND	ug/L	5.0	0.36	1		09/16/23 07:55	127-18-4	
Toluene	ND	ug/L	5.0	0.38	1		09/16/23 07:55	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	0.42	1		09/16/23 07:55	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	5.0	0.42	1		09/16/23 07:55	120-82-1	
1,1,1-Trichloroethane	147	ug/L	5.0	0.31	1		09/16/23 07:55	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	5.0	0.33	1		09/16/23 07:55	79-00-5	
Trichloroethene	44.2	ug/L	5.0	0.41	1		09/16/23 07:55	79-01-6	
Trichlorofluoromethane	ND	ug/L	5.0	0.36	1		09/16/23 07:55		
1,2,3-Trichloropropane	ND	ug/L	5.0	0.33	1		09/16/23 07:55	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/L	5.0	0.37	1		09/16/23 07:55	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.38	1		09/16/23 07:55		
Vinyl acetate	ND	ug/L	50.0	1.7	1		09/16/23 07:55		
Vinyl chloride	ND	ug/L	2.0	0.40	1		09/16/23 07:55		
Xylene (Total)	ND	ug/L	10.0	1.5	1		09/16/23 07:55		
Surrogates		3 - –			•		2 37 . 27 . 27	·	
Dibromofluoromethane (S)	109	%.	82-128		1		09/16/23 07:55	1868-53-7	
4-Bromofluorobenzene (S)	101	%.	79-124		1		09/16/23 07:55	460-00-4	
Toluene-d8 (S)	99	%.	73-122		1		09/16/23 07:55		

Project: GE Indy
Pace Project No.: 50353438

Date: 09/19/2023 04:25 PM

Sample: Trip Blank-090823	Lab ID:	50353438045	Collected:	09/08/23	08:00	Received: 09	9/08/23 11:29 N	latrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Ana	lytical Services	- Indianapolis	3					
Acetone	ND	ug/L	100	8.6	1		09/16/23 08:26	67-64-1	
Acrolein	ND	ug/L	50.0	13.4	1		09/16/23 08:26		
Acrylonitrile	ND	ug/L	100	3.0	1		09/16/23 08:26		
Benzene	ND	ug/L	5.0	0.46	1		09/16/23 08:26		
Bromobenzene	ND	ug/L	5.0	0.41	1		09/16/23 08:26		
Bromochloromethane	ND	ug/L	5.0	0.33	1		09/16/23 08:26		
Bromodichloromethane	ND ND	ug/L	5.0	0.29	1		09/16/23 08:26		
Bromoform	ND	ug/L	5.0	0.29	1		09/16/23 08:26		
Bromomethane	ND ND	ug/L	5.0	0.23	1		09/16/23 08:26		
2-Butanone (MEK)	ND ND	ug/L	25.0	3.3	1		09/16/23 08:26		
n-Butylbenzene	ND ND	ug/L ug/L	25.0 5.0	0.39	1		09/16/23 08:26		
sec-Butylbenzene	ND ND	ug/L ug/L	5.0	0.36	1		09/16/23 08:26		
ert-Butylbenzene	ND ND	ug/L ug/L	5.0	0.38	1		09/16/23 08:26		
Carbon disulfide	ND ND	ug/L	10.0	0.62	1		09/16/23 08:26		
Carbon tetrachloride	ND ND	-	5.0	0.02	1		09/16/23 08:26		
Chlorobenzene		ug/L		0.29	1		09/16/23 08:26		
	ND	ug/L	5.0		1				
Chloroethane	ND	ug/L	5.0	0.44			09/16/23 08:26		
Chloroform	ND	ug/L	5.0	2.6	1		09/16/23 08:26		
Chloromethane	ND	ug/L	5.0	0.56	1		09/16/23 08:26		
2-Chlorotoluene	ND	ug/L	5.0	0.37	1		09/16/23 08:26		
1-Chlorotoluene	ND	ug/L	5.0	0.40	1		09/16/23 08:26		
Dibromochloromethane	ND	ug/L	5.0	0.31	1		09/16/23 08:26		
I,2-Dibromoethane (EDB)	ND	ug/L	5.0	0.29	1		09/16/23 08:26		
Dibromomethane	ND	ug/L	5.0	0.46	1		09/16/23 08:26		
I,2-Dichlorobenzene	ND	ug/L	5.0	0.34	1		09/16/23 08:26		
1,3-Dichlorobenzene	ND	ug/L	5.0	0.40	1		09/16/23 08:26		
1,4-Dichlorobenzene	ND	ug/L	5.0	0.39	1		09/16/23 08:26		
rans-1,4-Dichloro-2-butene	ND	ug/L	100	0.42	1		09/16/23 08:26		
Dichlorodifluoromethane	ND	ug/L	5.0	0.38	1		09/16/23 08:26		
,1-Dichloroethane	ND	ug/L	5.0	0.37	1		09/16/23 08:26		
1,2-Dichloroethane	ND	ug/L	5.0	0.34	1		09/16/23 08:26		
,1-Dichloroethene	ND	ug/L	5.0	0.37	1		09/16/23 08:26		
cis-1,2-Dichloroethene	ND	ug/L	5.0	0.48	1		09/16/23 08:26		
rans-1,2-Dichloroethene	ND	ug/L	5.0	0.48	1		09/16/23 08:26	5 156-60-5	
,2-Dichloropropane	ND	ug/L	5.0	0.33	1		09/16/23 08:26	8 78-87-5	
,3-Dichloropropane	ND	ug/L	5.0	0.30	1		09/16/23 08:26	142-28-9	
2,2-Dichloropropane	ND	ug/L	5.0	0.37	1		09/16/23 08:26	5 594-20-7	
,1-Dichloropropene	ND	ug/L	5.0	0.34	1		09/16/23 08:26		
cis-1,3-Dichloropropene	ND	ug/L	5.0	0.31	1		09/16/23 08:26		
rans-1,3-Dichloropropene	ND	ug/L	5.0	0.28	1		09/16/23 08:26	10061-02-6	
Ethylbenzene	ND	ug/L	5.0	0.40	1		09/16/23 08:26	6 100-41-4	
Ethyl methacrylate	ND	ug/L	100	0.32	1		09/16/23 08:26	97-63-2	
Hexachloro-1,3-butadiene	ND	ug/L	5.0	0.48	1		09/16/23 08:26	87-68-3	
n-Hexane	ND	ug/L	5.0	0.36	1		09/16/23 08:26	110-54-3	
2-Hexanone	ND	ug/L	25.0	2.2	1		09/16/23 08:26	5 591-78-6	

Project: GE Indy
Pace Project No.: 50353438

Date: 09/19/2023 04:25 PM

Sample: Trip Blank-090823	Lab ID:	50353438045	Collected	09/08/23	3 08:00	Received: 09	0/08/23 11:29 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF ——	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Ana	lytical Services	- Indianapoli	s					
lodomethane	ND	ug/L	10.0	2.0	1		09/16/23 08:26	74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	5.0	0.36	1		09/16/23 08:26	98-82-8	
p-Isopropyltoluene	ND	ug/L	5.0	0.41	1		09/16/23 08:26	99-87-6	
Methylene Chloride	ND	ug/L	5.0	3.7	1		09/16/23 08:26	75-09-2	
1-Methylnaphthalene	ND	ug/L	10.0	2.1	1		09/16/23 08:26	90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	2.1	1		09/16/23 08:26	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	2.1	1		09/16/23 08:26	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	4.0	0.66	1		09/16/23 08:26	1634-04-4	
Naphthalene	ND	ug/L	1.2	0.57	1		09/16/23 08:26	91-20-3	
n-Propylbenzene	ND	ug/L	5.0	0.37	1		09/16/23 08:26	103-65-1	
Styrene	ND	ug/L	5.0	0.39	1		09/16/23 08:26	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.34	1		09/16/23 08:26	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.35	1		09/16/23 08:26	79-34-5	
Tetrachloroethene	ND	ug/L	5.0	0.36	1		09/16/23 08:26	127-18-4	
Toluene	ND	ug/L	5.0	0.38	1		09/16/23 08:26	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	0.42	1		09/16/23 08:26	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	5.0	0.42	1		09/16/23 08:26		
1,1,1-Trichloroethane	ND	ug/L	5.0	0.31	1		09/16/23 08:26	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	5.0	0.33	1		09/16/23 08:26	79-00-5	
Trichloroethene	ND	ug/L	5.0	0.41	1		09/16/23 08:26	79-01-6	
Trichlorofluoromethane	ND	ug/L	5.0	0.36	1		09/16/23 08:26	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	5.0	0.33	1		09/16/23 08:26	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/L	5.0	0.37	1		09/16/23 08:26	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.38	1		09/16/23 08:26	108-67-8	
Vinyl acetate	ND	ug/L	50.0	1.7	1		09/16/23 08:26		
Vinyl chloride	ND	ug/L	2.0	0.40	1		09/16/23 08:26		
Xylene (Total)	ND	ug/L	10.0	1.5	1		09/16/23 08:26		
Surrogates		· 3· -							
Dibromofluoromethane (S)	108	%.	82-128		1		09/16/23 08:26	1868-53-7	
4-Bromofluorobenzene (S)	101	%.	79-124		1		09/16/23 08:26	460-00-4	
Toluene-d8 (S)	98	%.	73-122		1		09/16/23 08:26	2037-26-5	

RSK 175 Modified

Project: GE Indy
Pace Project No.: 50353438

QC Batch: 752620 Analysis Method:

QC Batch Method: RSK 175 Modified Analysis Description: RSK 175 HEADSPACE

Laboratory: Pace Analytical Services - Indianapolis

Associated Lab Samples: 50353438034

METHOD BLANK: 3449310 Matrix: Water

Associated Lab Samples: 50353438034

Blank Reporting Units Limit MDL Qualifiers Parameter Result Analyzed Ethane ug/L ND 10.0 3.8 09/14/23 09:06 Ethene ug/L ND 10.0 7.1 09/14/23 09:06 Methane ug/L ND 10.0 5.5 09/14/23 09:06

LABORATORY CONTROL SAMPLE: 3449311

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Ethane	ug/L	1980	1970	100	68-135	
Ethene	ug/L	2250	2420	108	79-128	
Methane	ug/L	1980	1920	97	64-132	

SAMPLE DUPLICATE: 3449746

Date: 09/19/2023 04:25 PM

Parameter	Units	50353816005 Result	Dup Result	RPD	Max RPD	Qualifiers
Ethane	ug/L	ND	ND		20	
Ethene	ug/L	ND	ND		20	
Methane	ug/L	483	ND		20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50353438

Date: 09/19/2023 04:25 PM

QC Batch: 752738 Analysis Method: EPA 5030/8260
QC Batch Method: EPA 5030/8260 Analysis Description: 8260 MSV

Laboratory: Pace Analytical Services - Indianapolis

Associated Lab Samples: 50353438001, 50353438002, 50353438003, 50353438004, 50353438005, 50353438006

METHOD BLANK: 3449828 Matrix: Water

Associated Lab Samples: 50353438001, 50353438002, 50353438003, 50353438004, 50353438005, 50353438006

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	ND ND	5.0	0.34	09/15/23 02:08	
1,1,1-Trichloroethane	ug/L	ND	5.0	0.31	09/15/23 02:08	
1,1,2,2-Tetrachloroethane	ug/L	ND	5.0	0.35	09/15/23 02:08	
1,1,2-Trichloroethane	ug/L	ND	5.0	0.33	09/15/23 02:08	
1,1-Dichloroethane	ug/L	ND	5.0	0.37	09/15/23 02:08	
1,1-Dichloroethene	ug/L	ND	5.0	0.37	09/15/23 02:08	
1,1-Dichloropropene	ug/L	ND	5.0	0.34	09/15/23 02:08	
1,2,3-Trichlorobenzene	ug/L	ND	5.0	0.42	09/15/23 02:08	
1,2,3-Trichloropropane	ug/L	ND	5.0	0.33	09/15/23 02:08	
1,2,4-Trichlorobenzene	ug/L	ND	5.0	0.42	09/15/23 02:08	
1,2,4-Trimethylbenzene	ug/L	ND	5.0	0.37	09/15/23 02:08	
1,2-Dibromoethane (EDB)	ug/L	ND	5.0	0.29	09/15/23 02:08	
1,2-Dichlorobenzene	ug/L	ND	5.0	0.34	09/15/23 02:08	
1,2-Dichloroethane	ug/L	ND	5.0	0.34	09/15/23 02:08	
1,2-Dichloropropane	ug/L	ND	5.0	0.33	09/15/23 02:08	
1,3,5-Trimethylbenzene	ug/L	ND	5.0	0.38	09/15/23 02:08	
1,3-Dichlorobenzene	ug/L	ND	5.0	0.40	09/15/23 02:08	
1,3-Dichloropropane	ug/L	ND	5.0	0.30	09/15/23 02:08	
1,4-Dichlorobenzene	ug/L	ND	5.0	0.39	09/15/23 02:08	
1-Methylnaphthalene	ug/L	ND	10.0	2.1	09/15/23 02:08	
2,2-Dichloropropane	ug/L	ND	5.0	0.37	09/15/23 02:08	
2-Butanone (MEK)	ug/L	ND	25.0	3.3	09/15/23 02:08	
2-Chlorotoluene	ug/L	ND	5.0	0.37	09/15/23 02:08	
2-Hexanone	ug/L	ND	25.0	2.2	09/15/23 02:08	
2-Methylnaphthalene	ug/L	ND	10.0	2.1	09/15/23 02:08	
4-Chlorotoluene	ug/L	ND	5.0	0.40	09/15/23 02:08	
4-Methyl-2-pentanone (MIBK)	ug/L	ND	25.0	2.1	09/15/23 02:08	
Acetone	ug/L	ND	100	8.6	09/15/23 02:08	
Acrolein	ug/L	ND	50.0	13.4	09/15/23 02:08	
Acrylonitrile	ug/L	ND	100	3.0	09/15/23 02:08	
Benzene	ug/L	ND	5.0	0.46	09/15/23 02:08	
Bromobenzene	ug/L	ND	5.0	0.41	09/15/23 02:08	
Bromochloromethane	ug/L	ND	5.0	0.33	09/15/23 02:08	
Bromodichloromethane	ug/L	ND	5.0	0.29	09/15/23 02:08	
Bromoform	ug/L	ND	5.0	0.29	09/15/23 02:08	
Bromomethane	ug/L	ND	5.0	0.51	09/15/23 02:08	
Carbon disulfide	ug/L	ND	10.0	0.62	09/15/23 02:08	
Carbon tetrachloride	ug/L	ND	5.0	0.29	09/15/23 02:08	
Chlorobenzene	ug/L	ND	5.0	0.35	09/15/23 02:08	
Chloroethane	ug/L	ND	5.0	0.87	09/15/23 02:08	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50353438

Date: 09/19/2023 04:25 PM

METHOD BLANK: 3449828 Matrix: Water

Associated Lab Samples: 50353438001, 50353438002, 50353438003, 50353438004, 50353438005, 50353438006

Parameter Units Result Limit MDL Analyzed Qualifiers Chloroform ug/L ND 5.0 2.6 09/15/23 02:08 Chloromethane ug/L ND 5.0 0.56 09/15/23 02:08 Cis-1,2-Dichloroethene ug/L ND 5.0 0.34 09/15/23 02:08 Cis-1,3-Dichloropropene ug/L ND 5.0 0.31 09/15/23 02:08 Dibromochloromethane ug/L ND 5.0 0.31 09/15/23 02:08 Dibromochloromethane Ug/L ND 5.0 0.46 09/15/23 02:08 Dibromochloromethane Dibromochloromethane Ug/L ND 5.0 0.46 09/15/23 02:08 Dibromochloromethane 0.04/15/23 02:08 Di
Chloromethane ug/L ND 5.0 0.56 09/15/23 02:08 cis-1,2-Dichloroethene ug/L ND 5.0 0.34 09/15/23 02:08 cis-1,3-Dichloropropene ug/L ND 5.0 0.31 09/15/23 02:08 Dibromochloromethane ug/L ND 5.0 0.31 09/15/23 02:08 Dibromomethane ug/L ND 5.0 0.46 09/15/23 02:08
Chloromethane ug/L ND 5.0 0.56 09/15/23 02:08 cis-1,2-Dichloroethene ug/L ND 5.0 0.34 09/15/23 02:08 cis-1,3-Dichloropropene ug/L ND 5.0 0.31 09/15/23 02:08 Dibromochloromethane ug/L ND 5.0 0.31 09/15/23 02:08 Dibromomethane ug/L ND 5.0 0.46 09/15/23 02:08
cis-1,3-Dichloropropene ug/L ND 5.0 0.31 09/15/23 02:08 Dibromochloromethane ug/L ND 5.0 0.31 09/15/23 02:08 Dibromomethane ug/L ND 5.0 0.46 09/15/23 02:08
Dibromochloromethane ug/L ND 5.0 0.31 09/15/23 02:08 Dibromomethane ug/L ND 5.0 0.46 09/15/23 02:08
Dibromomethane ug/L ND 5.0 0.46 09/15/23 02:08
Dishlored if the remarks on the remarks of the rema
Dichlorodifluoromethane ug/L ND 5.0 0.38 09/15/23 02:08
Ethyl methacrylate ug/L ND 100 0.32 09/15/23 02:08
Ethylbenzene ug/L ND 5.0 0.40 09/15/23 02:08
Hexachloro-1,3-butadiene ug/L ND 5.0 0.48 09/15/23 02:08
lodomethane ug/L ND 10.0 2.0 09/15/23 02:08
Isopropylbenzene (Cumene) ug/L ND 5.0 0.36 09/15/23 02:08
Methyl-tert-butyl ether ug/L ND 4.0 0.66 09/15/23 02:08
Methylene Chloride ug/L ND 5.0 3.7 09/15/23 02:08
n-Butylbenzene ug/L ND 5.0 0.39 09/15/23 02:08
n-Hexane ug/L ND 5.0 0.36 09/15/23 02:08
n-Propylbenzene ug/L ND 5.0 0.37 09/15/23 02:08
Naphthalene ug/L ND 1.2 0.57 09/15/23 02:08
p-Isopropyltoluene ug/L ND 5.0 0.41 09/15/23 02:08
sec-Butylbenzene ug/L ND 5.0 0.36 09/15/23 02:08
Styrene ug/L ND 5.0 0.39 09/15/23 02:08
tert-Butylbenzene ug/L ND 5.0 0.38 09/15/23 02:08
Tetrachloroethene ug/L ND 5.0 0.36 09/15/23 02:08
Toluene ug/L ND 5.0 0.38 09/15/23 02:08
trans-1,2-Dichloroethene ug/L ND 5.0 0.48 09/15/23 02:08
trans-1,3-Dichloropropene ug/L ND 5.0 0.28 09/15/23 02:08
trans-1,4-Dichloro-2-butene ug/L ND 100 0.42 09/15/23 02:08
Trichloroethene ug/L ND 5.0 0.41 09/15/23 02:08
Trichlorofluoromethane ug/L ND 5.0 0.36 09/15/23 02:08
Vinyl acetate ug/L ND 50.0 1.7 09/15/23 02:08
Vinyl chloride ug/L ND 2.0 0.35 09/15/23 02:08
Xylene (Total) ug/L ND 10.0 1.5 09/15/23 02:08
4-Bromofluorobenzene (S) %. 103 79-124 09/15/23 02:08
Dibromofluoromethane (S) %. 105 82-128 09/15/23 02:08
Toluene-d8 (S) %. 100 73-122 09/15/23 02:08

LABORATORY CONTROL SAMPLE:	3449829					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	50	51.3	103	81-130	_
1,1,1-Trichloroethane	ug/L	50	52.6	105	76-127	
1,1,2,2-Tetrachloroethane	ug/L	50	44.3	89	70-126	
1,1,2-Trichloroethane	ug/L	50	47.6	95	79-124	
1,1-Dichloroethane	ug/L	50	49.0	98	76-123	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50353438

Date: 09/19/2023 04:25 PM

ABORATORY CONTROL SAMPLE:	3449829					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifier
,1-Dichloroethene	ug/L	50	45.4	91	73-133	
,1-Dichloropropene	ug/L	50	47.9	96	78-144	
,2,3-Trichlorobenzene	ug/L	50	41.7	83	72-138	
,2,3-Trichloropropane	ug/L	50	47.5	95	75-121	
,2,4-Trichlorobenzene	ug/L	50	38.7	77	71-138	
,2,4-Trimethylbenzene	ug/L	50	44.9	90	70-127	
,2-Dibromoethane (EDB)	ug/L	50	49.1	98	80-126	
,2-Dichlorobenzene	ug/L	50	44.1	88	79-123	
,2-Dichloroethane	ug/L	50	50.3	101	70-124	
,2-Dichloropropane	ug/L	50	47.1	94	74-128	
,3,5-Trimethylbenzene	ug/L	50	46.0	92	71-124	
,3-Dichlorobenzene	ug/L	50	42.9	86	77-124	
,3-Dichloropropane	ug/L	50	48.6	97	77-126	
,4-Dichlorobenzene	ug/L	50	43.0	86	77-120	
-Methylnaphthalene	ug/L	50	41.4	83	49-175	
2,2-Dichloropropane	ug/L	50	52.2	104	65-136	
2-Butanone (MEK)	ug/L	250	282	113	59-134	
2-Chlorotoluene	ug/L	50	46.0	92	74-121	
-Hexanone	ug/L	250	265	106	63-134	
-Methylnaphthalene	ug/L	50	39.4	79	52-170	
-Chlorotoluene	ug/L	50	44.0	88	78-123	
-Methyl-2-pentanone (MIBK)	ug/L	250	241	96	67-133	
Acetone	ug/L	250	277	111	32-133	
Acrolein	ug/L	1000	618	62	35-166	
Acrylonitrile	ug/L	250	225	90	69-137	
Benzene	ug/L	50	46.3	93	74-124	
Bromobenzene	ug/L	50	46.3	93	76-122	
Bromochloromethane	ug/L	50	49.6	99	66-127	
Bromodichloromethane	ug/L	50	51.1	102	80-126	
Bromoform	ug/L	50	47.8	96	75-128	
Bromomethane	ug/L	50	46.6	93	10-183	
Carbon disulfide	ug/L	50	42.8	86	68-123	
Carbon tetrachloride	ug/L	50	51.9	104	78-132	
Chlorobenzene	ug/L	50	45.9	92	77-121	
Chloroethane	ug/L	50	37.0	74	43-140	
Chloroform	ug/L	50	47.7	95	75-118	
Chloromethane	ug/L	50	35.3	71	45-130	
sis-1,2-Dichloroethene	ug/L	50	48.0	96	76-125	
is-1,3-Dichloropropene	ug/L	50	48.4	97	76-123 76-132	
Dibromochloromethane	ug/L	50	51.0	102	70-132 79-130	
Dibromomethane	ug/L	50	46.1	92	79-130 79-124	
Dichlorodifluoromethane	ug/L	50	35.7	71	10-124	
Ethyl methacrylate	ug/L ug/L	50 50	46.6J	93	73-137	
Ethylbenzene	_	50 50	46.6J 44.5	93 89	73-137 74-125	
triyiberizene lexachloro-1,3-butadiene	ug/L ug/L	50 50	44.5 40.8	82	66-141	
odomethane	_		40.8 35.5	o∠ 71	10-160	
Juonellane	ug/L	50	33.3	/ 1	10-160	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: GE Indy
Pace Project No.: 50353438

Date: 09/19/2023 04:25 PM

LABORATORY CONTROL SAMPLE:	3449829					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Methyl-tert-butyl ether	ug/L	50	52.8	106	74-129	
Methylene Chloride	ug/L	50	42.8	86	77-126	
Butylbenzene	ug/L	50	41.1	82	72-131	
Hexane	ug/L	50	46.6	93	58-131	
Propylbenzene	ug/L	50	44.4	89	76-127	
aphthalene	ug/L	50	44.8	90	70-132	
Isopropyltoluene	ug/L	50	43.9	88	76-126	
c-Butylbenzene	ug/L	50	44.6	89	76-129	
vrene	ug/L	50	46.5	93	81-129	
t-Butylbenzene	ug/L	50	43.9	88	76-129	
rachloroethene	ug/L	50	45.7	91	73-132	
uene	ug/L	50	39.9	80	72-119	
ns-1,2-Dichloroethene	ug/L	50	46.3	93	74-125	
ns-1,3-Dichloropropene	ug/L	50	51.3	103	75-132	
ns-1,4-Dichloro-2-butene	ug/L	50	44.1J	88	66-152	
chloroethene	ug/L	50	47.7	95	75-127	
chlorofluoromethane	ug/L	50	42.6	85	64-136	
nyl acetate	ug/L	200	188	94	62-159	
nyl chloride	ug/L	50	35.8	72	48-133	
lene (Total)	ug/L	100	87.3	87	73-123	
Bromofluorobenzene (S)	%.			101	79-124	
promofluoromethane (S)	%.			104	82-128	
oluene-d8 (S)	%.			101	73-122	

MATRIX SPIKE & MATRIX SF	PIKE DUPLIC	CATE: 3449	830		3449831							
			MS	MSD								
	5	0353438003	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1,1,1,2-Tetrachloroethane	ug/L	ND	50	50	51.6	59.9	103	120	60-150	15	20	
1,1,1-Trichloroethane	ug/L	ND	50	50	51.6	58.6	103	117	63-138	13	20	
1,1,2,2-Tetrachloroethane	ug/L	ND	50	50	45.6	51.9	91	104	58-146	13	20	
1,1,2-Trichloroethane	ug/L	ND	50	50	47.8	53.8	96	108	63-142	12	20	
1,1-Dichloroethane	ug/L	10.1	50	50	53.2	58.5	86	97	64-138	10	20	
1,1-Dichloroethene	ug/L	ND	50	50	34.4	39.8	69	80	65-139	15	20	
1,1-Dichloropropene	ug/L	ND	50	50	46.7	52.8	93	106	68-155	12	20	
1,2,3-Trichlorobenzene	ug/L	ND	50	50	39.5	45.0	79	90	32-141	13	20	
1,2,3-Trichloropropane	ug/L	ND	50	50	45.9	53.4	92	107	54-144	15	20	
1,2,4-Trichlorobenzene	ug/L	ND	50	50	35.5	40.3	71	81	31-140	13	20	
1,2,4-Trimethylbenzene	ug/L	ND	50	50	43.9	49.1	87	97	34-144	11	20	
1,2-Dibromoethane (EDB)	ug/L	ND	50	50	48.4	56.3	97	113	64-139	15	20	
1,2-Dichlorobenzene	ug/L	ND	50	50	42.6	49.1	85	98	50-136	14	20	
1,2-Dichloroethane	ug/L	ND	50	50	50.9	58.0	102	116	55-146	13	20	
1,2-Dichloropropane	ug/L	ND	50	50	45.5	52.0	91	104	66-134	13	20	
1,3,5-Trimethylbenzene	ug/L	ND	50	50	43.6	49.5	87	98	29-151	13	20	
1,3-Dichlorobenzene	ug/L	ND	50	50	41.3	46.5	83	93	47-133	12	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50353438

Date: 09/19/2023 04:25 PM

MATRIX SPIKE & MATRIX SI	PIKE DUPI	LICATE: 3449			3449831							
			MS	MSD								
		50353438003	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qu
,3-Dichloropropane	ug/L	ND	50	50	47.6	54.9	95	110	61-144	14	20	
,4-Dichlorobenzene	ug/L	ND	50	50	41.6	46.6	83	93	50-131	11	20	
I-Methylnaphthalene	ug/L	ND	50	50	39.4	46.6	79	93	20-176	17	20	
2,2-Dichloropropane	ug/L	ND	50	50	47.8	54.1	96	108	33-146	12	20	
2-Butanone (MEK)	ug/L	ND	250	250	230	267	92	107	45-155	15	20	
2-Chlorotoluene	ug/L	ND	50	50	44.7	50.9	89	102	43-142	13	20	
2-Hexanone	ug/L	ND	250	250	233	271	93	108	48-157	15	20	
2-Methylnaphthalene	ug/L	ND	50	50	37.9	44.6	76	89	21-175	16	20	
I-Chlorotoluene	ug/L	ND	50	50	42.5	47.6	85	95	47-137	11	20	
I-Methyl-2-pentanone MIBK)	ug/L	ND	250	250	234	272	93	109	53-156	15	20	
Acetone	ug/L	ND	250	250	212	224	81	86	16-162	5	20	
Acrolein	ug/L	ND	1000	1000	554	643	55	64	39-184	15	20	
Acrylonitrile	ug/L	ND	250	250	218	253	87	101	58-140	15	20	
Benzene	ug/L	13.3	50	50	55.2	61.0	84	95	65-137	10	20	
Bromobenzene	ug/L	ND	50	50	45.4	52.0	91	104	56-137	14	20	
Bromochloromethane	ug/L	ND	50	50	48.1	54.2	96	108	56-139	12	20	
Bromodichloromethane	ug/L	ND	50	50	52.9	59.6	106	119	61-149	12	20	
Bromoform	ug/L	ND	50	50	48.5	55.2	97	110	51-138	13		
Bromomethane	ug/L	ND	50	50	45.5	52.0	91	104	10-169	13		
Carbon disulfide	ug/L	ND	50	50	27.5	31.3	55	63	55-126	13		
Carbon tetrachloride	ug/L	ND	50	50	50.5	56.8	101	114	65-156	12		
Chlorobenzene	ug/L	ND	50	50	45.0	51.4	90	103	54-135	13		
Chloroethane	ug/L	512	50	50	407	393	-211	-239	46-142	4		F
Chloroform	ug/L	ND	50	50	47.3	54.4	95	109	64-133	14		_
Chloromethane	ug/L	ND	50	50	35.8	40.0	72	80	30-139	11	20	
cis-1,2-Dichloroethene	ug/L	29.5	50	50	71.9	75.9	85	93	59-141	5		
sis-1,3-Dichloropropene	ug/L	ND	50	50	47.2	54.3	94	109	57-141	14		
Dibromochloromethane	ug/L	ND	50	50	52.3	58.7	105	117	59-147	11	20	
Dibromomethane		ND ND	50	50	45.4	52.3	91	105	64-142	14		
Dichlorodifluoromethane	ug/L	ND ND	50	50	17.2	30.5	34	61	10-144	56		D1
	ug/L					53.7J		_	-	56	20	ΚI
Ethyl methacrylate	ug/L	ND	50	50	46.2J		92	107	58-147	44		
Ethylbenzene	ug/L	ND	50	50	44.6	50.1	89	100	50-143	11	20	
Hexachloro-1,3-butadiene	ug/L	ND	50	50	39.2	44.9	78	90	16-155	14		
odomethane	ug/L	ND	50	50	42.6	48.4	85	97	10-154	13		
sopropylbenzene Cumene)	ug/L	ND	50	50	45.9	52.2	92	104	36-151	13		
Methyl-tert-butyl ether	ug/L	ND	50	50	49.3	56.6	99	113	66-138	14		
Methylene Chloride	ug/L	ND	50	50	40.4	42.6	73	78	53-126	5		
n-Butylbenzene	ug/L	ND	50	50	40.1	45.7	80	91	31-142	13		
n-Hexane	ug/L	ND	50	50	35.6	40.0	71	80	53-129	12		
n-Propylbenzene	ug/L	ND	50	50	43.9	49.7	88	99	39-145	12		
laphthalene	ug/L	ND	50	50	44.3	50.9	89	102	51-135	14		
o-Isopropyltoluene	ug/L	ND	50	50	42.7	48.5	85	97	38-145	13		
sec-Butylbenzene	ug/L	ND	50	50	44.6	50.6	89	101	33-153	13	20	
Styrene	ug/L	ND	50	50	45.1	51.6	90	103	57-141	13	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50353438

Date: 09/19/2023 04:25 PM

MATRIX SPIKE & MATRIX SP	IKE DUPI	LICATE: 3449	830		3449831							
			MS	MSD								
		50353438003	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
tert-Butylbenzene	ug/L	ND	50	50	45.6	52.1	91	104	45-145	13	20	
Tetrachloroethene	ug/L	ND	50	50	44.5	51.0	89	102	43-149	14	20	
Toluene	ug/L	ND	50	50	38.6	44.3	77	88	57-137	14	20	
trans-1,2-Dichloroethene	ug/L	8.8	50	50	48.0	53.8	78	90	63-133	11	20	
trans-1,3-Dichloropropene	ug/L	ND	50	50	50.1	58.1	100	116	56-140	15	20	
trans-1,4-Dichloro-2-butene	ug/L	ND	50	50	41.5J	47.6J	83	95	36-169		20	
Trichloroethene	ug/L	ND	50	50	46.8	52.9	91	103	52-145	12	20	
Trichlorofluoromethane	ug/L	ND	50	50	43.5	49.5	87	99	52-144	13	20	
Vinyl acetate	ug/L	ND	200	200	185	211	93	105	27-179	13	20	
Vinyl chloride	ug/L	19.8	50	50	48.9	52.8	58	66	43-139	8	20	
Xylene (Total)	ug/L	ND	150	150	125	142	84	95	52-137	12	20	
4-Bromofluorobenzene (S)	%.						103	104	79-124			
Dibromofluoromethane (S)	%.						105	105	82-128			
Toluene-d8 (S)	%.						101	102	73-122			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50353438

Date: 09/19/2023 04:25 PM

QC Batch: 752744 Analysis Method: EPA 5030/8260
QC Batch Method: EPA 5030/8260 Analysis Description: 8260 MSV

Laboratory: Pace Analytical Services - Indianapolis

Associated Lab Samples: 50353438008, 50353438009, 50353438011, 50353438012, 50353438013, 50353438014, 50353438015,

50353438017, 50353438018, 50353438019

METHOD BLANK: 3449842 Matrix: Water

Associated Lab Samples: 50353438008, 50353438009, 50353438011, 50353438012, 50353438013, 50353438014, 50353438015,

50353438017, 50353438018, 50353438019

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	ND	5.0	0.36	09/15/23 02:23	
1,1,1-Trichloroethane	ug/L	ND	5.0	0.30	09/15/23 02:23	
1,1,2,2-Tetrachloroethane	ug/L	ND	5.0	0.33	09/15/23 02:23	
1,1,2-Trichloroethane	ug/L	ND	5.0	0.36	09/15/23 02:23	
1,1-Dichloroethane	ug/L	ND	5.0	0.31	09/15/23 02:23	
1,1-Dichloroethene	ug/L	ND	5.0	0.27	09/15/23 02:23	
1,1-Dichloropropene	ug/L	ND	5.0	0.37	09/15/23 02:23	
1,2,3-Trichlorobenzene	ug/L	ND	5.0	0.45	09/15/23 02:23	
1,2,3-Trichloropropane	ug/L	ND	5.0	0.40	09/15/23 02:23	
1,2,4-Trichlorobenzene	ug/L	ND	5.0	0.43	09/15/23 02:23	
1,2,4-Trimethylbenzene	ug/L	ND	5.0	0.37	09/15/23 02:23	
1,2-Dibromoethane (EDB)	ug/L	ND	5.0	0.33	09/15/23 02:23	
1,2-Dichlorobenzene	ug/L	ND	5.0	0.36	09/15/23 02:23	
1,2-Dichloroethane	ug/L	ND	5.0	0.29	09/15/23 02:23	
1,2-Dichloropropane	ug/L	ND	5.0	0.40	09/15/23 02:23	
1,3,5-Trimethylbenzene	ug/L	ND	5.0	0.35	09/15/23 02:23	
1,3-Dichlorobenzene	ug/L	ND	5.0	0.36	09/15/23 02:23	
1,3-Dichloropropane	ug/L	ND	5.0	0.29	09/15/23 02:23	
1,4-Dichlorobenzene	ug/L	ND	5.0	0.35	09/15/23 02:23	
1-Methylnaphthalene	ug/L	ND	10.0	1.6	09/15/23 02:23	
2,2-Dichloropropane	ug/L	ND	5.0	0.33	09/15/23 02:23	
2-Butanone (MEK)	ug/L	ND	25.0	3.6	09/15/23 02:23	
2-Chlorotoluene	ug/L	ND	5.0	0.34	09/15/23 02:23	
2-Hexanone	ug/L	ND	25.0	2.0	09/15/23 02:23	
2-Methylnaphthalene	ug/L	ND	10.0	2.0	09/15/23 02:23	
4-Chlorotoluene	ug/L	ND	5.0	0.38	09/15/23 02:23	
4-Methyl-2-pentanone (MIBK)	ug/L	ND	25.0	2.0	09/15/23 02:23	
Acetone	ug/L	ND	100	6.4	09/15/23 02:23	
Acrolein	ug/L	ND	50.0	13.7	09/15/23 02:23	
Acrylonitrile	ug/L	ND	100	1.8	09/15/23 02:23	
Benzene	ug/L	ND	5.0	0.44	09/15/23 02:23	
Bromobenzene	ug/L	ND	5.0	0.38	09/15/23 02:23	
Bromochloromethane	ug/L	ND	5.0	0.37	09/15/23 02:23	
Bromodichloromethane	ug/L	ND	5.0	0.29	09/15/23 02:23	
Bromoform	ug/L	ND	5.0	0.32	09/15/23 02:23	
Bromomethane	ug/L	ND	5.0	1.8	09/15/23 02:23	
Carbon disulfide	ug/L	ND	10.0	0.40	09/15/23 02:23	
Carbon tetrachloride	ug/L	ND	5.0	1.6	09/15/23 02:23	
Chlorobenzene	ug/L	ND	5.0	0.32	09/15/23 02:23	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50353438

Date: 09/19/2023 04:25 PM

METHOD BLANK: 3449842 Matrix: Water

Associated Lab Samples: 50353438008, 50353438009, 50353438011, 50353438012, 50353438013, 50353438014, 50353438015,

50353438017, 50353438018, 50353438019

Parameter	000001	30017, 30333430010	Blank	Reporting			
Chloroform Ug/L ND 5.0 Chloromethane Ug/L ND 5.0 Chloromethane Ug/L ND 5.0 Chloromethane Ug/L ND 5.0 Chloromethane Ug/L ND 5.0 Chloromethane Ug/L ND 5.0 Chloromethane Ug/L ND 5.0 Chloromethane Ug/L ND 5.0 Chloromethane Ug/L ND 5.0 Chloromethane Ug/L ND 5.0 Chloromethane Ug/L ND 5.0 Chloromethane Ug/L ND 5.0 Chloromethane Ug/L ND 5.0 Chloromethane Ug/L ND 5.0 Chlorodifluoromethane Ug/L ND 5.0 Chlorodifluorometha	Parameter	Units			MDL	Analyzed	Qualifiers
Chloroform Ug/L ND 5.0 Chloromethane Ug/L ND 5.0 Chloromethane Ug/L ND 5.0 Chloromethane Ug/L ND 5.0 Chloromethane Ug/L ND 5.0 Chloromethane Ug/L ND 5.0 Chloromethane Ug/L ND 5.0 Chloromethane Ug/L ND 5.0 Chloromethane Ug/L ND 5.0 Chloromethane Ug/L ND 5.0 Chloromethane Ug/L ND 5.0 Chloromethane Ug/L ND 5.0 Chloromethane Ug/L ND 5.0 Chlorodifluoromethane Ug/L ND 5.0 Chlorodiflu	Chloroethane	ug/L		5.0	0.87	09/15/23 02:23	
Chloromethane cis-1,2-Dichloroethene ug/L ND 5.0 0.34 09/15/23 02:23 cis-1,3-Dichloropropene ug/L ND 5.0 0.37 09/15/23 02:23 Dibromochloromethane ug/L ND 5.0 0.27 09/15/23 02:23 Dibromochloromethane ug/L ND 5.0 0.27 09/15/23 02:23 Dibromochloromethane ug/L ND 5.0 0.27 09/15/23 02:23 Dichlorodifluoromethane ug/L ND 5.0 0.37 09/15/23 02:23 Dichlorodifluoromethane ug/L ND 5.0 0.37 09/15/23 02:23 Ethyl methacrylate Ug/L ND 5.0 0.38 09/15/23 02:23 Ethylbenzene ug/L ND 5.0 0.86 09/15/23 02:23 Ethylbenzene ug/L ND 5.0 0.86 09/15/23 02:23 Idedomethane Ug/L ND 5.0 0.50 09/15/23 02:23 Idedomethane Ug/L ND 5.0 0.50 09/15/23 02:23 Idedomethane Ug/L ND 5.0 0.50 09/15/23 02:23 Idedomethane Ug/L ND 5.0 0.50 09/15/23 02:23 Idedomethane Ug/L ND 5.0 0.34 09/15/23 02:23 Idedomethane Ug/L ND 5.0 0.34 09/15/23 02:23 Idedomethane Ug/L ND 5.0 0.34 09/15/23 02:23 Idedomethane Ug/L ND 5.0 0.37 09/15/23 02:23 Idedomethane Ug/L ND 5.0 0.37 09/15/23 02:23 Idedomethane Ug/L ND 5.0 0.37 09/15/23 02:23 Idedomethane Ug/L ND 5.0 0.37 09/15/23 02:23 Idedomethane Ug/L ND 5.0 0.39 09/15/23 02:23 Idedomethane Ug/L ND 5.0 0.39 09/15/23 02:23 Idedomethane Ug/L ND 5.0 0.39 09/15/23 02:23 Idedomethane Ug/L ND 5.0 0.39 09/15/23 02:23 Idedomethane Ug/L ND 5.0 0.39 09/15/23 02:23 Idedomethane Ug/L ND 5.0 0.39 09/15/23 02:23 Idedomethane Ug/L ND 5.0 0.39 09/15/23 02:23 Idedomethane Ug/L ND 5.0 0.30 09/15/23 02:23 Idedomethane Ug/L ND 5.0 0.36 09/15/23 02:23 Idedomethane Ug/L ND 5.0 0.36 09/15/23 02:23 Idedomethane Ug/L ND 5.0 0.36 09/15/23 02:23 Idedomethane Ug/L ND 5.0 0.37 09/15/23 02:23 Idedomethane Ug/L ND 5.0 0.38 09/15/23 02:23 Idedomethane Ug/L ND 5.0 0.39 09/15/23 02:23 Idedomethane Ug/L ND 5.0 0.39 09/15/23 02:23 Idedomethane Ug/L ND 5.0 0.39 09/15/23 02:23 Idedomethane Ug/L ND 5.0 0.39 09/15/23 02:23 Idedomethane Ug/L ND 5.0 0.39 09/15/23 02:23 Idedomethane Ug/L ND 5.0 0.39 09/15/23 02:23 Idedomethane Ug/L ND 5.0 0.39 09/15/23 02:23 Idedomethane Ug/L ND 5.0 0.39 09/15/23 02:23 Idedomethane Ug/L ND 5.0 0.39 09/15/23 02:23 Idedomethane Ug/L ND 5.0	Chloroform		ND	5.0	2.6	09/15/23 02:23	
cis-1,3-Dichloropropene ug/L ND 5.0 0.37 09/15/23 02:23 Dibromochloromethane ug/L ND 5.0 0.27 09/15/23 02:23 Dibromomethane ug/L ND 5.0 0.42 09/15/23 02:23 Dichlorodifluoromethane ug/L ND 5.0 0.37 09/15/23 02:23 Ethyl methacrylate ug/L ND 100 0.38 09/15/23 02:23 Ethylbenzene ug/L ND 5.0 0.86 09/15/23 02:23 Ichyloro-1,3-butadiene ug/L ND 5.0 0.50 09/15/23 02:23 Icodomethane ug/L ND 10.0 1.9 09/15/23 02:23 Icodomethane ug/L ND 5.0 0.34 09/15/23 02:23	Chloromethane		ND	5.0	0.42	09/15/23 02:23	
cis-1,3-Dichloropropene ug/L ND 5.0 0.37 09/15/23 02:23 Dibromochloromethane ug/L ND 5.0 0.27 09/15/23 02:23 Dibromomethane ug/L ND 5.0 0.42 09/15/23 02:23 Ethyl methacrylate ug/L ND 100 0.33 09/15/23 02:23 Ethyl benzene ug/L ND 5.0 0.86 09/15/23 02:23 Hexachloro-1,3-butadiene ug/L ND 5.0 0.50 09/15/23 02:23 Idodmethane ug/L ND 10.0 1.9 09/15/23 02:23 Idodmethane ug/L ND 10.0 1.9 09/15/23 02:23 Idodmethane ug/L ND 5.0 0.34 09/15/23 02:23 Idodmethane ug/L ND 5.0 0.34 09/15/23 02:23 Idodmethane ug/L ND 5.0 0.34 09/15/23 02:23 Methyleric butylerie ug/L ND 5.0 0.37 09/15/23 02:23	cis-1,2-Dichloroethene	ug/L	ND	5.0	0.34	09/15/23 02:23	
Dibromomethane ug/L ND 5.0 0.42 09/15/23 02:23 Dichlorodifluoromethane ug/L ND 5.0 0.37 09/15/23 02:23 Ethyl methacrylate ug/L ND 100 0.38 09/15/23 02:23 Ethylbenzene ug/L ND 5.0 0.86 09/15/23 02:23 Idexachloro-1,3-butadiene ug/L ND 5.0 0.50 09/15/23 02:23 Idodomethane ug/L ND 10.0 1.9 09/15/23 02:23 Isopropylbenzene (Cumene) ug/L ND 4.0 0.31 09/15/23 02:23 Methyl-tert-butyl ether ug/L ND 4.0 0.31 09/15/23 02:23 Methyl-tert-butyl ether ug/L ND 5.0 0.34 09/15/23 02:23 Methyl-tert-butyl ether ug/L ND 5.0 0.31 09/15/23 02:23 Methyl-tert-butyl ether ug/L ND 5.0 0.39 09/15/23 02:23 Methyl-tert-butyl ether ug/L ND 5.0 0.39	cis-1,3-Dichloropropene		ND	5.0	0.37	09/15/23 02:23	
Dichlorodifluoromethane ug/L ND 5.0 0.37 09/15/23 02:23 Ethyl methacrylate ug/L ND 100 0.38 09/15/23 02:23 Ethylbenzene ug/L ND 5.0 0.86 09/15/23 02:23 Hexachloro-1,3-butadiene ug/L ND 5.0 0.50 09/15/23 02:23 Iodomethane ug/L ND 10.0 1.9 09/15/23 02:23 Isopropylbenzene (Cumene) ug/L ND 5.0 0.34 09/15/23 02:23 Methyl-tert-butyl ether ug/L ND 5.0 0.34 09/15/23 02:23 Methyl-tert-butyl ether ug/L ND 5.0 0.34 09/15/23 02:23 Methylenzene Cloride ug/L ND 5.0 0.34 09/15/23 02:23 Methylenzene ug/L ND 5.0 0.39 09/15/23 02:23 n-Butylbenzene ug/L ND 5.0 0.39 09/15/23 02:23 n-Propylbenzene ug/L ND 5.0 0.34 09/15/	Dibromochloromethane	ug/L	ND	5.0	0.27	09/15/23 02:23	
Ethyl methacrylate ug/L ND 100 0.38 09/15/23 02:23 Ethylbenzene ug/L ND 5.0 0.86 09/15/23 02:23 Hexachloro-1,3-butadiene ug/L ND 5.0 0.50 09/15/23 02:23 Iodomethane ug/L ND 10.0 1.9 09/15/23 02:23 Isopropylbenzene (Cumene) ug/L ND 5.0 0.34 09/15/23 02:23 Methyl-tert-butyl ether ug/L ND 4.0 0.31 09/15/23 02:23 Methyl-tert-butyl ether ug/L ND 5.0 3.7 09/15/23 02:23 Methyl-tert-butyl ether ug/L ND 5.0 3.7 09/15/23 02:23 Methyl-tert-butyl ether ug/L ND 5.0 3.7 09/15/23 02:23 Methyl-tert-butylene Chloride ug/L ND 5.0 0.39 09/15/23 02:23 n-Butylbenzene ug/L ND 5.0 0.39 09/15/23 02:23 n-Butylbenzene ug/L ND 5.0 0.34	Dibromomethane	ug/L	ND	5.0	0.42	09/15/23 02:23	
Ethylbenzene ug/L ND 5.0 0.86 09/15/23 02:23 Hexachloro-1,3-butadiene ug/L ND 5.0 0.50 09/15/23 02:23 Iodomethane ug/L ND 10.0 1.9 09/15/23 02:23 Isopropylbenzene (Cumene) ug/L ND 5.0 0.34 09/15/23 02:23 Methyl-tert-butyl ether ug/L ND 4.0 0.31 09/15/23 02:23 Methylene Chloride ug/L ND 5.0 3.7 09/15/23 02:23 Methylene Chloride ug/L ND 5.0 0.39 09/15/23 02:23 Methylene Chloride ug/L ND 5.0 0.39 09/15/23 02:23 m-Butylbenzene ug/L ND 5.0 0.39 09/15/23 02:23 n-Butylbenzene ug/L ND 5.0 0.34 09/15/23 02:23 n-Propylbenzene ug/L ND 5.0 0.34 09/15/23 02:23 Naphthalene ug/L ND 5.0 0.40 09/15/23 02:23	Dichlorodifluoromethane	ug/L	ND	5.0	0.37	09/15/23 02:23	
Hexachloro-1,3-butadiene ug/L ND 5.0 0.50 09/15/23 02:23 lodomethane ug/L ND 10.0 1.9 09/15/23 02:23 Isopropylbenzene (Cumene) ug/L ND 5.0 0.34 09/15/23 02:23 Methyl-tert-butyl ether ug/L ND 4.0 0.31 09/15/23 02:23 Methyl-tert-butyl ether ug/L ND 5.0 0.34 09/15/23 02:23 Methyl-tert-butyl ether ug/L ND 5.0 0.39 09/15/23 02:23 Methyl-tert-butyl ether ug/L ND 5.0 0.39 09/15/23 02:23 Methyl-tert-butyl ether ug/L ND 5.0 0.39 09/15/23 02:23 n-Butylbenzene ug/L ND 5.0 0.34 09/15/23 02:23 n-Propylbenzene ug/L ND 5.0 0.40 09/15/23 02:23 Naphthalene ug/L ND 5.0 0.40 09/15/23 02:23 Sec-Butylbenzene ug/L ND 5.0 0.36	Ethyl methacrylate	ug/L	ND	100	0.38	09/15/23 02:23	
lodomethane ug/L ND 10.0 1.9 09/15/23 02:23 Isopropylbenzene (Cumene) ug/L ND 5.0 0.34 09/15/23 02:23 Methyl-tert-butyl ether ug/L ND 4.0 0.31 09/15/23 02:23 Methylene Chloride ug/L ND 5.0 0.37 09/15/23 02:23 n-Butylbenzene ug/L ND 5.0 0.39 09/15/23 02:23 n-Hexane ug/L ND 5.0 0.39 09/15/23 02:23 n-Propylbenzene ug/L ND 5.0 0.34 09/15/23 02:23 Naphthalene ug/L ND 5.0 0.34 09/15/23 02:23 P-Isopropyltoluene ug/L ND 5.0 0.40 09/15/23 02:23 p-Isopropyltoluene ug/L ND 5.0 0.40 09/15/23 02:23 p-Isopropyltoluene ug/L ND 5.0 0.40 09/15/23 02:23 sec-Butylbenzene ug/L ND 5.0 0.35 09/15/23 02:23	Ethylbenzene	ug/L	ND	5.0	0.86	09/15/23 02:23	
Sopropylbenzene (Cumene)	Hexachloro-1,3-butadiene	ug/L	ND	5.0	0.50	09/15/23 02:23	
Methyl-tert-butyl ether ug/L ND 4.0 0.31 09/15/23 02:23 Methylene Chloride ug/L ND 5.0 3.7 09/15/23 02:23 n-Butylbenzene ug/L ND 5.0 0.39 09/15/23 02:23 n-Hexane ug/L ND 5.0 0.39 09/15/23 02:23 n-Propylbenzene ug/L ND 5.0 0.34 09/15/23 02:23 Naphthalene ug/L ND 5.0 0.34 09/15/23 02:23 Naphthalene ug/L ND 5.0 0.40 09/15/23 02:23 p-Isopropyltoluene ug/L ND 5.0 0.40 09/15/23 02:23 sec-Butylbenzene ug/L ND 5.0 0.35 09/15/23 02:23 styrene ug/L ND 5.0 0.36 09/15/23 02:23 tert-Butylbenzene ug/L ND 5.0 0.36 09/15/23 02:23 tert-Butylbenzene ug/L ND 5.0 0.36 09/15/23 02:23 t	Iodomethane	ug/L	ND	10.0	1.9	09/15/23 02:23	
Methylene Chloride ug/L ND 5.0 3.7 09/15/23 02:23 n-Butylbenzene ug/L ND 5.0 0.39 09/15/23 02:23 n-Hexane ug/L ND 5.0 0.39 09/15/23 02:23 n-Propylbenzene ug/L ND 5.0 0.34 09/15/23 02:23 Naphthalene ug/L ND 5.0 0.43 09/15/23 02:23 p-Isopropyltoluene ug/L ND 5.0 0.40 09/15/23 02:23 sec-Butylbenzene ug/L ND 5.0 0.40 09/15/23 02:23 Styrene ug/L ND 5.0 0.36 09/15/23 02:23 Styrene ug/L ND 5.0 0.36 09/15/23 02:23 Tetrachlorethene ug/L ND 5.0 0.36 09/15/23 02:23 Tetrachloroethene ug/L ND 5.0 0.38 09/15/23 02:23 trans-1,2-Dichloroethene ug/L ND 5.0 0.37 09/15/23 02:23 trans	Isopropylbenzene (Cumene)	ug/L	ND	5.0	0.34	09/15/23 02:23	
n-Butylbenzene ug/L ND 5.0 0.39 09/15/23 02:23 n-Hexane ug/L ND 5.0 0.39 09/15/23 02:23 n-Propylbenzene ug/L ND 5.0 0.39 09/15/23 02:23 n-Propylbenzene ug/L ND 5.0 0.34 09/15/23 02:23 Naphthalene ug/L ND 1.2 0.43 09/15/23 02:23 Naphthalene ug/L ND 1.2 0.43 09/15/23 02:23 Naphthalene ug/L ND 5.0 0.40 09/15/23 02:23 Sec-Butylbenzene ug/L ND 5.0 0.35 09/15/23 02:23 Styrene ug/L ND 5.0 0.36 09/15/23 02:23 Styrene ug/L ND 5.0 0.36 09/15/23 02:23 Styrene ug/L ND 5.0 0.36 09/15/23 02:23 Styrene ug/L ND 5.0 0.36 09/15/23 02:23 Styrene ug/L ND 5.0 0.36 09/15/23 02:23 Styrene ug/L ND 5.0 0.36 09/15/23 02:23 Styrene ug/L ND 5.0 0.36 09/15/23 02:23 Strans-1,2-Dichloroethene ug/L ND 5.0 0.38 09/15/23 02:23 Strans-1,2-Dichloroethene ug/L ND 5.0 0.38 09/15/23 02:23 Strans-1,3-Dichloropropene ug/L ND 5.0 0.37 09/15/23 02:23 Strans-1,4-Dichloro-2-butene ug/L ND 5.0 0.29 09/15/23 02:23 Strans-1,4-Dichloro-2-butene ug/L ND 5.0 0.31 09/15/23 02:23 Strans-1,4-Dichloro-2-butene ug/L ND 5.0 0.31 09/15/23 02:23 Strans-1,4-Dichloro-2-butene ug/L ND 5.0 0.31 09/15/23 02:23 Strans-1,4-Dichloro-2-butene ug/L ND 5.0 0.31 09/15/23 02:23 Strans-1,4-Dichloro-2-butene ug/L ND 5.0 0.31 09/15/23 02:23 Strans-1,4-Dichloro-2-butene ug/L ND 5.0 0.31 09/15/23 02:23 Strans-1,4-Dichloro-2-butene ug/L ND 5.0 0.31 09/15/23 02:23 Strans-1,4-Dichloro-2-butene ug/L ND 5.0 0.31 09/15/23 02:23 Strans-1,4-Dichloro-2-butene ug/L ND 5.0 0.31 09/15/23 02:23 Strans-1,4-Dichloro-2-butene ug/L ND 5.0 0.34 09/15/23 02:23 Strans-1,4-Dichloro-2-butene ug/L ND 5.0 0.34 09/15/23 02:23 Strans-1,4-Dichloro-2-butene ug/L ND 5.0 0.34 09/15/23 02:23 Strans-1,4-Dichloro-2-butene ug/L ND 5.0 0.34 09/15/23 02:23 Strans-1,4-Dichloro-2-butene ug/L ND 5.0 0.34 09/15/23 02:23 Strans-1,4-Dichloro-2-butene ug/L ND 5.0 0.34 09/15/23 02:23 Strans-1,4-Dichloro-2-butene ug/L ND 5.0 0.34 09/15/23 02:23 Strans-1,4-Dichloro-2-butene ug/L ND 5.0 0.34 09/15/23 02:23 Strans-1,4-Dichloro-2-butene ug/L ND 5.0 0.34 09/15/23 02:23 Strans-1,4-Dichloro-2-butene ug/L ND 5.0 0.34 09/15/23 02:23 Strans	Methyl-tert-butyl ether	ug/L	ND	4.0	0.31	09/15/23 02:23	
n-Hexane ug/L ND 5.0 0.39 09/15/23 02:23 n-Propylbenzene ug/L ND 5.0 0.34 09/15/23 02:23 Naphthalene ug/L ND 1.2 0.43 09/15/23 02:23 P-Isopropyltoluene ug/L ND 1.2 0.43 09/15/23 02:23 sec-Butylbenzene ug/L ND 5.0 0.40 09/15/23 02:23 sec-Butylbenzene ug/L ND 5.0 0.35 09/15/23 02:23 styrene ug/L ND 5.0 0.36 09/15/23 02:23 stert-Butylbenzene ug/L ND 5.0 0.36 09/15/23 02:23 strans-1,2-Dichloroethene ug/L ND 5.0 0.38 09/15/23 02:23 strans-1,2-Dichloroethene ug/L ND 5.0 0.38 09/15/23 02:23 strans-1,3-Dichloropropene ug/L ND 5.0 0.37 09/15/23 02:23 strans-1,4-Dichloro-2-butene ug/L ND 5.0 0.29 09/15/23 02:23 strans-1,4-Dichloro-2-butene ug/L ND 5.0 0.31 09/15/23 02:23 strans-1,4-Dichloroethene ug/L ND 5.0 0.31 09/15/23 02:23 strans-1,4-Dichloromethane ug/L ND 5.0 0.31 09/15/23 02:23 strans-1,4-Dichlorofluoromethane ug/L ND 5.0 0.31 09/15/23 02:23 s	Methylene Chloride	ug/L	ND	5.0	3.7	09/15/23 02:23	
n-Propylbenzene ug/L ND 5.0 0.34 09/15/23 02:23 Naphthalene ug/L ND 1.2 0.43 09/15/23 02:23 p-Isopropyltoluene ug/L ND 5.0 0.40 09/15/23 02:23 sec-Butylbenzene ug/L ND 5.0 0.35 09/15/23 02:23 Styrene ug/L ND 5.0 0.36 09/15/23 02:23 Styrene ug/L ND 5.0 0.36 09/15/23 02:23 tert-Butylbenzene ug/L ND 5.0 0.36 09/15/23 02:23 Tetrachloroethene ug/L ND 5.0 0.36 09/15/23 02:23 Toluene ug/L ND 5.0 0.35 09/15/23 02:23 Toluene ug/L ND 5.0 0.38 09/15/23 02:23 Trans-1,2-Dichloroethene ug/L ND 5.0 0.37 09/15/23 02:23 trans-1,3-Dichloropropene ug/L ND 5.0 0.37 09/15/23 02:23 trans-1,4-Dichloro-2-butene ug/L ND 5.0 0.29 09/15/23 02:23 Trichloroethene ug/L ND 5.0 0.31 09/15/23 02:23 Trichloroethene ug/L ND 5.0 0.31 09/15/23 02:23 Trichloroethene ug/L ND 5.0 0.31 09/15/23 02:23 Trichlorofluoromethane ug/L ND 5.0 0.31 09/15/23 02:23 Trichlorofluoromethane ug/L ND 5.0 0.34 09/15/23 02:23 Vinyl acetate ug/L ND 5.0 0.35 09/15/23 02:23 Vinyl chloride ug/L ND 5.0 0.35 09/15/23 02:23 Xylene (Total) ug/L ND 10.0 2.2 09/15/23 02:23 Xylene (Total) ug/L ND 10.0 2.2 09/15/23 02:23 Lylenomofluoromethane (S) %. 106 82-128 09/15/23 02:23	n-Butylbenzene	ug/L	ND	5.0	0.39	09/15/23 02:23	
Naphthalene ug/L ND 1.2 0.43 09/15/23 02:23 p-Isopropyltoluene ug/L ND 5.0 0.40 09/15/23 02:23 sec-Butylbenzene ug/L ND 5.0 0.35 09/15/23 02:23 Styrene ug/L ND 5.0 0.36 09/15/23 02:23 tert-Butylbenzene ug/L ND 5.0 0.36 09/15/23 02:23 Tetrachloroethene ug/L ND 5.0 0.35 09/15/23 02:23 Toluene ug/L ND 5.0 0.35 09/15/23 02:23 trans-1,2-Dichloroethene ug/L ND 5.0 0.37 09/15/23 02:23 trans-1,3-Dichloropropene ug/L ND 5.0 0.37 09/15/23 02:23 trans-1,4-Dichloro-2-butene ug/L ND 100 0.41 09/15/23 02:23 Trichlorofthene ug/L ND 5.0 0.31 09/15/23 02:23 Trichloroftuoromethane ug/L ND 5.0 0.31 09/15/23 02:23 Vinyl chloride ug/L ND 5.0 0.35 <t< td=""><td>n-Hexane</td><td>ug/L</td><td>ND</td><td>5.0</td><td>0.39</td><td>09/15/23 02:23</td><td></td></t<>	n-Hexane	ug/L	ND	5.0	0.39	09/15/23 02:23	
p-Isopropyltoluene ug/L ND 5.0 0.40 09/15/23 02:23 sec-Butylbenzene ug/L ND 5.0 0.35 09/15/23 02:23 Styrene ug/L ND 5.0 0.36 09/15/23 02:23 tert-Butylbenzene ug/L ND 5.0 0.36 09/15/23 02:23 tert-Butylbenzene ug/L ND 5.0 0.36 09/15/23 02:23 Tetrachloroethene ug/L ND 5.0 0.36 09/15/23 02:23 Toluene ug/L ND 5.0 0.35 09/15/23 02:23 trans-1,2-Dichloroethene ug/L ND 5.0 0.38 09/15/23 02:23 trans-1,2-Dichloroethene ug/L ND 5.0 0.37 09/15/23 02:23 trans-1,3-Dichloropropene ug/L ND 5.0 0.29 09/15/23 02:23 trans-1,4-Dichloro-2-butene ug/L ND 5.0 0.29 09/15/23 02:23 trans-1,4-Dichloro-2-butene ug/L ND 100 0.41 09/15/23 02:23 Trichloroethene ug/L ND 5.0 0.31 09/15/23 02:23 Trichloroethene ug/L ND 5.0 0.31 09/15/23 02:23 Trichlorofluoromethane ug/L ND 5.0 0.34 09/15/23 02:23 Vinyl acetate ug/L ND 5.0 0.34 09/15/23 02:23 Vinyl chloride ug/L ND 5.0 0.35 09/15/23 02:23 Vinyl chloride ug/L ND 2.0 0.35 09/15/23 02:23 Vinyl chloride ug/L ND 1.00 2.2 09/15/23 02:23 Vinyl chloride ug/L ND 1.00 2.2 09/15/23 02:23 Vinyl chloride ug/L ND 1.00 2.2 09/15/23 02:23 Vinyl chloride ug/L ND 1.00 2.2 09/15/23 02:23 Vinyl chloride ug/L ND 1.00 2.2 09/15/23 02:23 Vinyl chloride ug/L ND 1.00 2.2 09/15/23 02:23 Vinyl chloride ug/L ND 1.00 2.2 09/15/23 02:23 Vinyl chloride ug/L ND 1.00 2.2 09/15/23 02:23 Vinyl chloride ug/L ND 1.00 2.2 09/15/23 02:23 Vinyl chloride ug/L ND 1.00 2.2 09/15/23 02:23 Vinyl chloride ug/L ND 1.00 2.2 09/15/23 02:23 Vinyl chloride ug/L ND 1.00 2.2 09/15/23 02:23 Vinyl chloride ug/L ND 1.00 2.2 09/15/23 02:23 Vinyl chloride ug/L ND 1.00 0.2 09/15/23 02:23 Vinyl	n-Propylbenzene	ug/L	ND	5.0	0.34	09/15/23 02:23	
sec-Butylbenzene ug/L ND 5.0 0.35 09/15/23 02:23 Styrene ug/L ND 5.0 0.36 09/15/23 02:23 tert-Butylbenzene ug/L ND 5.0 0.36 09/15/23 02:23 Tetrachloroethene ug/L ND 5.0 0.35 09/15/23 02:23 Toluene ug/L ND 5.0 0.38 09/15/23 02:23 trans-1,2-Dichloroethene ug/L ND 5.0 0.37 09/15/23 02:23 trans-1,3-Dichloropropene ug/L ND 5.0 0.29 09/15/23 02:23 trans-1,4-Dichloro-2-butene ug/L ND 100 0.41 09/15/23 02:23 Trichloroethene ug/L ND 5.0 0.31 09/15/23 02:23 Trichlorofluoromethane ug/L ND 5.0 0.34 09/15/23 02:23 Vinyl chloride ug/L ND 5.0 0.34 09/15/23 02:23 Viller (Total) ug/L ND 10.0 2.2 09/15/23 02:23	Naphthalene	ug/L	ND	1.2	0.43	09/15/23 02:23	
Styrene ug/L ND 5.0 0.36 09/15/23 02:23 tert-Butylbenzene ug/L ND 5.0 0.36 09/15/23 02:23 Tetrachloroethene ug/L ND 5.0 0.35 09/15/23 02:23 Toluene ug/L ND 5.0 0.38 09/15/23 02:23 trans-1,2-Dichloroethene ug/L ND 5.0 0.37 09/15/23 02:23 trans-1,3-Dichloropropene ug/L ND 5.0 0.29 09/15/23 02:23 trans-1,4-Dichloro-2-butene ug/L ND 100 0.41 09/15/23 02:23 Trichloroethene ug/L ND 5.0 0.31 09/15/23 02:23 Trichlorofluoromethane ug/L ND 5.0 0.31 09/15/23 02:23 Vinyl acetate ug/L ND 5.0 0.34 09/15/23 02:23 Vinyl chloride ug/L ND 5.0 0.35 09/15/23 02:23 Xylene (Total) ug/L ND 10.0 2.2 09/15/23 02:23	p-Isopropyltoluene	ug/L	ND	5.0	0.40	09/15/23 02:23	
tert-Butylbenzene ug/L ND 5.0 0.36 09/15/23 02:23 Tetrachloroethene ug/L ND 5.0 0.35 09/15/23 02:23 Toluene ug/L ND 5.0 0.38 09/15/23 02:23 trans-1,2-Dichloroethene ug/L ND 5.0 0.37 09/15/23 02:23 trans-1,3-Dichloropropene ug/L ND 5.0 0.29 09/15/23 02:23 trans-1,4-Dichloro-2-butene ug/L ND 100 0.41 09/15/23 02:23 Trichloroethene ug/L ND 5.0 0.31 09/15/23 02:23 Trichloroethene ug/L ND 5.0 0.31 09/15/23 02:23 Trichlorofluoromethane ug/L ND 5.0 0.31 09/15/23 02:23 Trichlorofluoromethane ug/L ND 5.0 0.34 09/15/23 02:23 Vinyl acetate ug/L ND 5.0 0.34 09/15/23 02:23 Vinyl chloride ug/L ND 5.0 0.35 09/15/23 02:23 Vinyl chloride ug/L ND 2.0 0.35 09/15/23 02:23 Xylene (Total) ug/L ND 10.0 2.2 09/15/23 02:23 4-Bromofluorobenzene (S) %. 105 79-124 09/15/23 02:23 Dibromofluoromethane (S) %. 106 82-128 09/15/23 02:23	sec-Butylbenzene	ug/L	ND	5.0	0.35	09/15/23 02:23	
Tetrachloroethene ug/L ND 5.0 0.35 09/15/23 02:23 Toluene ug/L ND 5.0 0.38 09/15/23 02:23 trans-1,2-Dichloroethene ug/L ND 5.0 0.37 09/15/23 02:23 trans-1,3-Dichloropropene ug/L ND 5.0 0.29 09/15/23 02:23 trans-1,4-Dichloro-2-butene ug/L ND 100 0.41 09/15/23 02:23 Trichloroethene ug/L ND 5.0 0.31 09/15/23 02:23 Trichloroethene ug/L ND 5.0 0.31 09/15/23 02:23 Trichlorofluoromethane ug/L ND 5.0 0.34 09/15/23 02:23 Trichlorofluoromethane ug/L ND 5.0 0.34 09/15/23 02:23 Vinyl acetate ug/L ND 5.0 0.34 09/15/23 02:23 Vinyl chloride ug/L ND 5.0 0.35 09/15/23 02:23 Vinyl chloride ug/L ND 2.0 0.35 09/15/23 02:23 Xylene (Total) ug/L ND 10.0 2.2 09/15/23 02:23 4-Bromofluorobenzene (S) %. 105 79-124 09/15/23 02:23 Dibromofluoromethane (S) %. 106 82-128 09/15/23 02:23	Styrene	ug/L	ND	5.0	0.36	09/15/23 02:23	
Toluene ug/L ND 5.0 0.38 09/15/23 02:23 trans-1,2-Dichloroethene ug/L ND 5.0 0.37 09/15/23 02:23 trans-1,3-Dichloropropene ug/L ND 5.0 0.29 09/15/23 02:23 trans-1,4-Dichloro-2-butene ug/L ND 100 0.41 09/15/23 02:23 Trichloroethene ug/L ND 5.0 0.31 09/15/23 02:23 Trichloroethene ug/L ND 5.0 0.31 09/15/23 02:23 Trichlorofluoromethane ug/L ND 5.0 0.31 09/15/23 02:23 Trichlorofluoromethane ug/L ND 5.0 0.34 09/15/23 02:23 Vinyl acetate ug/L ND 5.0 0.34 09/15/23 02:23 Vinyl chloride ug/L ND 5.0 0.35 09/15/23 02:23 Vinyl chloride ug/L ND 2.0 0.35 09/15/23 02:23 Xylene (Total) ug/L ND 10.0 2.2 09/15/23 02:23 4-Bromofluorobenzene (S) %. 105 79-124 09/15/23 02:23 Dibromofluoromethane (S) %. 106 82-128 09/15/23 02:23	tert-Butylbenzene	ug/L	ND	5.0	0.36	09/15/23 02:23	
trans-1,2-Dichloroethene ug/L ND 5.0 0.37 09/15/23 02:23 trans-1,3-Dichloropropene ug/L ND 5.0 0.29 09/15/23 02:23 trans-1,4-Dichloro-2-butene ug/L ND 100 0.41 09/15/23 02:23 Trichloroethene ug/L ND 5.0 0.31 09/15/23 02:23 Trichloroethene ug/L ND 5.0 0.31 09/15/23 02:23 Trichlorofluoromethane ug/L ND 5.0 0.34 09/15/23 02:23 Trichlorofluoromethane ug/L ND 5.0 0.34 09/15/23 02:23 Vinyl acetate ug/L ND 5.0 0.34 09/15/23 02:23 Vinyl chloride ug/L ND 5.0 0.35 09/15/23 02:23 Vinyl chloride ug/L ND 2.0 0.35 09/15/23 02:23 Xylene (Total) ug/L ND 10.0 2.2 09/15/23 02:23 4-Bromofluorobenzene (S) %. 105 79-124 09/15/23 02:23 Dibromofluoromethane (S) %. 106 82-128 09/15/23 02:23	Tetrachloroethene	ug/L	ND	5.0	0.35	09/15/23 02:23	
trans-1,3-Dichloropropene ug/L ND 5.0 0.29 09/15/23 02:23 trans-1,4-Dichloro-2-butene ug/L ND 100 0.41 09/15/23 02:23 Trichloroethene ug/L ND 5.0 0.31 09/15/23 02:23 Trichlorofluoromethane ug/L ND 5.0 0.34 09/15/23 02:23 Vinyl acetate ug/L ND 50.0 2.3 09/15/23 02:23 Vinyl chloride ug/L ND 2.0 0.35 09/15/23 02:23 Xylene (Total) ug/L ND 10.0 2.2 09/15/23 02:23 4-Bromofluorobenzene (S) %. 105 79-124 09/15/23 02:23 Dibromofluoromethane (S) %. 106 82-128 09/15/23 02:23	Toluene	ug/L	ND	5.0	0.38	09/15/23 02:23	
trans-1,4-Dichloro-2-butene ug/L ND 100 0.41 09/15/23 02:23 Trichloroethene ug/L ND 5.0 0.31 09/15/23 02:23 Trichlorofluoromethane ug/L ND 5.0 0.34 09/15/23 02:23 Vinyl acetate ug/L ND 50.0 2.3 09/15/23 02:23 Vinyl chloride ug/L ND 2.0 0.35 09/15/23 02:23 Xylene (Total) ug/L ND 10.0 2.2 09/15/23 02:23 4-Bromofluoromethane (S) %. 105 79-124 09/15/23 02:23 Dibromofluoromethane (S) %. 106 82-128 09/15/23 02:23	trans-1,2-Dichloroethene	ug/L	ND	5.0	0.37	09/15/23 02:23	
Trichloroethene ug/L ND 5.0 0.31 09/15/23 02:23 Trichlorofluoromethane ug/L ND 5.0 0.34 09/15/23 02:23 Vinyl acetate ug/L ND 50.0 2.3 09/15/23 02:23 Vinyl chloride ug/L ND 2.0 0.35 09/15/23 02:23 Xylene (Total) ug/L ND 10.0 2.2 09/15/23 02:23 4-Bromofluorobenzene (S) %. 105 79-124 09/15/23 02:23 Dibromofluoromethane (S) %. 106 82-128 09/15/23 02:23	trans-1,3-Dichloropropene	ug/L	ND	5.0	0.29	09/15/23 02:23	
Trichlorofluoromethane ug/L ND 5.0 0.34 09/15/23 02:23 Vinyl acetate ug/L ND 50.0 2.3 09/15/23 02:23 Vinyl chloride ug/L ND 2.0 0.35 09/15/23 02:23 Xylene (Total) ug/L ND 10.0 2.2 09/15/23 02:23 4-Bromofluorobenzene (S) %. 105 79-124 09/15/23 02:23 Dibromofluoromethane (S) %. 106 82-128 09/15/23 02:23	trans-1,4-Dichloro-2-butene	ug/L	ND	100	0.41	09/15/23 02:23	
Vinyl acetate ug/L ND 50.0 2.3 09/15/23 02:23 Vinyl chloride ug/L ND 2.0 0.35 09/15/23 02:23 Xylene (Total) ug/L ND 10.0 2.2 09/15/23 02:23 4-Bromofluorobenzene (S) %. 105 79-124 09/15/23 02:23 Dibromofluoromethane (S) %. 106 82-128 09/15/23 02:23	Trichloroethene		ND	5.0	0.31	09/15/23 02:23	
Vinyl chloride ug/L ND 2.0 0.35 09/15/23 02:23 Xylene (Total) ug/L ND 10.0 2.2 09/15/23 02:23 4-Bromofluorobenzene (S) %. 105 79-124 09/15/23 02:23 Dibromofluoromethane (S) %. 106 82-128 09/15/23 02:23	Trichlorofluoromethane	ug/L	ND	5.0	0.34	09/15/23 02:23	
Xylene (Total) ug/L ND 10.0 2.2 09/15/23 02:23 4-Bromofluorobenzene (S) %. 105 79-124 09/15/23 02:23 Dibromofluoromethane (S) %. 106 82-128 09/15/23 02:23	Vinyl acetate	ug/L	ND	50.0	2.3	09/15/23 02:23	
4-Bromofluorobenzene (S) %. 105 79-124 09/15/23 02:23 Dibromofluoromethane (S) %. 106 82-128 09/15/23 02:23	Vinyl chloride		ND	2.0	0.35	09/15/23 02:23	
Dibromofluoromethane (S) %. 106 82-128 09/15/23 02:23	Xylene (Total)	ug/L	ND	10.0	2.2	09/15/23 02:23	
	4-Bromofluorobenzene (S)	%.	105	79-124		09/15/23 02:23	
Tolugne-d8 (S) 9/ 08 73-122 00/45/22 02:22	Dibromofluoromethane (S)	%.	106	82-128		09/15/23 02:23	
101de11e-u0 (0) /0. 50 13-122 03/13/23 02.23	Toluene-d8 (S)	%.	98	73-122		09/15/23 02:23	

LABORATORY CONTROL SAMPLE:	3449843					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	50	53.6	107	81-130	
1,1,1-Trichloroethane	ug/L	50	55.6	111	76-127	
1,1,2,2-Tetrachloroethane	ug/L	50	47.4	95	70-126	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50353438

Date: 09/19/2023 04:25 PM

ABORATORY CONTROL SAMPLE	: 3449843					
_		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc	Result	% Rec	Limits Q	ualifier
,1,2-Trichloroethane	ug/L	50	52.3	105	79-124	
,1-Dichloroethane	ug/L	50	49.2	98	76-123	
,1-Dichloroethene	ug/L	50	39.8	80	73-133	
,1-Dichloropropene	ug/L	50	47.6	95	78-144	
,2,3-Trichlorobenzene	ug/L	50	41.5	83	72-138	
,2,3-Trichloropropane	ug/L	50	51.6	103	75-121	
,2,4-Trichlorobenzene	ug/L	50	36.5	73	71-138	
,2,4-Trimethylbenzene	ug/L	50	45.2	90	70-127	
,2-Dibromoethane (EDB)	ug/L	50	53.3	107	80-126	
,2-Dichlorobenzene	ug/L	50	45.8	92	79-123	
,2-Dichloroethane	ug/L	50	53.2	106	70-124	
,2-Dichloropropane	ug/L	50	50.5	101	74-128	
,3,5-Trimethylbenzene	ug/L	50	45.8	92	71-124	
,3-Dichlorobenzene	ug/L	50	42.8	86	77-124	
,3-Dichloropropane	ug/L	50	50.2	100	77-126	
,4-Dichlorobenzene	ug/L	50	43.6	87	77-120	
-Methylnaphthalene	ug/L	50	40.4	81	49-175	
,2-Dichloropropane	ug/L	50	50.4	101	65-136	
-Butanone (MEK)	ug/L	250	252	101	59-134	
-Chlorotoluene	ug/L	50	46.5	93	74-121	
-Hexanone	ug/L	250	250	100	63-134	
-Methylnaphthalene	ug/L	50	38.8	78	52-170	
-Chlorotoluene	ug/L	50	44.1	88	78-123	
-Methyl-2-pentanone (MIBK)	ug/L	250	265	106	67-133	
cetone	ug/L	250	213	85	32-133	
crolein	ug/L	1000	708	71	35-166	
crylonitrile	ug/L	250	255	102	69-137	
Benzene	ug/L	50	47.6	95	74-124	
romobenzene	ug/L	50	49.2	98	76-122	
romochloromethane	ug/L	50	52.1	104	66-127	
romodichloromethane	ug/L	50	57.3	115	80-126	
Bromoform	ug/L	50	52.0	104	75-128	
Bromomethane	ug/L	50	57.2	114	10-183	
Carbon disulfide	ug/L	50	30.0	60	68-123 L2	
Carbon tetrachloride	ug/L	50	51.4	103	78-132	
Chlorobenzene	ug/L	50	48.9	98	77-121	
Chloroethane	ug/L	50 50	47.9	96	43-140	
Chloroform	ug/L	50	50.8	102	75-118	
Chloromethane	ug/L	50	43.0	86	45-130	
is-1,2-Dichloroethene	ug/L	50	48.7	97	76-125	
is-1,3-Dichloropropene	ug/L	50	53.5	107	76-132	
Dibromochloromethane	ug/L	50	53.4	107	79-130	
Dibromomethane	ug/L	50 50	49.8	107	79-130 79-124	
Dichlorodifluoromethane	ug/L	50 50	31.3	63	10-124	
thyl methacrylate	ug/L ug/L	50 50	51.3 52.7J	105	73-137	
thylbenzene	-	50 50	52.75 47.6	95	73-137 74-125	
triyibenzene lexachloro-1,3-butadiene	ug/L ug/L	50 50	47.6 42.1	95 84	74-125 66-141	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50353438

Date: 09/19/2023 04:25 PM

ABORATORY CONTROL SAMPLE:	3449843					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
domethane	ug/L	50	36.1	72	10-160	
opropylbenzene (Cumene)	ug/L	50	49.3	99	75-126	
thyl-tert-butyl ether	ug/L	50	54.5	109	74-129	
hylene Chloride	ug/L	50	42.2	84	77-126	
utylbenzene	ug/L	50	41.1	82	72-131	
exane	ug/L	50	36.2	72	58-131	
ropylbenzene	ug/L	50	43.6	87	76-127	
ohthalene	ug/L	50	45.4	91	70-132	
opropyltoluene	ug/L	50	43.8	88	76-126	
Butylbenzene	ug/L	50	45.8	92	76-129	
ene	ug/L	50	49.4	99	81-129	
Butylbenzene	ug/L	50	47.9	96	76-129	
achloroethene	ug/L	50	46.6	93	73-132	
ene	ug/L	50	41.6	83	72-119	
-1,2-Dichloroethene	ug/L	50	45.9	92	74-125	
-1,3-Dichloropropene	ug/L	50	50.0	100	75-132	
s-1,4-Dichloro-2-butene	ug/L	50	49.4J	99	66-152	
hloroethene	ug/L	50	52.4	105	75-127	
chlorofluoromethane	ug/L	50	50.4	101	64-136	
vl acetate	ug/L	200	246	123	62-159	
l chloride	ug/L	50	42.8	86	48-133	
ne (Total)	ug/L	150	136	90	73-123	
omofluorobenzene (S)	%.			104	79-124	
omofluoromethane (S)	%.			104	82-128	
iene-d8 (S)	%.			100	73-122	

MATRIX SPIKE & MATRIX SP	PIKE DUPI	LICATE: 3449	844 MS	MSD	3449845	i						
		50353438008	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1,1,1,2-Tetrachloroethane	ug/L	ND	50	50	53.1	53.5	106	107	60-150	1	20	
1,1,1-Trichloroethane	ug/L	ND	50	50	56.3	55.6	113	111	63-138	1	20	
1,1,2,2-Tetrachloroethane	ug/L	ND	50	50	48.4	48.9	97	98	58-146	1	20	
1,1,2-Trichloroethane	ug/L	ND	50	50	51.2	52.0	102	104	63-142	1	20	
1,1-Dichloroethane	ug/L	25.5	50	50	72.8	71.8	95	93	64-138	1	20	
1,1-Dichloroethene	ug/L	ND	50	50	40.1	39.7	80	79	65-139	1	20	
1,1-Dichloropropene	ug/L	ND	50	50	48.7	49.1	97	98	68-155	1	20	
1,2,3-Trichlorobenzene	ug/L	ND	50	50	44.6	45.5	89	91	32-141	2	20	
1,2,3-Trichloropropane	ug/L	ND	50	50	51.0	51.0	102	102	54-144	0	20	
1,2,4-Trichlorobenzene	ug/L	ND	50	50	40.2	41.0	80	82	31-140	2	20	
1,2,4-Trimethylbenzene	ug/L	ND	50	50	48.0	49.2	95	98	34-144	2	20	
1,2-Dibromoethane (EDB)	ug/L	ND	50	50	51.6	51.4	103	103	64-139	0	20	
1,2-Dichlorobenzene	ug/L	ND	50	50	47.7	48.3	95	97	50-136	1	20	
1,2-Dichloroethane	ug/L	ND	50	50	57.4	56.9	115	114	55-146	1	20	
1,2-Dichloropropane	ug/L	ND	50	50	51.3	50.7	103	101	66-134	1	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50353438

Date: 09/19/2023 04:25 PM

MATRIX SPIKE & MATRIX SI	PIKE DUPL	ICATE: 3449			3449845							
			MS	MSD					a. 5			
Parameter	Units	50353438008 Result	Spike Conc.	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qı
,3,5-Trimethylbenzene	ug/L	ND	50	50	48.4	48.7	97	97	29-151	1	20	
,3-Dichlorobenzene	ug/L	ND	50	50	45.8	46.5	92	93	47-133	2		
,3-Dichloropropane	ug/L	ND	50	50	49.3	49.3	99	99	61-144	0		
,4-Dichlorobenzene	ug/L	ND	50	50	46.5	46.8	93	94	50-131	1	20	
-Methylnaphthalene	ug/L	ND	50	50	39.9	41.1	80	82	20-176	3		
2,2-Dichloropropane	ug/L	ND	50	50	51.4	51.7	103	103	33-146	1		
2-Butanone (MEK)	ug/L	ND	250	250	252	245	101	98	45-155	3		
2-Chlorotoluene	ug/L	ND	50	50	49.1	49.7	98	99	43-142	1	20	
2-Hexanone	ug/L	ND	250	250	238	235	95	94	48-157	2		
:-Methylnaphthalene	ug/L	ND	50	50	38.5	40.3	77	81	21-175	5		
I-Chlorotoluene	ug/L	ND	50	50	47.2	47.9	94	96	47-137	1		
i-Methyl-2-pentanone MIBK)	ug/L	ND	250	250	252	249	101	100	53-156	1		
Acetone	ug/L	ND	250	250	221	205	85	79	16-162	7	20	
Acrolein	ug/L	ND	1000	1000	764	748	76	75	39-184	2	20	
Acrylonitrile	ug/L	ND	250	250	249	245	100	98	58-140	2	20	
Benzene	ug/L	ND	50	50	53.0	52.8	97	97	65-137	0		
Bromobenzene	ug/L	ND	50	50	50.3	51.2	101	102	56-137	2		
Bromochloromethane	ug/L	ND	50	50	53.0	51.7	106	103	56-139	3		
Bromodichloromethane	ug/L	ND	50	50	58.7	57.6	117	115	61-149	2		
Bromoform	ug/L	ND	50	50	50.0	51.1	100	102	51-138	2		
Bromomethane	ug/L	ND	50	50	59.5	58.0	119	116	10-169	3		
Carbon disulfide	ug/L	ND	50	50	31.2	31.0	62	62	55-126	1		
Carbon tetrachloride	ug/L	ND	50	50	52.7	52.2	105	104	65-156	1		
Chlorobenzene	ug/L	ND	50	50	50.0	50.5	100	101	54-135	1	20	
Chloroethane	ug/L	567	50	50	464	457	-206	-220	46-142	2		E,M
Chloroform	ug/L	ND	50	50	51.9	51.8	104	104	64-133	0		L, 1V
Chloromethane	ug/L	ND	50	50	44.5	43.8	89	88	30-139	2		
sis-1,2-Dichloroethene	ug/L	ND	50	50	54.4	54.1	100	99	59-141	0		
cis-1,3-Dichloropropene	ug/L	ND	50	50	52.6	52.3	105	105	57-141	0		
Dibromochloromethane	ug/L	ND	50	50	53.3	53.9	103	103	59-147	1	20	
Dibromomethane	ug/L ug/L	ND	50	50	50.1	49.8	107	100	64-142	1		
Dichlorodifluoromethane	ug/L	ND	50	50	33.2	32.6	66	65	10-144	2		
Ethyl methacrylate	ug/L ug/L	ND	50	50	50.1J	50.6J	100	101	58-147		20	
			50							2		
Ethylbenzene	ug/L	ND		50	48.2	49.1	96	98	50-143	2		
Hexachloro-1,3-butadiene	ug/L	ND	50 50	50 50	45.3	45.4	91	91	16-155	0		
odometnane sopropylbenzene	ug/L	ND	50 50	50 50	39.4	40.6	79 103	81	10-154	3		
Cumene)	ug/L	ND	50	50	51.3	51.6	103	103	36-151	1		
Methyl-tert-butyl ether	ug/L	ND	50	50	54.6	53.4	109	107	66-138	2		
Methylene Chloride	ug/L	ND	50	50	44.6	42.1	82	77	53-126	6		
n-Butylbenzene	ug/L	ND	50	50	45.2	45.4	90	91	31-142	1		
-Hexane	ug/L	ND	50	50	41.9	41.4	84	83	53-129	1		
-Propylbenzene	ug/L	ND	50	50	46.9	47.2	94	94	39-145	1		
Naphthalene	ug/L	ND	50	50	46.0	46.9	92	94	51-135	2		
o-Isopropyltoluene	ug/L	ND	50	50	47.7	48.0	95	96	38-145	1	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: GE Indy
Pace Project No.: 50353438

Date: 09/19/2023 04:25 PM

MATRIX SPIKE & MATRIX SP	IKE DUPI	LICATE: 3449	844		3449845							
			MS	MSD								
		50353438008	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
sec-Butylbenzene	ug/L	ND	50	50	48.4	49.1	97	98	33-153	2	20	
Styrene	ug/L	ND	50	50	50.6	50.5	101	101	57-141	0	20	
tert-Butylbenzene	ug/L	ND	50	50	49.7	49.5	99	99	45-145	0	20	
Tetrachloroethene	ug/L	ND	50	50	48.6	48.5	97	97	43-149	0	20	
Toluene	ug/L	ND	50	50	42.1	42.7	84	85	57-137	1	20	
trans-1,2-Dichloroethene	ug/L	5.5	50	50	51.6	51.1	92	91	63-133	1	20	
trans-1,3-Dichloropropene	ug/L	ND	50	50	48.8	49.3	98	99	56-140	1	20	
trans-1,4-Dichloro-2-butene	ug/L	ND	50	50	48.6J	47.9J	97	96	36-169		20	
Trichloroethene	ug/L	ND	50	50	51.4	50.6	103	101	52-145	2	20	
Trichlorofluoromethane	ug/L	ND	50	50	52.5	51.7	105	103	52-144	2	20	
Vinyl acetate	ug/L	ND	200	200	249	244	125	122	27-179	2	20	
Vinyl chloride	ug/L	2.6	50	50	45.9	45.2	87	85	43-139	1	20	
Xylene (Total)	ug/L	ND	150	150	139	141	93	94	52-137	1	20	
4-Bromofluorobenzene (S)	%.						103	104	79-124			
Dibromofluoromethane (S)	%.						105	104	82-128			
Toluene-d8 (S)	%.						99	100	73-122			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50353438

Date: 09/19/2023 04:25 PM

QC Batch: 752964 Analysis Method: EPA 5030/8260
QC Batch Method: EPA 5030/8260 Analysis Description: 8260 MSV

Laboratory: Pace Analytical Services - Indianapolis

Associated Lab Samples: 50353438007, 50353438010, 50353438020, 50353438021, 50353438023, 50353438024, 50353438025,

50353438033, 50353438034

METHOD BLANK: 3450936 Matrix: Water

Associated Lab Samples: 50353438007, 50353438010, 50353438020, 50353438021, 50353438023, 50353438024, 50353438025,

50353438026, 50353438027, 50353438028, 50353438029, 50353438030, 50353438031, 50353438032,

50353438033, 50353438034

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	ND ND	5.0	0.34	09/15/23 13:32	
1,1,1-Trichloroethane	ug/L	ND	5.0	0.31	09/15/23 13:32	
1,1,2,2-Tetrachloroethane	ug/L	ND	5.0	0.35	09/15/23 13:32	
1,1,2-Trichloroethane	ug/L	ND	5.0	0.33	09/15/23 13:32	
1,1-Dichloroethane	ug/L	ND	5.0	0.37	09/15/23 13:32	
1,1-Dichloroethene	ug/L	ND	5.0	0.37	09/15/23 13:32	
1,1-Dichloropropene	ug/L	ND	5.0	0.34	09/15/23 13:32	
1,2,3-Trichlorobenzene	ug/L	ND	5.0	0.42	09/15/23 13:32	
1,2,3-Trichloropropane	ug/L	ND	5.0	0.33	09/15/23 13:32	
1,2,4-Trichlorobenzene	ug/L	ND	5.0	0.42	09/15/23 13:32	
1,2,4-Trimethylbenzene	ug/L	ND	5.0	0.37	09/15/23 13:32	
1,2-Dibromoethane (EDB)	ug/L	ND	5.0	0.29	09/15/23 13:32	
1,2-Dichlorobenzene	ug/L	ND	5.0	0.34	09/15/23 13:32	
1,2-Dichloroethane	ug/L	ND	5.0	0.34	09/15/23 13:32	
1,2-Dichloropropane	ug/L	ND	5.0	0.33	09/15/23 13:32	
1,3,5-Trimethylbenzene	ug/L	ND	5.0	0.38	09/15/23 13:32	
1,3-Dichlorobenzene	ug/L	ND	5.0	0.40	09/15/23 13:32	
1,3-Dichloropropane	ug/L	ND	5.0	0.30	09/15/23 13:32	
1,4-Dichlorobenzene	ug/L	ND	5.0	0.39	09/15/23 13:32	
1-Methylnaphthalene	ug/L	ND	10.0	2.1	09/15/23 13:32	
2,2-Dichloropropane	ug/L	ND	5.0	0.37	09/15/23 13:32	
2-Butanone (MEK)	ug/L	ND	25.0	3.3	09/15/23 13:32	
2-Chlorotoluene	ug/L	ND	5.0	0.37	09/15/23 13:32	
2-Hexanone	ug/L	ND	25.0	2.2	09/15/23 13:32	
2-Methylnaphthalene	ug/L	ND	10.0	2.1	09/15/23 13:32	
4-Chlorotoluene	ug/L	ND	5.0	0.40	09/15/23 13:32	
4-Methyl-2-pentanone (MIBK)	ug/L	ND	25.0	2.1	09/15/23 13:32	
Acetone	ug/L	ND	100	8.6	09/15/23 13:32	
Acrolein	ug/L	ND	50.0	13.4	09/15/23 13:32	
Acrylonitrile	ug/L	ND	100	3.0	09/15/23 13:32	
Benzene	ug/L	ND	5.0	0.46	09/15/23 13:32	
Bromobenzene	ug/L	ND	5.0	0.41	09/15/23 13:32	
Bromochloromethane	ug/L	ND	5.0	0.33	09/15/23 13:32	
Bromodichloromethane	ug/L	ND	5.0	0.29	09/15/23 13:32	
Bromoform	ug/L	ND	5.0	0.29	09/15/23 13:32	
Bromomethane	ug/L	ND	5.0	0.51	09/15/23 13:32	
Carbon disulfide	ug/L	ND	10.0	0.62	09/15/23 13:32	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50353438

Date: 09/19/2023 04:25 PM

METHOD BLANK: 3450936 Matrix: Water

Associated Lab Samples: 50353438007, 50353438010, 50353438020, 50353438021, 50353438023, 50353438024, 50353438025,

50353438026, 50353438027, 50353438028, 50353438029, 50353438030, 50353438031, 50353438032,

50353438033, 50353438034

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Carbon tetrachloride	ug/L	ND -	5.0	0.29	09/15/23 13:32	
Chlorobenzene	ug/L	ND	5.0	0.35	09/15/23 13:32	
Chloroethane	ug/L	ND	5.0	0.44	09/15/23 13:32	
Chloroform	ug/L	ND	5.0	2.6	09/15/23 13:32	
Chloromethane	ug/L	ND	5.0	0.56	09/15/23 13:32	
cis-1,2-Dichloroethene	ug/L	ND	5.0	0.48	09/15/23 13:32	
cis-1,3-Dichloropropene	ug/L	ND	5.0	0.31	09/15/23 13:32	
Dibromochloromethane	ug/L	ND	5.0	0.31	09/15/23 13:32	
Dibromomethane	ug/L	ND	5.0	0.46	09/15/23 13:32	
Dichlorodifluoromethane	ug/L	ND	5.0	0.38	09/15/23 13:32	
Ethyl methacrylate	ug/L	ND	100	0.32	09/15/23 13:32	
Ethylbenzene	ug/L	ND	5.0	0.40	09/15/23 13:32	
Hexachloro-1,3-butadiene	ug/L	ND	5.0	0.48	09/15/23 13:32	
Iodomethane	ug/L	ND	10.0	2.0	09/15/23 13:32	
Isopropylbenzene (Cumene)	ug/L	ND	5.0	0.36	09/15/23 13:32	
Methyl-tert-butyl ether	ug/L	ND	4.0	0.66	09/15/23 13:32	
Methylene Chloride	ug/L	ND	5.0	3.7	09/15/23 13:32	
n-Butylbenzene	ug/L	ND	5.0	0.39	09/15/23 13:32	
n-Hexane	ug/L	ND	5.0	0.36	09/15/23 13:32	
n-Propylbenzene	ug/L	ND	5.0	0.37	09/15/23 13:32	
Naphthalene	ug/L	ND	1.2	0.57	09/15/23 13:32	
p-Isopropyltoluene	ug/L	ND	5.0	0.41	09/15/23 13:32	
sec-Butylbenzene	ug/L	ND	5.0	0.36	09/15/23 13:32	
Styrene	ug/L	ND	5.0	0.39	09/15/23 13:32	
tert-Butylbenzene	ug/L	ND	5.0	0.38	09/15/23 13:32	
Tetrachloroethene	ug/L	ND	5.0	0.36	09/15/23 13:32	
Toluene	ug/L	ND	5.0	0.38	09/15/23 13:32	
trans-1,2-Dichloroethene	ug/L	ND	5.0	0.48	09/15/23 13:32	
trans-1,3-Dichloropropene	ug/L	ND	5.0	0.28	09/15/23 13:32	
trans-1,4-Dichloro-2-butene	ug/L	ND	100	0.42	09/15/23 13:32	
Trichloroethene	ug/L	ND	5.0	0.41	09/15/23 13:32	
Trichlorofluoromethane	ug/L	ND	5.0	0.36	09/15/23 13:32	
Vinyl acetate	ug/L	ND	50.0	1.7	09/15/23 13:32	
Vinyl chloride	ug/L	ND	2.0	0.40	09/15/23 13:32	
Xylene (Total)	ug/L	ND	10.0	1.5	09/15/23 13:32	
4-Bromofluorobenzene (S)	%.	101	79-124		09/15/23 13:32	
Dibromofluoromethane (S)	%.	107	82-128		09/15/23 13:32	
Toluene-d8 (S)	%.	99	73-122		09/15/23 13:32	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50353438

Date: 09/19/2023 04:25 PM

LABORATORY CONTROL SAMPLE	E: 3450937					
_		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifier
1,1,1,2-Tetrachloroethane	ug/L	50	52.7	105	81-130	
1,1,1-Trichloroethane	ug/L	50	54.3	109	76-127	
1,1,2,2-Tetrachloroethane	ug/L	50	45.2	90	70-126	
1,1,2-Trichloroethane	ug/L	50	47.2	94	79-124	
,1-Dichloroethane	ug/L	50	50.1	100	76-123	
1,1-Dichloroethene	ug/L	50	46.0	92	73-133	
,1-Dichloropropene	ug/L	50	49.7	99	78-144	
1,2,3-Trichlorobenzene	ug/L	50	45.4	91	72-138	
,2,3-Trichloropropane	ug/L	50	48.2	96	75-121	
,2,4-Trichlorobenzene	ug/L	50	45.0	90	71-138	
,2,4-Trimethylbenzene	ug/L	50	48.0	96	70-127	
,2-Dibromoethane (EDB)	ug/L	50	50.2	100	80-126	
,2-Dichlorobenzene	ug/L	50	47.0	94	79-123	
,2-Dichloroethane	ug/L	50	53.5	107	70-124	
,,2-Dichloropropane	ug/L	50	48.3	97	74-128	
,3,5-Trimethylbenzene	ug/L	50	48.2	96	71-124	
I,3-Dichlorobenzene	ug/L	50	45.8	92	77-124	
1,3-Dichloropropane	ug/L	50	48.6	97	77-126	
,4-Dichlorobenzene	ug/L	50	47.2	94	77-120	
-Methylnaphthalene	ug/L	50	44.3	89	49-175	
2,2-Dichloropropane	ug/L	50	57.4	115	65-136	
2-Butanone (MEK)	ug/L	250	324	130	59-134	
2-Chlorotoluene	ug/L	50	48.0	96	74-121	
2-Hexanone	ug/L	250	292	117	63-134	
2-Methylnaphthalene	ug/L	50	42.9	86	52-170	
I-Chlorotoluene	ug/L	50	47.1	94	78-123	
I-Methyl-2-pentanone (MIBK)	ug/L	250	254	101	67-133	
Acetone	ug/L	250	348	139	32-133 L	1
Acrolein	ug/L	1000	697	70	35-166	•
Acrylonitrile	ug/L	250	231	92	69-137	
Benzene	ug/L	50	47.5	95	74-124	
Bromobenzene	ug/L	50	47.3	95	76-122	
Bromochloromethane	ug/L	50	52.3	105	66-127	
Bromodichloromethane	ug/L	50	52.7	105	80-126	
Bromoform	ug/L	50	49.4	99	75-128	
Bromomethane	ug/L	50	47.8	96	10-183	
Carbon disulfide	ug/L	50	44.4	89	68-123	
Carbon tetrachloride	ug/L	50	55.3	111	78-132	
Chlorobenzene	ug/L	50	47.4	95	77-121	
Chloroethane	ug/L	50	39.0	78	43-140	
Chloroform	ug/L	50	50.5	101	75-118	
Chloromethane	ug/L	50	35.6	71	45-130	
is-1,2-Dichloroethene	ug/L	50 50	49.1	98	76-125	
sis-1,3-Dichloropropene	ug/L ug/L	50	49.7	99	76-123 76-132	
Dibromochloromethane	ug/∟ ug/L	50	52.1	104	76-132 79-130	
Dibromomethane	ug/L ug/L	50	47.5	95	79-130 79-124	
Dichlorodifluoromethane	ug/L ug/L	50 50	47.5 37.4	95 75	79-124 10-124	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50353438

Date: 09/19/2023 04:25 PM

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
hyl methacrylate	ug/L	50	47J	94	73-137	
hylbenzene	ug/L	50	45.4	91	74-125	
exachloro-1,3-butadiene	ug/L	50	44.7	89	66-141	
domethane	ug/L	50	42.4	85	10-160	
propylbenzene (Cumene)	ug/L	50	48.0	96	75-126	
ethyl-tert-butyl ether	ug/L	50	53.1	106	74-129	
ethylene Chloride	ug/L	50	43.8	88	77-126	
Butylbenzene	ug/L	50	46.2	92	72-131	
Hexane	ug/L	50	48.0	96	58-131	
Propylbenzene	ug/L	50	47.3	95	76-127	
phthalene	ug/L	50	46.2	92	70-132	
sopropyltoluene	ug/L	50	47.2	94	76-126	
c-Butylbenzene	ug/L	50	46.3	93	76-129	
yrene	ug/L	50	48.1	96	81-129	
-Butylbenzene	ug/L	50	45.1	90	76-129	
achloroethene	ug/L	50	47.7	95	73-132	
uene	ug/L	50	40.7	81	72-119	
ns-1,2-Dichloroethene	ug/L	50	48.8	98	74-125	
ns-1,3-Dichloropropene	ug/L	50	53.7	107	75-132	
ns-1,4-Dichloro-2-butene	ug/L	50	49.2J	98	66-152	
chloroethene	ug/L	50	49.2	98	75-127	
chlorofluoromethane	ug/L	50	45.3	91	64-136	
nyl acetate	ug/L	200	210	105	62-159	
nyl chloride	ug/L	50	36.5	73	48-133	
ene (Total)	ug/L	100	89.3	89	73-123	
Bromofluorobenzene (S)	%.			101	79-124	
romofluoromethane (S)	%.			106	82-128	
uene-d8 (S)	%.			100	73-122	

MATRIX SPIKE & MATRIX SF	PIKE DUPL	LICATE: 3450	938		3450939							
			MS	MSD								
		50353438025	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1,1,1,2-Tetrachloroethane	ug/L	ND	50	50	56.3	59.5	113	119	60-150	5	20	
1,1,1-Trichloroethane	ug/L	ND	50	50	56.4	58.5	113	117	63-138	4	20	
1,1,2,2-Tetrachloroethane	ug/L	ND	50	50	47.9	50.2	96	100	58-146	5	20	
1,1,2-Trichloroethane	ug/L	ND	50	50	51.0	52.9	102	106	63-142	4	20	
1,1-Dichloroethane	ug/L	ND	50	50	48.9	50.0	98	100	64-138	2	20	
1,1-Dichloroethene	ug/L	ND	50	50	36.8	38.9	74	78	65-139	6	20	
1,1-Dichloropropene	ug/L	ND	50	50	51.0	53.1	102	106	68-155	4	20	
1,2,3-Trichlorobenzene	ug/L	ND	50	50	47.8	50.3	96	101	32-141	5	20	
1,2,3-Trichloropropane	ug/L	ND	50	50	51.3	53.4	103	107	54-144	4	20	
1,2,4-Trichlorobenzene	ug/L	ND	50	50	45.7	49.0	91	98	31-140	7	20	
1,2,4-Trimethylbenzene	ug/L	ND	50	50	49.6	51.8	99	103	34-144	4	20	
1,2-Dibromoethane (EDB)	ug/L	ND	50	50	53.0	55.0	106	110	64-139	4	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: GE Indy
Pace Project No.: 50353438

Date: 09/19/2023 04:25 PM

MATRIX SPIKE & MATRIX SI	PIKE DUPL	ICATE: 3450	938		3450939							
			MS	MSD								
		50353438025	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qu
,2-Dichlorobenzene	ug/L	ND	50	50	49.2	51.3	98	103	50-136	4	20	
1,2-Dichloroethane	ug/L	ND	50	50	55.0	57.8	110	116	55-146	5	20	
1,2-Dichloropropane	ug/L	ND	50	50	50.5	52.4	101	105	66-134	4	20	
1,3,5-Trimethylbenzene	ug/L	ND	50	50	49.4	51.5	98	103	29-151	4	20	
,3-Dichlorobenzene	ug/L	ND	50	50	47.9	50.3	96	101	47-133	5	20	
,3-Dichloropropane	ug/L	ND	50	50	51.7	54.1	103	108	61-144	4	20	
,4-Dichlorobenzene	ug/L	ND	50	50	49.1	51.2	98	102	50-131	4	20	
-Methylnaphthalene	ug/L	ND	50	50	44.9	47.0	90	94	20-176	4	20	
2,2-Dichloropropane	ug/L	ND	50	50	56.7	59.5	113	119	33-146	5	20	
P-Butanone (MEK)	ug/L	ND	250	250	254	265	102	106	45-155	4	20	
-Chlorotoluene	ug/L	ND	50	50	48.9	51.2	98	102	43-142	5	20	
2-Hexanone	ug/L	ND	250	250	256	268	102	107	48-157	5	20	
2-Methylnaphthalene	ug/L	ND	50	50	45.2	48.1	90	96	21-175	6	20	
-Chlorotoluene	ug/L	ND	50	50	47.8	50.9	96	102	47-137	6	20	
-Methyl-2-pentanone MIBK)	ug/L	ND	250	250	257	266	103	106	53-156	3		
cetone	ug/L	ND	250	250	247	255	89	92	16-162	3	20	
crolein	ug/L	ND	1000	1000	727	764	73	76	39-184	5		
crylonitrile	ug/L	ND	250	250	239	250	95	100	58-140	5	20	
Benzene	ug/L	ND	50	50	47.3	49.2	95	98	65-137	4	20	
Bromobenzene	ug/L	ND	50	50	50.1	52.3	100	105	56-137	4	20	
Bromochloromethane	ug/L	ND	50	50	53.2	56.0	106	112	56-139	5	20	
Bromodichloromethane	ug/L	ND	50	50	57.2	60.7	114	121	61-149	6	20	
Bromoform	ug/L	ND	50	50	50.5	53.9	101	108	51-138	7	20	
Bromomethane	ug/L	ND	50	50	50.8	51.7	102	103	10-169	2	20	
Carbon disulfide	ug/L	ND	50	50	30.3	31.4	61	63	55-126	4	20	
Carbon tetrachloride	ug/L	ND	50	50	55.2	57.9	110	116	65-156	5	20	
Chlorobenzene	ug/L	ND	50	50	49.9	52.1	100	104	54-135	4	20	
Chloroethane	ug/L	26.2	50	50	62.9	61.2	74	70	46-142	3		
Chloroform	ug/L	ND	50	50	52.2	54.3	104	109	64-133	4	20	
Chloromethane	ug/L	ND	50	50	38.1	39.6	76	79	30-139	4	20	
is-1,2-Dichloroethene	ug/L	ND	50	50	49.8	51.9	96	101	59-141	4	20	
is-1,3-Dichloropropene	ug/L	ND	50	50	53.6	57.1	107	114	57-141	6	20	
Dibromochloromethane	ug/L	ND	50	50	56.2	59.8	112	120	59-147	6	20	
Dibromomethane	ug/L	ND	50	50	49.8	51.8	100	104	64-142	4	20	
Dichlorodifluoromethane	ug/L	ND	50	50	29.0	30.3	58	61	10-144	4	20	
thyl methacrylate	ug/L	ND	50	50	50.8J	52.6J	102	105	58-147		20	
Ethylbenzene	ug/L	ND	50	50	48.4	50.0	97	100	50-143	3		
lexachloro-1,3-butadiene	ug/L	ND	50	50	47.3	49.6	95	99	16-155	5		
odomethane	ug/L	ND	50	50	37.5	42.2	75	84	10-154	12		
sopropylbenzene Cumene)	ug/L	ND	50	50	50.0	52.6	100	105	36-151	5		
Methyl-tert-butyl ether	ug/L	ND	50	50	53.9	56.6	108	113	66-138	5		
Methylene Chloride	ug/L	ND	50	50	41.4	40.7	79	77	53-126	2		
n-Butylbenzene	ug/L	ND	50	50	47.9	50.3	96	101	31-142	5		
-Hexane	ug/L	ND	50	50	37.9	39.6	76	79	53-129	4	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50353438

Date: 09/19/2023 04:25 PM

MATRIX SPIKE & MATRIX SP	IKE DUPLIC	ATE: 3450	938		3450939							
			MS	MSD								
	50	0353438025	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qua
n-Propylbenzene	ug/L	ND	50	50	48.8	50.7	98	101	39-145	4	20	
Naphthalene	ug/L	ND	50	50	49.0	52.3	98	105	51-135	6	20	
p-Isopropyltoluene	ug/L	ND	50	50	48.6	50.9	97	102	38-145	5	20	
sec-Butylbenzene	ug/L	ND	50	50	48.5	50.9	97	102	33-153	5	20	
Styrene	ug/L	ND	50	50	50.2	52.7	100	105	57-141	5	20	
tert-Butylbenzene	ug/L	ND	50	50	48.8	51.7	98	103	45-145	6	20	
Tetrachloroethene	ug/L	ND	50	50	48.9	50.9	98	102	43-149	4	20	
Toluene	ug/L	ND	50	50	45.4	47.0	82	86	57-137	4	20	
rans-1,2-Dichloroethene	ug/L	ND	50	50	46.2	48.2	91	95	63-133	4	20	
trans-1,3-Dichloropropene	ug/L	ND	50	50	58.0	62.1	116	124	56-140	7	20	
trans-1,4-Dichloro-2-butene	ug/L	ND	50	50	53.2J	56.9J	106	114	36-169		20	
Trichloroethene	ug/L	ND	50	50	50.1	51.3	100	103	52-145	2	20	
Trichlorofluoromethane	ug/L	ND	50	50	48.1	49.9	96	100	52-144	4	20	
√inyl acetate	ug/L	ND	200	200	275	285	138	142	27-179	3	20	
Vinyl chloride	ug/L	ND	50	50	37.5	38.7	75	77	43-139	3	20	
Xylene (Total)	ug/L	ND	150	150	139	143	93	96	52-137	3	20	
4-Bromofluorobenzene (S)	%.						103	103	79-124			
Dibromofluoromethane (S)	%.						107	107	82-128			
Toluene-d8 (S)	%.						101	101	73-122			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50353438

Date: 09/19/2023 04:25 PM

QC Batch: 752966 Analysis Method: EPA 5030/8260
QC Batch Method: EPA 5030/8260 Analysis Description: 8260 MSV

Laboratory: Pace Analytical Services - Indianapolis

Associated Lab Samples: 50353438022, 50353438035, 50353438036, 50353438037, 50353438038, 50353438039, 50353438040,

50353438041, 50353438042, 50353438043, 50353438044, 50353438045

METHOD BLANK: 3450941 Matrix: Water

Associated Lab Samples: 50353438022, 50353438035, 50353438036, 50353438037, 50353438038, 50353438039, 50353438040,

50353438041, 50353438042, 50353438043, 50353438044, 50353438045

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	ND	5.0	0.34	09/16/23 01:47	
1,1,1-Trichloroethane	ug/L	ND	5.0	0.31	09/16/23 01:47	
1,1,2,2-Tetrachloroethane	ug/L	ND	5.0	0.35	09/16/23 01:47	
1,1,2-Trichloroethane	ug/L	ND	5.0	0.33	09/16/23 01:47	
1,1-Dichloroethane	ug/L	ND	5.0	0.37	09/16/23 01:47	
1,1-Dichloroethene	ug/L	ND	5.0	0.37	09/16/23 01:47	
1,1-Dichloropropene	ug/L	ND	5.0	0.34	09/16/23 01:47	
1,2,3-Trichlorobenzene	ug/L	ND	5.0	0.42	09/16/23 01:47	
1,2,3-Trichloropropane	ug/L	ND	5.0	0.33	09/16/23 01:47	
1,2,4-Trichlorobenzene	ug/L	ND	5.0	0.42	09/16/23 01:47	
1,2,4-Trimethylbenzene	ug/L	ND	5.0	0.37	09/16/23 01:47	
1,2-Dibromoethane (EDB)	ug/L	ND	5.0	0.29	09/16/23 01:47	
1,2-Dichlorobenzene	ug/L	ND	5.0	0.34	09/16/23 01:47	
1,2-Dichloroethane	ug/L	ND	5.0	0.34	09/16/23 01:47	
1,2-Dichloropropane	ug/L	ND	5.0	0.33	09/16/23 01:47	
1,3,5-Trimethylbenzene	ug/L	ND	5.0	0.38	09/16/23 01:47	
1,3-Dichlorobenzene	ug/L	ND	5.0	0.40	09/16/23 01:47	
1,3-Dichloropropane	ug/L	ND	5.0	0.30	09/16/23 01:47	
1,4-Dichlorobenzene	ug/L	ND	5.0	0.39	09/16/23 01:47	
1-Methylnaphthalene	ug/L	ND	10.0	2.1	09/16/23 01:47	
2,2-Dichloropropane	ug/L	ND	5.0	0.37	09/16/23 01:47	
2-Butanone (MEK)	ug/L	ND	25.0	3.3	09/16/23 01:47	
2-Chlorotoluene	ug/L	ND	5.0	0.37	09/16/23 01:47	
2-Hexanone	ug/L	ND	25.0	2.2	09/16/23 01:47	
2-Methylnaphthalene	ug/L	ND	10.0	2.1	09/16/23 01:47	
4-Chlorotoluene	ug/L	ND	5.0	0.40	09/16/23 01:47	
4-Methyl-2-pentanone (MIBK)	ug/L	ND	25.0	2.1	09/16/23 01:47	
Acetone	ug/L	ND	100	8.6	09/16/23 01:47	
Acrolein	ug/L	ND	50.0	13.4	09/16/23 01:47	
Acrylonitrile	ug/L	ND	100	3.0	09/16/23 01:47	
Benzene	ug/L	ND	5.0	0.46	09/16/23 01:47	
Bromobenzene	ug/L	ND	5.0	0.41	09/16/23 01:47	
Bromochloromethane	ug/L	ND	5.0	0.33	09/16/23 01:47	
Bromodichloromethane	ug/L	ND	5.0	0.29	09/16/23 01:47	
Bromoform	ug/L	ND	5.0	0.29	09/16/23 01:47	
Bromomethane	ug/L	ND	5.0	0.51	09/16/23 01:47	
Carbon disulfide	ug/L	ND	10.0	0.62	09/16/23 01:47	
Carbon tetrachloride	ug/L	ND	5.0	0.29	09/16/23 01:47	
Chlorobenzene	ug/L	ND	5.0	0.35	09/16/23 01:47	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50353438

Date: 09/19/2023 04:25 PM

METHOD BLANK: 3450941 Matrix: Water

Associated Lab Samples: 50353438022, 50353438035, 50353438036, 50353438037, 50353438038, 50353438039, 50353438040,

50353438041, 50353438042, 50353438043, 50353438044, 50353438045

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Chloroethane	ug/L	ND ND	5.0	0.44	09/16/23 01:47	
Chloroform	ug/L	ND	5.0	2.6	09/16/23 01:47	
Chloromethane	ug/L	ND	5.0	0.56	09/16/23 01:47	
cis-1,2-Dichloroethene	ug/L	ND	5.0	0.48	09/16/23 01:47	
cis-1,3-Dichloropropene	ug/L	ND	5.0	0.31	09/16/23 01:47	
Dibromochloromethane	ug/L	ND	5.0	0.31	09/16/23 01:47	
Dibromomethane	ug/L	ND	5.0	0.46	09/16/23 01:47	
Dichlorodifluoromethane	ug/L	ND	5.0	0.38	09/16/23 01:47	
Ethyl methacrylate	ug/L	ND	100	0.32	09/16/23 01:47	
Ethylbenzene	ug/L	ND	5.0	0.40	09/16/23 01:47	
Hexachloro-1,3-butadiene	ug/L	ND	5.0	0.48	09/16/23 01:47	
lodomethane	ug/L	ND	10.0	2.0	09/16/23 01:47	
Isopropylbenzene (Cumene)	ug/L	ND	5.0	0.36	09/16/23 01:47	
Methyl-tert-butyl ether	ug/L	ND	4.0	0.66	09/16/23 01:47	
Methylene Chloride	ug/L	11.3	5.0	3.7	09/16/23 01:47	
n-Butylbenzene	ug/L	ND	5.0	0.39	09/16/23 01:47	
n-Hexane	ug/L	ND	5.0	0.36	09/16/23 01:47	
n-Propylbenzene	ug/L	ND	5.0	0.37	09/16/23 01:47	
Naphthalene	ug/L	ND	1.2	0.57	09/16/23 01:47	
p-Isopropyltoluene	ug/L	ND	5.0	0.41	09/16/23 01:47	
sec-Butylbenzene	ug/L	ND	5.0	0.36	09/16/23 01:47	
Styrene	ug/L	ND	5.0	0.39	09/16/23 01:47	
tert-Butylbenzene	ug/L	ND	5.0	0.38	09/16/23 01:47	
Tetrachloroethene	ug/L	ND	5.0	0.36	09/16/23 01:47	
Toluene	ug/L	ND	5.0	0.38	09/16/23 01:47	
trans-1,2-Dichloroethene	ug/L	ND	5.0	0.48	09/16/23 01:47	
trans-1,3-Dichloropropene	ug/L	ND	5.0	0.28	09/16/23 01:47	
trans-1,4-Dichloro-2-butene	ug/L	ND	100	0.42	09/16/23 01:47	
Trichloroethene	ug/L	ND	5.0	0.41	09/16/23 01:47	
Trichlorofluoromethane	ug/L	ND	5.0	0.36	09/16/23 01:47	
Vinyl acetate	ug/L	ND	50.0	1.7	09/16/23 01:47	
Vinyl chloride	ug/L	ND	2.0	0.40	09/16/23 01:47	
Xylene (Total)	ug/L	ND	10.0	1.5	09/16/23 01:47	
4-Bromofluorobenzene (S)	%.	100	79-124		09/16/23 01:47	
Dibromofluoromethane (S)	%.	109	82-128		09/16/23 01:47	1d
Toluene-d8 (S)	%.	98	73-122		09/16/23 01:47	

LABORATORY CONTROL SAMPLE:	3450942					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	50	56.8	114	81-130	
1,1,1-Trichloroethane	ug/L	50	57.2	114	76-127	
1.1.2.2-Tetrachloroethane	ua/l	50	48.7	97	70-126	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50353438

Date: 09/19/2023 04:25 PM

_ABORATORY CONTROL SAMPL	E: 3450942					
D		Spike	LCS	LCS	% Rec	0 ""
Parameter	Units	Conc	Result	% Rec	Limits	Qualifiers
,1,2-Trichloroethane	ug/L	50	52.1	104	79-124	
,1-Dichloroethane	ug/L	50	53.1	106	76-123	
,1-Dichloroethene	ug/L	50	47.5	95	73-133	
,1-Dichloropropene	ug/L	50	51.6	103	78-144	
,2,3-Trichlorobenzene	ug/L	50	45.0	90	72-138	
,2,3-Trichloropropane	ug/L	50	49.6	99	75-121	
,2,4-Trichlorobenzene	ug/L	50	41.7	83	71-138	
,2,4-Trimethylbenzene	ug/L	50	48.2	96	70-127	
,2-Dibromoethane (EDB)	ug/L	50	54.0	108	80-126	
,2-Dichlorobenzene	ug/L	50	47.5	95	79-123	
,2-Dichloroethane	ug/L	50	57.2	114	70-124	
,2-Dichloropropane	ug/L	50	51.7	103	74-128	
,3,5-Trimethylbenzene	ug/L	50	49.6	99	71-124	
3-Dichlorobenzene	ug/L	50	45.7	91	77-124	
,3-Dichloropropane	ug/L	50	52.1	104	77-126	
,4-Dichlorobenzene	ug/L	50	47.8	96	77-120	
-Methylnaphthalene	ug/L	50	44.8	90	49-175	
,2-Dichloropropane	ug/L	50	57.7	115	65-136	
-Butanone (MEK)	ug/L	250	289	116	59-134	
-Chlorotoluene	ug/L	50	49.0	98	74-121	
-Hexanone	ug/L	250	274	109	63-134	
-Methylnaphthalene	ug/L	50	42.1	84	52-170	
-Chlorotoluene	ug/L	50	46.6	93	78-123	
-Methyl-2-pentanone (MIBK)	ug/L	250	270	108	67-133	
cetone	ug/L	250	261	105	32-133	
crolein	ug/L	1000	681	68	35-166	
crylonitrile	ug/L	250	257	103	69-137	
enzene	ug/L	50	49.9	100	74-124	
romobenzene	ug/L	50	51.2	102	76-122	
romochloromethane	ug/L	50	57.3	115	66-127	
romodichloromethane	ug/L	50	56.4	113	80-126	
romoform	ug/L	50	51.2	102	75-128	
romomethane	ug/L	50	44.9	90	10-183	
arbon disulfide	ug/L	50	47.2	94	68-123	
arbon tetrachloride	ug/L	50	58.7	117	78-132	
chlorobenzene	ug/L	50	50.4	101	77-121	
hloroethane	ug/L	50	40.8	82	43-140	
hloroform	ug/L	50	53.4	107	75-118	
hloromethane		50	38.2	76	45-130	
s-1,2-Dichloroethene	ug/L ug/L	50	50.2 51.8	104	76-125	
s-1,2-Dichloropropene	ug/L ug/L	50 50	51.6 52.5	104	76-125 76-132	
• •						
ibromochloromethane	ug/L	50 50	56.8	114	79-130 70-134	
ibromomethane	ug/L	50	52.4	105	79-124	
tichlorodifluoromethane	ug/L	50 50	38.6	77	10-124	
thyl methacrylate	ug/L	50	49.3J	99	73-137	
thylbenzene	ug/L	50	48.8	98	74-125	
lexachloro-1,3-butadiene	ug/L	50	45.1	90	66-141	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50353438

Date: 09/19/2023 04:25 PM

LABORATORY CONTROL SAMPLE:	3450942					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
lodomethane	ug/L	50	48.9	98	10-160	
Isopropylbenzene (Cumene)	ug/L	50	51.3	103	75-126	
Methyl-tert-butyl ether	ug/L	50	56.7	113	74-129	
Methylene Chloride	ug/L	50	49.6	99	77-126	
n-Butylbenzene	ug/L	50	46.1	92	72-131	
n-Hexane	ug/L	50	50.2	100	58-131	
n-Propylbenzene	ug/L	50	47.8	96	76-127	
Naphthalene	ug/L	50	48.5	97	70-132	
p-Isopropyltoluene	ug/L	50	48.0	96	76-126	
sec-Butylbenzene	ug/L	50	47.7	95	76-129	
Styrene	ug/L	50	51.4	103	81-129	
tert-Butylbenzene	ug/L	50	49.3	99	76-129	
Tetrachloroethene	ug/L	50	49.5	99	73-132	
Toluene	ug/L	50	43.0	86	72-119	
trans-1,2-Dichloroethene	ug/L	50	50.3	101	74-125	
trans-1,3-Dichloropropene	ug/L	50	56.5	113	75-132	
trans-1,4-Dichloro-2-butene	ug/L	50	51J	102	66-152	
Trichloroethene	ug/L	50	51.2	102	75-127	
Trichlorofluoromethane	ug/L	50	45.2	90	64-136	
Vinyl acetate	ug/L	200	218	109	62-159	
Vinyl chloride	ug/L	50	37.2	74	48-133	
Xylene (Total)	ug/L	100	95.0	95	73-123	
4-Bromofluorobenzene (S)	%.			105	79-124	
Dibromofluoromethane (S)	%.			106	82-128	
Toluene-d8 (S)	%.			100	73-122	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50353438

Date: 09/19/2023 04:25 PM

QC Batch: 752973 Analysis Method: EPA 5030/8260
QC Batch Method: EPA 5030/8260 Analysis Description: 8260 MSV

Laboratory: Pace Analytical Services - Indianapolis

Associated Lab Samples: 50353438016

METHOD BLANK: 3450955 Matrix: Water

Associated Lab Samples: 50353438016

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	ND ND	5.0	0.36	09/15/23 13:48	
1,1,1-Trichloroethane	ug/L	ND	5.0	0.30	09/15/23 13:48	
1,1,2,2-Tetrachloroethane	ug/L	ND	5.0	0.33	09/15/23 13:48	
1,1,2-Trichloroethane	ug/L	ND	5.0	0.36	09/15/23 13:48	
1,1-Dichloroethane	ug/L	ND	5.0	0.31	09/15/23 13:48	
1,1-Dichloroethene	ug/L	ND	5.0	0.27	09/15/23 13:48	
1,1-Dichloropropene	ug/L	ND	5.0	0.37	09/15/23 13:48	
1,2,3-Trichlorobenzene	ug/L	ND	5.0	0.45	09/15/23 13:48	
1,2,3-Trichloropropane	ug/L	ND	5.0	0.40	09/15/23 13:48	
1,2,4-Trichlorobenzene	ug/L	ND	5.0	0.43	09/15/23 13:48	
1,2,4-Trimethylbenzene	ug/L	ND	5.0	0.37	09/15/23 13:48	
1,2-Dibromoethane (EDB)	ug/L	ND	5.0	0.33	09/15/23 13:48	
1,2-Dichlorobenzene	ug/L	ND	5.0	0.36	09/15/23 13:48	
1,2-Dichloroethane	ug/L	ND	5.0	0.29	09/15/23 13:48	
1,2-Dichloropropane	ug/L	ND	5.0	0.40	09/15/23 13:48	
1,3,5-Trimethylbenzene	ug/L	ND	5.0	0.35	09/15/23 13:48	
1,3-Dichlorobenzene	ug/L	ND	5.0	0.36	09/15/23 13:48	
1,3-Dichloropropane	ug/L	ND	5.0	0.29	09/15/23 13:48	
1,4-Dichlorobenzene	ug/L	ND	5.0	0.35	09/15/23 13:48	
1-Methylnaphthalene	ug/L	ND	10.0	1.6	09/15/23 13:48	
2,2-Dichloropropane	ug/L	ND	5.0	0.33	09/15/23 13:48	
2-Butanone (MEK)	ug/L	ND	25.0	3.6	09/15/23 13:48	
2-Chlorotoluene	ug/L	ND	5.0	0.34	09/15/23 13:48	
2-Hexanone	ug/L	ND	25.0	2.0	09/15/23 13:48	
2-Methylnaphthalene	ug/L	ND	10.0	2.0	09/15/23 13:48	
4-Chlorotoluene	ug/L	ND	5.0	0.38	09/15/23 13:48	
4-Methyl-2-pentanone (MIBK)	ug/L	ND	25.0	2.0	09/15/23 13:48	
Acetone	ug/L	ND	100	6.4	09/15/23 13:48	
Acrolein	ug/L	ND	50.0	13.7	09/15/23 13:48	
Acrylonitrile	ug/L	ND	100	1.8	09/15/23 13:48	
Benzene	ug/L	ND	5.0	0.44	09/15/23 13:48	
Bromobenzene	ug/L	ND	5.0	0.38	09/15/23 13:48	
Bromochloromethane	ug/L	ND	5.0	0.37	09/15/23 13:48	
Bromodichloromethane	ug/L	ND	5.0	0.29	09/15/23 13:48	
Bromoform	ug/L	ND	5.0	0.32	09/15/23 13:48	
Bromomethane	ug/L	ND	5.0	1.8	09/15/23 13:48	
Carbon disulfide	ug/L	ND	10.0	0.40	09/15/23 13:48	
Carbon tetrachloride	ug/L	ND	5.0	1.6	09/15/23 13:48	
Chlorobenzene	ug/L	ND	5.0	0.32	09/15/23 13:48	
Chloroethane	ug/L	ND	5.0	0.87	09/15/23 13:48	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50353438

Date: 09/19/2023 04:25 PM

METHOD BLANK: 3450955 Matrix: Water

Associated Lab Samples: 50353438016

_		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Chloroform	ug/L	ND	5.0	2.6	09/15/23 13:48	
Chloromethane	ug/L	ND	5.0	0.42	09/15/23 13:48	
cis-1,2-Dichloroethene	ug/L	ND	5.0	0.34	09/15/23 13:48	
cis-1,3-Dichloropropene	ug/L	ND	5.0	0.37	09/15/23 13:48	
Dibromochloromethane	ug/L	ND	5.0	0.27	09/15/23 13:48	
Dibromomethane	ug/L	ND	5.0	0.42	09/15/23 13:48	
Dichlorodifluoromethane	ug/L	ND	5.0	0.37	09/15/23 13:48	
Ethyl methacrylate	ug/L	ND	100	0.38	09/15/23 13:48	
Ethylbenzene	ug/L	ND	5.0	0.86	09/15/23 13:48	
Hexachloro-1,3-butadiene	ug/L	ND	5.0	0.50	09/15/23 13:48	
Iodomethane	ug/L	ND	10.0	1.9	09/15/23 13:48	
Isopropylbenzene (Cumene)	ug/L	ND	5.0	0.34	09/15/23 13:48	
Methyl-tert-butyl ether	ug/L	ND	4.0	0.31	09/15/23 13:48	
Methylene Chloride	ug/L	ND	5.0	3.7	09/15/23 13:48	
n-Butylbenzene	ug/L	ND	5.0	0.39	09/15/23 13:48	
n-Hexane	ug/L	ND	5.0	0.39	09/15/23 13:48	
n-Propylbenzene	ug/L	ND	5.0	0.34	09/15/23 13:48	
Naphthalene	ug/L	ND	1.2	0.43	09/15/23 13:48	
p-Isopropyltoluene	ug/L	ND	5.0	0.40	09/15/23 13:48	
sec-Butylbenzene	ug/L	ND	5.0	0.35	09/15/23 13:48	
Styrene	ug/L	ND	5.0	0.36	09/15/23 13:48	
tert-Butylbenzene	ug/L	ND	5.0	0.36	09/15/23 13:48	
Tetrachloroethene	ug/L	ND	5.0	0.35	09/15/23 13:48	
Toluene	ug/L	ND	5.0	0.38	09/15/23 13:48	
trans-1,2-Dichloroethene	ug/L	ND	5.0	0.37	09/15/23 13:48	
trans-1,3-Dichloropropene	ug/L	ND	5.0	0.29	09/15/23 13:48	
trans-1,4-Dichloro-2-butene	ug/L	ND	100	0.41	09/15/23 13:48	
Trichloroethene	ug/L	ND	5.0	0.31	09/15/23 13:48	
Trichlorofluoromethane	ug/L	ND	5.0	0.34	09/15/23 13:48	
Vinyl acetate	ug/L	ND	50.0	2.3	09/15/23 13:48	
Vinyl chloride	ug/L	ND	2.0	0.35	09/15/23 13:48	
Xylene (Total)	ug/L	ND	10.0	2.2	09/15/23 13:48	
4-Bromofluorobenzene (S)	%.	103	79-124		09/15/23 13:48	
Dibromofluoromethane (S)	%.	107	82-128		09/15/23 13:48	1d
Toluene-d8 (S)	%.	97	73-122		09/15/23 13:48	

LABORATORY CONTROL SAMPLE:	3450956					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	50	53.1	106	81-130	
1,1,1-Trichloroethane	ug/L	50	55.1	110	76-127	
1,1,2,2-Tetrachloroethane	ug/L	50	48.2	96	70-126	
1,1,2-Trichloroethane	ug/L	50	52.2	104	79-124	
1,1-Dichloroethane	ug/L	50	47.8	96	76-123	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50353438

Date: 09/19/2023 04:25 PM

_ABORATORY CONTROL SAMPLE	E: 3450956					
_		Spike	LCS	LCS	% Rec	_
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifier
,1-Dichloroethene	ug/L	50	38.9	78	73-133	
,1-Dichloropropene	ug/L	50	47.6	95	78-144	
,2,3-Trichlorobenzene	ug/L	50	45.5	91	72-138	
,2,3-Trichloropropane	ug/L	50	51.3	103	75-121	
,2,4-Trichlorobenzene	ug/L	50	42.5	85	71-138	
,2,4-Trimethylbenzene	ug/L	50	47.7	95	70-127	
,2-Dibromoethane (EDB)	ug/L	50	53.6	107	80-126	
,2-Dichlorobenzene	ug/L	50	46.8	94	79-123	
,2-Dichloroethane	ug/L	50	54.1	108	70-124	
,2-Dichloropropane	ug/L	50	49.7	99	74-128	
,3,5-Trimethylbenzene	ug/L	50	47.9	96	71-124	
,3-Dichlorobenzene	ug/L	50	46.0	92	77-124	
,3-Dichloropropane	ug/L	50	49.7	99	77-126	
,4-Dichlorobenzene	ug/L	50	46.8	94	77-120	
-Methylnaphthalene	ug/L	50	41.8	84	49-175	
,2-Dichloropropane	ug/L	50	54.5	109	65-136	
-Butanone (MEK)	ug/L	250	253	101	59-134	
-Chlorotoluene	ug/L	50	48.1	96	74-121	
-Hexanone	ug/L	250	244	98	63-134	
-Methylnaphthalene	ug/L	50	41.7	83	52-170	
-Chlorotoluene	ug/L	50	47.9	96	78-123	
-Methyl-2-pentanone (MIBK)	ug/L	250	261	104	67-133	
cetone	ug/L	250	217	87	32-133	
crolein	ug/L	1000	766	77	35-166	
crylonitrile	ug/L	250	251	101	69-137	
senzene	ug/L	50	47.5	95	74-124	
Bromobenzene	ug/L	50	50.1	100	76-122	
romochloromethane	ug/L	50	52.9	106	66-127	
romodichloromethane	ug/L	50	57.8	116	80-126	
romoform	ug/L	50	51.5	103	75-128	
Bromomethane	ug/L	50	56.2	112	10-183	
Carbon disulfide	ug/L	50	31.0	62	68-123	_2
Carbon tetrachloride	ug/L	50	51.6	103	78-132	
Chlorobenzene	ug/L	50	49.7	99	77-121	
Chloroethane	ug/L	50	49.3	99	43-140	
Chloroform	ug/L	50	51.3	103	75-118	
Chloromethane	ug/L	50	44.6	89	45-130	
is-1,2-Dichloroethene	ug/L	50	49.0	98	76-125	
is-1,3-Dichloropropene	ug/L	50	54.6	109	76-132	
Dibromochloromethane	ug/L	50	53.4	107	79-130	
Dibromomethane	ug/L	50	49.5	99	79-124	
Dichlorodifluoromethane	ug/L	50	31.9	64	10-124	
thyl methacrylate	ug/L	50	51J	102	73-137	
Ethylbenzene	ug/L	50	47.5	95	74-125	
lexachloro-1,3-butadiene	ug/L	50	44.9	90	66-141	
odomethane	ug/L	50	41.4	83	10-160	
sopropylbenzene (Cumene)	ug/L ug/L	50	50.0	100	75-126	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50353438

Date: 09/19/2023 04:25 PM

LABORATORY CONTROL SAMP	LE: 3450956					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Methyl-tert-butyl ether	ug/L	50	53.4	107	74-129	
Methylene Chloride	ug/L	50	41.8	84	77-126	
n-Butylbenzene	ug/L	50	45.4	91	72-131	
n-Hexane	ug/L	50	36.5	73	58-131	
n-Propylbenzene	ug/L	50	46.0	92	76-127	
Naphthalene	ug/L	50	46.2	92	70-132	
p-Isopropyltoluene	ug/L	50	46.8	94	76-126	
sec-Butylbenzene	ug/L	50	47.2	94	76-129	
Styrene	ug/L	50	50.4	101	81-129	
tert-Butylbenzene	ug/L	50	48.0	96	76-129	
Tetrachloroethene	ug/L	50	48.1	96	73-132	
Toluene	ug/L	50	41.5	83	72-119	
trans-1,2-Dichloroethene	ug/L	50	46.3	93	74-125	
trans-1,3-Dichloropropene	ug/L	50	51.6	103	75-132	
trans-1,4-Dichloro-2-butene	ug/L	50	52.8J	106	66-152	
Trichloroethene	ug/L	50	50.9	102	75-127	
Trichlorofluoromethane	ug/L	50	50.6	101	64-136	
Vinyl acetate	ug/L	200	288	144	62-159	
Vinyl chloride	ug/L	50	43.5	87	48-133	
Xylene (Total)	ug/L	150	138	92	73-123	
4-Bromofluorobenzene (S)	%.			104	79-124	
Dibromofluoromethane (S)	%.			105	82-128	
Toluene-d8 (S)	%.			100	73-122	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: GE Indy
Pace Project No.: 50353438

DEFINITIONS

- DF Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.
- ND Not Detected at or above adjusted reporting limit.
- TNTC Too Numerous To Count
- J Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.
- MDL Adjusted Method Detection Limit.
- PQL Practical Quantitation Limit.
- RL Reporting Limit The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.
- S Surrogate
- 1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

- LCS(D) Laboratory Control Sample (Duplicate)
- MS(D) Matrix Spike (Duplicate)
- **DUP Sample Duplicate**
- RPD Relative Percent Difference
- NC Not Calculable.
- SG Silica Gel Clean-Up
- U Indicates the compound was analyzed for, but not detected.

RPD value was outside control limits.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

R1

Date: 09/19/2023 04:25 PM

1d	A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.
2d	Not reanalyzed due to high target compounds. TMW 09-18-23
C9	Common Laboratory Contaminant.
CH	The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased high.
CL	The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased low.
Е	Analyte concentration exceeded the calibration range. The reported result is estimated.
H7	Re-extraction or re-analysis could not be performed within method holding time.
L1	Analyte recovery in the laboratory control sample (LCS) was above QC limits. Results for this analyte in associated samples may be biased high.
L2	Analyte recovery in the laboratory control sample (LCS) was below QC limits. Results for this analyte in associated samples may be biased low.
M1	Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: GE Indy
Pace Project No.: 50353438

Date: 09/19/2023 04:25 PM

ab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytic Batch
0353438034	W-9-090823	RSK 175 Modified	752620		
0353438001	MW-322-090723	EPA 5030/8260	752738		
0353438002	MW-323-090723	EPA 5030/8260	752738		
0353438003	W-4R-090723	EPA 5030/8260	752738		
0353438004	W-4D-090723	EPA 5030/8260	752738		
0353438005	MW-273-090723	EPA 5030/8260	752738		
0353438006	MW-415S-090723	EPA 5030/8260	752738		
0353438007	MW-415D-090723	EPA 5030/8260	752964		
0353438008	MW-416S-090723	EPA 5030/8260	752744		
0353438009	MW-416D-090723	EPA 5030/8260	752744		
0353438010	W-2-090723	EPA 5030/8260	752964		
0353438011	MW-423S-090723	EPA 5030/8260	752744		
0353438012	MW-423D-090723	EPA 5030/8260	752744		
0353438013	MW-422S-090723	EPA 5030/8260	752744		
0353438014	MW-422D-090723	EPA 5030/8260	752744		
0353438015	MW-419S-090723	EPA 5030/8260	752744		
0353438016	MW-419D-090723	EPA 5030/8260	752973		
0353438017	MW-417S-090723	EPA 5030/8260	752744		
0353438018	MW-417D-090723	EPA 5030/8260	752744		
353438019	MW-401-090723	EPA 5030/8260	752744		
353438020	MW-406S-090723	EPA 5030/8260	752964		
0353438021	MW-406D-090723	EPA 5030/8260	752964		
0353438022	MW-424S-090723	EPA 5030/8260	752966		
0353438023	MW-424D-090723	EPA 5030/8260	752964		
0353438024	MW-404-090723	EPA 5030/8260	752964		
353438025	MW-405S-090723	EPA 5030/8260	752964		
353438026	MW-405D-090723	EPA 5030/8260	752964		
353438027	MW-403-090723	EPA 5030/8260	752964		
353438028	MW-414S-090723	EPA 5030/8260	752964		
353438029	MW-414D-090723	EPA 5030/8260	752964		
353438030	MW-321-090723	EPA 5030/8260	752964		
0353438031	AD-101-090723	EPA 5030/8260	752964		
0353438032	MW-183-090823	EPA 5030/8260	752964		
0353438033	MW-22-090823	EPA 5030/8260	752964		
0353438034	W-9-090823	EPA 5030/8260	752964		
353438035	W-82-090823	EPA 5030/8260	752966		
0353438036	MW-173-090823	EPA 5030/8260	752966		
0353438037	MW-426-090823	EPA 5030/8260	752966		
0353438038	W-8D-090823	EPA 5030/8260	752966		
0353438039	MW-131-090823	EPA 5030/8260	752966		
0353438040	MW-133-090823	EPA 5030/8260	752966		
0353438041	MW-302-090823	EPA 5030/8260	752966		
0353438042	MW-303-090823	EPA 5030/8260	752966		

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: GE Indy
Pace Project No.: 50353438

Date: 09/19/2023 04:25 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
50353438043	MW-92-090823	EPA 5030/8260	752966		
50353438044	AD-201-090823	EPA 5030/8260	752966		
50353438045	Trip Blank-090823	EPA 5030/8260	752966		

WWW.PACELABS.COM

CHAIN-OF-CUSTODY / Analytical Request D

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields mu

WO#:50353438

Submitting a sample via this chain of custody constitutes acknowledgment and acceptance of the Pace Terms and Conditions found at https://info.pace Section A Section B Section C Required Client Information: Required Project Information: Invoice Information: Company: Report To: Chase Forman Attention: Chase Forman Address: 8805 Governor's Hill Drive Suite 205 Copy To: Company Name: Cincinnati, OH 45249 Address: chase.forman@ramboll.com Purchase Order #: Pace Quote: (740)403-1387 Pace Project Manager: Project Name: heather.patterson@pacelabs.com. State / Location GE Indy Requested Due Date: Project # Pace Profile # 9761-8

Requested Due Date:	roject #:		P	ace Profile	e#: 97	61-8								IN		100
		***************************************							F	Requested	Analysis Fil	tered (Y/N)				
	MP)							XIN								
MATRIX Drinking Wate	DW B 3	COLLECTED	- No	-	Prese	ervative	s			+++	++-			т —		
Water Waste Water	A SRAB CO		LECT						M200	111			Î			
SAMPLE ID Product Soil/Soild	SL 9 II CTAD	T END	No.					Test	by A		(FF)		(3)			
One Character per box. Wipe	WD		IP AT	D D	11				ases				lorin			
(A-Z, 0-9 /, -) Sample lds must be unique Sample lds must be unique	AR OT TS		TEN	erve		8	3 2	alys	8260 ed Ga	300	353 iss. f		a C			
0.20	MATRIX CODE SAMPLE TYPE		SAMPLE TEMP AT COLLECTION	Unpreserved	HNO3	NaOH	Methanol	Analyses	VOC by 8260 Dissolved Gases by AM20G/	TOC 5310 Sulfate 300.0	Nitrate 353.2		Residual Chlorine (Y/N)			
5 (10)		TIME DATE TIME					ŽŽ		S ä	E S	2 0		1 2			nameral sales
1 MW-322-096873	WT 69-7-2	31/36	1	3	3		$\perp \perp$		X		\perp		\perp	001		
1 /W=323-090005	1111 110	(35) /			11				X					002		
3 W-4K-090723071	i i	205				TT		1	X				П	as		
11. UD - 090703		210	+	H +	+-++	+ +	++	1	X				\forall			
M-40-010 CO 700		ay 1 /	++	+	+++	++	++	+			+	+++	H	cu4		
5 WM - L+3 - 0907 L3		45	44	H	+H	\vdash	++	-			-	-	+	w		
6 1MM-415>-040+12)		230 V			Ш				X				\Box	On	,	
, MW-915D-090725		225 / Wy							X					w	7	
8 MM-476S-090773	111111111111111111111111111111111111111	240/						1	X					009	1	
N. ((C) / OCO 700	mirties	200	+	++	+	++	++	١,			+	+++	+			_
· 11W-416D-09DFC3		2014 \	+H	++	+++	++	++	-		\vdash	+	+++	+	Ost		
10 W-2-090+L)		300		4	$\perp \perp \mid$	\perp	1	1	X		\perp		\sqcup	Olo)	
11 1 MW- 4735 -090773	11111	406/							X					UV	1	
12 MIN-4735-090773	1000	110	N	1	A			7	X					01	7	
ADDITIONAL COMMENTS	RELINQUISHED BY / AFFI	LIATION DAT	£ 1	TIME		AC	CEPTED E	BYIAF	FILIATION		DATE	TIME			CONDITION	s
itrate 40 hour hold time	D. WEBER / RA	MBOLL 9/8/	12 1	129	K	1/1	/				9-8-2	3 11:29	1.3		T ,	Γ.,
itrate 48 hour hold time	D. WEBER / KA	MBOLL 19/8/	67 1	121	7		mi	7			100	5/11-21	1.0	7	~	1 y
			+		+						+	-	+	-	-	+
			+		-						-	-	+-	-	-	┼
																-
	SA	MPLER NAME AND SIG	un et en										S	6		
		PRINT Name of SAMP		DES	MON	DV	JEBE	R					_⊆	eived (Custody Sealed Cooler (w/N)	ples
		SIGNATURE of SAMP	LER:	0	ne		2		DATI	E Signed:	9/8/2	13	TEMP	Rec (Y/N	Seal Seal	ge 13

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Submitting a sample via this chain of custody constitutes acknowledgment and acceptance of the Pace Terms and Conditions found at https://info.pacelabs.com/hubfs/pas-standard-terms.pdf Section A Section C Page: **Required Client Information:** Invoice Information: **Required Project Information:** Attention: Company: Chase Forman Report To: Chase Forman Company Name: Address: 8805 Governor's Hill Drive Suite 205 Copy To: Regulatory Agency Address Cincinnati, OH 45249 Purchase Order # Pace Quote: chase.forman@ramboll.com Email: State / Location Pace Project Manager heather.patterson@pacelabs.com, (740)403-1387 Project Name: GE Indy Requested Due Date: Project #: Pace Profile #: 9761-8 IN Requested Analysis Filtered (Y/N) valid codes to left) Preservatives COLLECTED MATRIX CODE Drinking Water DW Water WT (G=GRAB Waste Water WW Product p SAMPLE ID Fe (FF) Soil/Solid SL (see **END** START # OF CONTAINERS Oil OL WP One Character per box. Wipe Sulfate 300.0 MATRIX CODE SAMPLE TYPE AR VOC by 8260 (A-Z, 0-9/, -) TOC 5310 OT Na2S203 6010 Diss. Other Sample Ids must be unique Nitrate TEM Tissue HNO3 NaOH Other 다 단 13 HOTE TIME ULF 019 020 022 SAMPLE CONDITIONS DATE TIME DATE ACCEPTED BY / AFFILIATION ADDITIONAL COMMENTS RELINQUISHED BY / AFFILIATION 9-8-23 RAMBOLL 9/8 1129 11:29 Nitrate 48 hour hold time SAMPLER NAME AND SIGNATURE in C PRINT Name of SAMPLER: DESMOND WEBER TEMP **P** 20 e 123€ of 140 DATE Signed: SIGNATURE of SAMPLER:

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

		ection C	3 M
		nvoice Information:	Page: Of 4
Company: Ramboll OH	J. C.	attention: Accounts Payable	
Address: 8805 Governor's Hill Drive Suite 205		Company Name: Ramboll OH	
Cincinnati, OH 45249		ddress:	Regulatory Agency
mail: chase.forman@ramboll.com	10.10001.20	ace Quote: ace Project Manager: heather.patterson@pacelabs.com,	C
			State / Location
Requested Due Date: Standard	Tojou #.	3701-0	IN
SAMPLE ID One Character per box. (A-Z, 0-9/, -) Sample Ids must be unique 1	RELINQUISHED BY / AFFILIATION DATE START END JOHN START LOC START END JOHN START E	Proceedings of the control of the co	025 025 026 027 028 029 030 030 030 031 032 033 033 034 035 035
	SAMPLER NAME AND SIGNATU PRINT Name of SAMPLER: SIGNATURE of SAMPLER:	DESMOND WEBER DATE Signed: 9/0	EMP in C Received on Secreted on Secreted on Custody Custody Custody Samples Samples Samples Samples

Pace Analytical* www.pacelabs.com

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Submitting a sample via this chain of custody constitutes acknowledgment and acceptance of the Pace Terms and Conditions found at https://info.pacelabs.com/hubfs/pas-standard-terms.pdf. Section B Section C Section A Of **Required Client Information: Required Project Information:** Invoice Information: Page: Attention: Accounts Payable Company: Ramboll OH Report To: Chase Forman Address: 8805 Governor's Hill Drive Suite 205 Copy To: Company Name: Ramboll OH Address Regulatory Agency Cincinnati, OH 45249 chase.forman@ramboll.com Purchase Order #: 1940006425 Pace Quote Fmail: Project Name: GE Indy Pace Project Manager: heather.patterson@pacelabs.com Phone: (740)403-1387 Fax: State / Location Requested Due Date: Project #: Pace Profile #: 9761-8 Standard IN Requested Analysis Filtered (Y/N) C=COMP) Preservatives COLLECTED MATRIX CODE Drinking Water DW issolved Gases by AM20GAX Water (G=GRAB Waste Water Product 300.0 SAMPLE ID Soil/Solid (see START END Nitrate by 353.2 # OF CONTAINERS OL Oil One Character per box. Wipe MATRIX CODE SAMPLE TYPE AR Sulfate by (A-Z, 0-9/, -) 5310 Other ITEM # Na2S203 Sample Ids must be unique OC by HC TIME TIME DATE 036 WT 037 941 039 (14) 04/2 1000 12 ADDITIONAL COMMENTS RELINQUISHED BY / AFFILIATION DATE ACCEPTED BY / AFFILIATION SAMPLE CONDITIONS 9-8-23 AM20GAX for M/E/E/propane/propene/butane to Pace® Gulf Coast NITRATE by 353.2 SHORT HOLD SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER: 8/23 SIGNATURE of SAMPLER: **DATE Signed:**

SAMPLE CONDITION UPON RECEIPT FORM

Date/Time and Initials of person examining contents	: RC	9-8-23	1245			
1. Courier: □FED EX □UPS ☑CLIENT □PACE	□NOW/	JETT 🗆	OTHER 5. Packing Material: Bubble Wrap	☐ Bubble	e Bags	
2. Custody Seal on Cooler/Box Present: Yes	No		□ None	Other	case	7
(If yes)Seals Intact:	if no seals	were prese				
3. Thermometer: 1 2 3 4 5 6 7 8 A B C D	E FG)H		6. Ice Type: ☑ Wet ☐ Blue ☐ None	,		
4. Cooler Temperature(s): 1.3/1.3			7. If temp. is over 6°C or under 0°C, was the PM			□ No
(Initial/Corrected) RECORD TEMPS OF ALL COOLERS RECE			w to add more) Cooler temp should be above free written out in the comments section below.	izing to 6°C		
All	Yes	No No	Witten out in the comments section below.	Yes	No	N/A
USDA Regulated Soils? (HI, ID, NY, WA, OR, CA, NM, TX, OK, AR, LA, TN, AL, MS, NC, SC, GA, FL, or Puerto Rico)		/	All containers needing acid/base preservation have been pH <u>CHECKED</u> ?: Exceptions: VOA, coliform, LLHg, O&G, RAD CHEM, and any container with a septum cap or preserved with HCl.			
Short Hold Time Analysis (48 hours or less)? Analysis:		/	Circle: HNO3 (<2) H2SO4 (<2) NaOH (>10) NaOH/ZnAc (>9) Any non-conformance to pH recommendations will be noted on the container count form			V 1
Time 5035A TC placed in Freezer or Short Holds To Lab	Time:			Present	Absent	N/A
			Residual Chlorine Check (SVOC 625 Pest/PCB 608)			/
Rush TAT Requested (4 days or less):			Residual Chlorine Check (Total/Amenable/Free Cyanide)			/
Custody Signatures Present?			Headspace Wisconsin Sulfide?			
Containers Intact?:	/		Headspace in VOA Vials (>6mm): See Containter Count form for details	Present	Absent	No VOA Vials Sent
Sample Label (IDs/Dates/Times) Match COC?: Except TCs, which only require sample ID		I	Trip Blank Present?	<i>J</i>		
Extra labels on Terracore Vials? (soils only)			Trip Blank Custody Seals?:	V		
COMMENTS: 13 VG1H for MW-4155-	70907	23 (evd with ID only 19C 9-8-23			
					Pag	e 136 of 140

that are out of conformance **

																												lial air	5 Out Of t	Jonnorman	100
			MeOH (only)	l				THE STATE OF THE S													1							Nitric	Sulfuric	Sodium Hydroxide	Sodium Hydroxide/ ZnAc
			SBS	\				,		AME	ER G	LASS	•					PI	LAST	IC					OTI	HER		Red	Yellow	Green	Black
COC Line Item	WGFU	WGKU BG1U	R	DG9H	VOA VIAL HS >6mm	VG9U	VG9T	AGOU	AG1H	AG10	AG3U	AG3S	AG3SF	AG3B	BP1U	BP1N	BP2U	врзи	BP3N	ВРЗЕ	BP3S	врзв	BP3Z	ССЗН	CG3F	Syringe Kit	Matrix	HNO3 <2	H2SO4 <2	NaOH >10	NaOH/Zn Ac >9
1				7														. 5									υŢ				
2																															
3																											T				
4																															
5																															
6																															
7													×																		
8																															
9																											\parallel				
10															,												\parallel				
11																														-	
12																											1				

Container Codes

	Gla	SS	
DG9H	40mL HCl amber voa vial	BG1T	glass
DG9P	40mL TSP amber vial	BG1U	1L unpreserved glass
DG9S	40mL H2SO4 amber vial	CG3U	250mL Unpres Clear Glass
DG9T	40mL Na Thio amber vial	AG0U	100mL unpres amber glass
DG9U	40mL unpreserved amber vial	AG1H	1L HCl amber glass
VG9H	40mL HCl clear vial	AG1S	1L H2SO4 amber glass
VG9T	40mL Na Thio. clear vial	AG1T	1L Na Thiosulfate amber glass
VG9U	40mL unpreserved clear vial	AG1U	1liter unpres amber glass
I	40mL w/hexane wipe vial	AG2N	500mL HNO3 amber glass
WGKU	8oz unpreserved clear jar	AG2S	500mL H2SO4 amber glass
NGFU	4oz clear soil jar	AG2U	
JGFU	4oz unpreserved amber wide	AG3S	250mL H2SO4 amber glass
ССЗН	250mL clear glass HCl	AG3SF	250mL H2SO4 amb glass -field filtered
CG3F	250mL clear glass HCl, Field Filter	AG3U	250mL unpres amber glass
BG1H	1L HCl clear glass	AG3B	250mL NaOH amber glass
BG1S	1L H2SO4 clear glass	T	

			Plastic	
BP1B	1L NaOH plastic	BP4U	125mL unpreserved plastic	
BP1N	1L HNO3 plastic	BP4N	125mL HNO3 plastic	
BP1S	1L H2SO4 plastic	BP4S	125mL H2SO4 plastic	
BP1U	1L unpreserved plastic		Miscellaneous	
BP1Z	1L NaOH, Zn, Ac		Miscellalieous	
BP2N	500mL HNO3 plastic	Syring	ge Kit LL Cr+6 sampling kit	
BP2C	500mL NaOH plastic	ZPLC	Ziploc Bag	
BP2S	500mL H2SO4 plastic	R	Terracore Kit	
BP2U	500mL unpreserved plastic	SP5T	120mL Coliform Sodium Thiosulfate	
BP2Z	500mL NaOH, Zn Ac	GN	General Container	
врзв	250mL NaOH plastic	U	Summa Can (air sample)	
BP3N	250mL HNO3 plastic	WT	Water	
BP3F	250mL HNO3 plastic-field filtered	SL	Solid	
BP3U	250mL unpreserved plastic	OL:	Oil	
	250mL H2SO4 plastic		Non-aqueous liquid	
BP3Z	250mL NaOH, ZnAc plastic	WP	Wipe	
BP3R	250mL Unpres FF SO4/OH buffer			P

Page 137 of 140

** Place a RED dot on containers

that	are	out	of	conformance	**

			MeOH (only)	1																	1							Nitric	Sulfuric	Sodium Hydroxide	Sodium Hydroxide/ ZnAc
			SBS					-		AMB	ER G	LASS	•					PL	AST	IC					OTI	HER		Red	Yellow	Green	Black
COC Line Item	WGFU	WGKU BG1U	R	DG9H	VOA VIAL HS >6mm	VG9U	VG9T	AGOU	AG1H	AG1U	AG3U	AG3S	AG3SF	AG3B	BP1U	BP1N	BP2U	врзи	BP3N	врзг	BP3S	врзв	BP3Z	сезн	CG3F	Syringe Kit	Matrix	HNO3 <2	H2SO4 <2	NaOH >10	NaOH/Zn Ac >9
1				3																							wr				
2				1																			4								
3	14.1																														
4																															
5																															
6																															
7																															
8																													,		
9			·									,																			
10																															
11																															
12																															

Container Codes

	Glas	SS	
DG9H	40mL HCl amber voa vial	BG1T	glass
DG9P	40mL TSP amber vial	BG1U	1L unpreserved glass
DG9S	40mL H2SO4 amber vial	CG3U	250mL Unpres Clear Glass
DG9T	40mL Na Thio amber vial	AG0U	100mL unpres amber glass
DG9U	40mL unpreserved amber vial	AG1H	1L HCl amber glass
VG9H	40mL HCl clear vial	AG1S	1L H2SO4 amber glass
VG9T	40mL Na Thio. clear vial	AG1T	1L Na Thiosulfate amber glass
VG9U	40mL unpreserved clear vial	AG1U	1liter unpres amber glass
I	40mL w/hexane wipe vial	AG2N	500mL HNO3 amber glass
WGKU	8oz unpreserved clear jar	AG2S	500mL H2SO4 amber glass
WGFU	4oz clear soil jar	AG2U	500mL unpres amber glass
JGFU	4oz unpreserved amber wide	AG3S	250mL H2SO4 amber glass
CG3H	250mL clear glass HCl	AG3SF	250mL H2SO4 amb glass -field filtered
CG3F	250mL clear glass HCl, Field Filter		250mL unpres amber glass
BG1H	1L HCl clear glass	AG3B	250mL NaOH amber glass
BG1S	1L H2SO4 clear glass		

			Plastic
BP1B	1L NaOH plastic	BP4U	125mL unpreserved plastic
BP1N	1L HNO3 plastic	BP4N	125mL HNO3 plastic
BP1S	1L H2SO4 plastic	BP4S	125mL H2SO4 plastic
BP1U	1L unpreserved plastic		Miscellaneous
BP1Z	1L NaOH, Zn, Ac		Miscellaneous
BP2N	500mL HNO3 plastic	Syring	ge Kit LL Cr+6 sampling kit
BP2C	500mL NaOH plastic	ZPLC	Ziploc Bag
BP2S	500mL H2SO4 plastic	R	Terracore Kit
BP2U	500mL unpreserved plastic	SP5T	120mL Coliform Sodium Thiosulfate
BP2Z	500mL NaOH, Zn Ac	GN	General Container
врзв	250mL NaOH plastic	U	Summa Can (air sample)
BP3N	250mL HNO3 plastic	WT	Water
BP3F	250mL HNO3 plastic-field filtered	SL	Solid
BP3U	250mL unpreserved plastic	OL:	Oil
	250mL H2SO4 plastic		Non-aqueous liquid
BP3Z	250mL NaOH, ZnAc plastic	WP	Wipe
BP3R	250mL Unpres FF SO4/OH buffer		

Page 138 of 140

F-IN-Q-270-rev.18, 26Jun2023

** Place a RED dot on containers

that are out of conformance **

																													triat are	0 001 01	Omormai	
			MeOH (only)	1	1	ı															1 7								Nitric	Sulfuric	Sodium Hydroxide	Sodium Hydroxide/ ZnAc
			SBS							AMB	ER G	LASS						Pl	AST	IC					OTH	HER			Red	Yellow	Green	Black
COC Line Item	WGFU	WGKU BG1U	R	DG9H	VOA VIAL HS >6mm	VG9U	VG9T	AGOU	AG1H	AG1U	AG3U	AG3S	AG3SF	AG3B	BP1U	BP1N	BP2U	врзи	BP3N	врзг	BP3S	врзв	BP3Z	свзн	CG3F	Syringe Kit		Matrix	HNO3 <2	H2SO4 <2	NaOH >10	NaOH/Zn Ac >9
1				3																								WT				
2																			1													The state of the s
3																																
4																																
5																																
6					S																											
7					-																											
8				- '																												
9				3																							-	st				
10																																
11				5																												
12				3																									1			

Container Codes

	Glas	SS	
DG9H	40mL HCl amber voa vial	BG1T	glass
DG9P	40mL TSP amber vial	BG1U	1L unpreserved glass
DG9S	40mL H2SO4 amber vial	CG3U	250mL Unpres Clear Glass
DG9T	40mL Na Thio amber vial	AG0U	100mL unpres amber glass
DG9U	40mL unpreserved amber vial	AG1H	1L HCl amber glass
VG9H	40mL HCl clear vial	AG1S	1L H2SO4 amber glass
VG9T	40mL Na Thio. clear vial	AG1T	1L Na Thiosulfate amber glass
VG9U	40mL unpreserved clear vial	AG1U	1liter unpres amber glass
I	40mL w/hexane wipe vial	AG2N	500mL HNO3 amber glass
WGKU	8oz unpreserved clear jar	AG2S	500mL H2SO4 amber glass
WGFU	4oz clear soil jar	AG2U	500mL unpres amber glass
JGFU	4oz unpreserved amber wide	AG3S	250mL H2SO4 amber glass
ССЗН	250mL clear glass HCl	AG3SF	250mL H2SO4 amb glass -field filtered
CG3F	250mL clear glass HCl, Field Filter	AG3U	250mL unpres amber glass
BG1H	1L HCl clear glass	AG3B	250mL NaOH amber glass
BG1S	1L H2SO4 clear glass		

			Plastic
BP1B	1L NaOH plastic	BP4U	4u 125mL unpreserved plastic
BP1N	1L HNO3 plastic	BP4N	4N 125mL HNO3 plastic
BP1S	1L H2SO4 plastic	BP4S	4s 125mL H2SO4 plastic
BP1U	1L unpreserved plastic		Miscellaneous
BP1Z	1L NaOH, Zn, Ac		Miscellatieous
BP2N	500mL HNO3 plastic	Syring	ringe Kit LL Cr+6 sampling kit
BP2C	500mL NaOH plastic	ZPLC	LC Ziploc Bag
BP2S	500mL H2SO4 plastic	R	R Terracore Kit
BP2U	500mL unpreserved plastic	SP5T	5T 120mL Coliform Sodium Thiosulfate
BP2Z	500mL NaOH, Zn Ac	GN	N General Container
врзв	250mL NaOH plastic	U	J Summa Can (air sample)
BP3N	250mL HNO3 plastic	WT	/T Water
BP3F	250mL HNO3 plastic-field filtered	SL	L Solid
BP3U	250mL unpreserved plastic	OL:	L: Oil
BP3S	250mL H2SO4 plastic		AL Non-aqueous liquid
BP3Z	250mL NaOH, ZnAc plastic	WP	P Wipe
BP3R	250mL Unpres FF SO4/OH buffer		
31 311	Zoonic Onprod 11 00 4/011 ballor		

Page 139 of 140

** Place a RED dot on containers

that are out of conformance **

																											-					Sodium
			MeOH (only)					1							1														Nitric	Sulfuric	Sodium Hydroxide	Hydroxide/ ZnAc
			SBS		1					AMB	ER G	LASS						PI	AST	IC					OTH	IER						
			DI																										Red	Yellow	Green	Black
COC	15	132		I £	VOA	22	<u>_</u>	5	lπ	15		ဟ	SF	l m	5	7	1	1	1	ıí.	S	m	N	I	LL.	e l	1 1	×	-			
COC Line Item	WGFU	WGKU BG1U	R	DG9H	VIAL HS >6mm	VG9U DG9U	VG9T	AGOU	AG1H	AG10	AG3U	AG3S	AG3SF	AG3B	BP1U	BP1N	BP2U	врзи	BP3N	врзг	BP3S	врзв	BP3Z	ССЗН	CG3F	Syringe Kit		Matrix	HNO3 <2	H2SO4 <2	NaOH >10	NaOH/Zn Ac >9
1	-			7	7011111	120	1	1	4	4	- Q	Q	4	4	ш_	ш	ТШ.	ш_	ш	ш_		ш	ш_			0) 🗴		J7				
-	-	-		7	+	 		-	_	_						-			-	-						-		71				
2																												1				
3																												\perp				
4															,																	
5																												П				METERONA
6					1																							П				
7				1																								П				and a second
8																												\sqcap				
9				1											-													T				
				6	+																						\vdash	+				
10				$\overline{\varphi}$	-															-							-+	Н				
11																																
12																																

Container Codes

	Gla	SS	
DG9H	40mL HCl amber voa vial	BG1T	glass
DG9P	40mL TSP amber vial	BG1U	1L unpreserved glass
DG9S	40mL H2SO4 amber vial	CG3U	250mL Unpres Clear Glass
DG9T	40mL Na Thio amber vial	AG0U	100mL unpres amber glass
DG9U	40mL unpreserved amber vial	AG1H	1L HCl amber glass
VG9H	40mL HCl clear vial	AG1S	1L H2SO4 amber glass
VG9T	40mL Na Thio. clear vial	AG1T	1L Na Thiosulfate amber glass
VG9U	40mL unpreserved clear vial	AG1U	1liter unpres amber glass
I	40mL w/hexane wipe vial	AG2N	500mL HNO3 amber glass
WGKU	8oz unpreserved clear jar	AG2S	500mL H2SO4 amber glass
WGFU	4oz clear soil jar	AG2U	500mL unpres amber glass
JGFU	4oz unpreserved amber wide	AG3S	250mL H2SO4 amber glass
ССЗН	250mL clear glass HCl	AG3SF	250mL H2SO4 amb glass -field filtered
CG3F	250mL clear glass HCl, Field Filter	AG3U	250mL unpres amber glass
BG1H	1L HCl clear glass	AG3B	250mL NaOH amber glass
BG1S	1L H2SO4 clear glass	T	

			Plastic
BP1B	1L NaOH plastic	BP4U	125mL unpreserved plastic
BP1N	1L HNO3 plastic	BP4N	125mL HNO3 plastic
BP1S	1L H2SO4 plastic	BP4S	125mL H2SO4 plastic
BP1U	1L unpreserved plastic		Miscellaneous
BP1Z	1L NaOH, Zn, Ac		Miscellatieous
BP2N	500mL HNO3 plastic	Syring	ge Kit LL Cr+6 sampling kit
BP2C	500mL NaOH plastic	ZPLC	Ziploc Bag
BP2S	500mL H2SO4 plastic	R	Terracore Kit
BP2U	500mL unpreserved plastic	SP5T	120mL Coliform Sodium Thiosulfate
BP2Z	500mL NaOH, Zn Ac	GN	General Container
врзв	250mL NaOH plastic	U	Summa Can (air sample)
BP3N	250mL HNO3 plastic	WT	Water
BP3F	250mL HNO3 plastic-field filtered	SL	Solid
BP3U	250mL unpreserved plastic	OL:	Oil
BP3S	250mL H2SO4 plastic	NAL	Non-aqueous liquid
BP3Z	250mL NaOH, ZnAc plastic	WP	Wipe
BP3R	250mL Unpres FF SO4/OH buffer		

Page 140 of 140

APPENDIX C-4
OCTOBER/DECEMBER 2023 GROUNDWATER SAMPLING EVENT

November 02, 2023

Chase Forman Ramboll 8805 Governor's Hill Drive Suite 205 Cincinnati, OH 45249

RE: Project: GE Indy

Pace Project No.: 50356622

Dear Chase Forman:

Enclosed are the analytical results for sample(s) received by the laboratory on October 17, 2023. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Indianapolis

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Heather Patterson

heather.patterson@pacelabs.com

Heath Pathson

(317)228-3146

Project Manager

Enclosures

cc: Mr. Tyler Carter, Ramboll Environ

Matt Starrett, Ramboll Dana Williams, Ramboll

CERTIFICATIONS

Project: GE Indy
Pace Project No.: 50356622

Pace Analytical Services Indianapolis

7726 Moller Road, Indianapolis, IN 46268
Illinois Accreditation #: 200074
Indiana Drinking Water Laboratory #: C-49-06
Kansas/TNI Certification #: E-10177
Kentucky UST Agency Interest #: 80226
Kentucky WW Laboratory ID #: 98019
Michigan Drinking Water Laboratory #9050

Ohio VAP Certified Laboratory #: CL0065 Oklahoma Laboratory #: 9204 Texas Certification #: T104704355 Wisconsin Laboratory #: 999788130 USDA Foreign Soil Permit #: 525-23-13-23119 USDA Compliance Agreement #: IN-SL-22-001

SAMPLE SUMMARY

Project: GE Indy
Pace Project No.: 50356622

Lab ID	Sample ID	Matrix	Date Collected	Date Received
50356622001	MW-425-101723	Water	10/17/23 11:25	10/17/23 14:44
50356622002	MW-331-101723	Water	10/17/23 12:05	10/17/23 14:44
50356622003	W-9-101723	Water	10/17/23 12:15	10/17/23 14:44
50356622004	MW-251-101723	Water	10/17/23 12:30	10/17/23 14:44
50356622005	MW-131-101723	Water	10/17/23 13:05	10/17/23 14:44
50356622006	MW-41-101723	Water	10/17/23 13:20	10/17/23 14:44
50356622007	AD-100-101723	Water	10/17/23 12:00	10/17/23 14:44
50356622008	Trip Blank-101723	Water	10/17/23 08:00	10/17/23 14:44

SAMPLE ANALYTE COUNT

Project: GE Indy
Pace Project No.: 50356622

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
50356622001	MW-425-101723	EPA 300.0	ADM	1	PASI-I
		EPA 6010	MTM	1	PASI-I
		EPA 5030/8260	TMW	75	PASI-I
		EPA 353.2	DAW	2	PASI-I
		SM 5310C	ATS	1	PASI-I
50356622002	MW-331-101723	EPA 5030/8260	TMW	75	PASI-I
50356622003	W-9-101723	RSK 175 Modified	JRW	3	PASI-I
		EPA 5030/8260	TMW	75	PASI-I
50356622004	MW-251-101723	EPA 5030/8260	TMW	75	PASI-I
50356622005	MW-131-101723	EPA 5030/8260	TMW	75	PASI-I
50356622006	MW-41-101723	EPA 5030/8260	TMW	75	PASI-I
50356622007	AD-100-101723	EPA 5030/8260	TMW	75	PASI-I
50356622008	Trip Blank-101723	EPA 5030/8260	TMW	75	PASI-I

PASI-I = Pace Analytical Services - Indianapolis

SUMMARY OF DETECTION

Project: GE Indy
Pace Project No.: 50356622

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifier
50356622001	MW-425-101723					
EPA 300.0	Sulfate	2910	ug/L	250	10/28/23 07:47	
EPA 6010	Iron, Dissolved	8200	ug/L	100	11/02/23 11:53	
EPA 5030/8260	Chloroethane	275	ug/L	5.0	10/19/23 09:43	
EPA 5030/8260	1,1-Dichloroethane	21.2	ug/L	5.0	10/19/23 09:43	
EPA 5030/8260	Vinyl chloride	4.7	ug/L	2.0	10/19/23 09:43	
SM 5310C	Total Organic Carbon	35800	ug/L	4000	10/21/23 03:09	
0356622002	MW-331-101723					
EPA 5030/8260	Chloroethane	689	ug/L	50.0	10/19/23 10:44	
0356622003	W-9-101723					
RSK 175 Modified	Ethane	302	ug/L	50.0	10/20/23 10:05	
RSK 175 Modified	Methane	57400	ug/L	50.0	10/20/23 10:05	
EPA 5030/8260	Chloroethane	20.6	ug/L	5.0	10/19/23 08:58	
0356622004	MW-251-101723					
EPA 5030/8260	Chloroethane	1030	ug/L	50.0	10/19/23 09:28	
EPA 5030/8260	1,1-Dichloroethane	123	ug/L	50.0	10/19/23 09:28	
EPA 5030/8260	1,2-Dichloroethane	68.5	ug/L	50.0	10/19/23 09:28	
EPA 5030/8260	cis-1,2-Dichloroethene	17800	ug/L	500	10/19/23 09:58	
EPA 5030/8260	trans-1,2-Dichloroethene	161	ug/L	50.0	10/19/23 09:28	
EPA 5030/8260	Vinyl chloride	2480	ug/L	20.0	10/19/23 09:28	
0356622005	MW-131-101723					
EPA 5030/8260	Chloroform	9.3	ug/L	5.0	10/19/23 10:29	
EPA 5030/8260	1,1-Dichloroethane	14.3	ug/L	5.0	10/19/23 10:29	
EPA 5030/8260	cis-1,2-Dichloroethene	8.8	ug/L	5.0	10/19/23 10:29	
EPA 5030/8260	1,1,1-Trichloroethane	132	ug/L	5.0	10/19/23 10:29	
EPA 5030/8260	Trichloroethene	38.0	ug/L	5.0	10/19/23 10:29	
0356622007	AD-100-101723					
EPA 5030/8260	Chloroethane	284	ug/L	50.0	10/23/23 16:58	
EPA 5030/8260	1,1-Dichloroethane	21.2	ug/L	5.0	10/19/23 13:27	
EPA 5030/8260	Vinyl chloride	4.6	ug/L	2.0	10/19/23 13:27	

Project: GE Indy
Pace Project No.: 50356622

Date: 11/02/2023 03:28 PM

Sample: MW-425-101723	Lab ID:	50356622001	Collected:	10/17/23	3 11:25	Received: 10/	/17/23 14:44 N	latrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	0.00						
	Pace Ana	lytical Services	- Indianapolis	3					
Sulfate	2910	ug/L	250	190	1		10/28/23 07:47	14808-79-8	
6010 MET ICP, Dissolved	Analytical	Method: EPA 6	:010 Prenara	ition Meth	nd: FPA	3010			
outo MET 101, Dissolved	•	lytical Services			Ju. Li 7	10010			
ron, Dissolved	8200	ug/L	100	18.1	1	11/02/23 11:13	11/02/23 11:53	7439-89-6	
·		-		10.1	•	11/02/20 11:10	11/02/20 11:00	7 100 00 0	
3260 MSV Indiana	•	Method: EPA 5 lytical Services		3					
Acetone	ND	ug/L	100	8.6	1		10/19/23 09:43	8 67-64-1	
Acrolein	ND ND	ug/L ug/L	50.0	13.4	1		10/19/23 09:43		
Acrylonitrile	ND ND	ug/L ug/L	100	3.0	1		10/19/23 09:43		
Renzene	ND ND	ug/L	5.0	0.46	1		10/19/23 09:43		
Bromobenzene	ND ND		5.0 5.0	0.46	1		10/19/23 09:43		
Bromochloromethane		ug/L			1				
	ND	ug/L	5.0	0.33			10/19/23 09:43		
Bromodichloromethane	ND	ug/L	5.0	0.29	1		10/19/23 09:43		
Bromoform	ND	ug/L	5.0	0.29	1		10/19/23 09:43		
Bromomethane	ND	ug/L	5.0	0.51	1		10/19/23 09:43		
-Butanone (MEK)	ND	ug/L	25.0	3.3	1		10/19/23 09:43		
-Butylbenzene	ND	ug/L	5.0	0.39	1		10/19/23 09:43		
sec-Butylbenzene	ND	ug/L	5.0	0.36	1		10/19/23 09:43		
ert-Butylbenzene	ND	ug/L	5.0	0.38	1		10/19/23 09:43		
Carbon disulfide	ND	ug/L	10.0	0.62	1		10/19/23 09:43		
Carbon tetrachloride	ND	ug/L	5.0	0.29	1		10/19/23 09:43		
Chlorobenzene	ND	ug/L	5.0	0.35	1		10/19/23 09:43		
Chloroethane	275	ug/L	5.0	0.44	1		10/19/23 09:43	75-00-3	
Chloroform	ND	ug/L	5.0	2.6	1		10/19/23 09:43	67-66-3	
Chloromethane	ND	ug/L	5.0	0.56	1		10/19/23 09:43	3 74-87-3	
2-Chlorotoluene	ND	ug/L	5.0	0.37	1		10/19/23 09:43	95-49-8	
I-Chlorotoluene	ND	ug/L	5.0	0.40	1		10/19/23 09:43	106-43-4	
Dibromochloromethane	ND	ug/L	5.0	0.31	1		10/19/23 09:43	124-48-1	
,2-Dibromoethane (EDB)	ND	ug/L	5.0	0.29	1		10/19/23 09:43	106-93-4	
Dibromomethane	ND	ug/L	5.0	0.46	1		10/19/23 09:43	74-95-3	
1,2-Dichlorobenzene	ND	ug/L	5.0	0.34	1		10/19/23 09:43	95-50-1	
,3-Dichlorobenzene	ND	ug/L	5.0	0.40	1		10/19/23 09:43	541-73-1	
,4-Dichlorobenzene	ND	ug/L	5.0	0.39	1		10/19/23 09:43	106-46-7	
rans-1,4-Dichloro-2-butene	ND	ug/L	100	0.42	1		10/19/23 09:43		
Dichlorodifluoromethane	ND	ug/L	5.0	0.38	1		10/19/23 09:43		
,1-Dichloroethane	21.2	ug/L	5.0	0.37	1		10/19/23 09:43		
,2-Dichloroethane	ND	ug/L	5.0	0.34	1		10/19/23 09:43		
1,1-Dichloroethene	ND	ug/L	5.0	0.37	1		10/19/23 09:43		
cis-1,2-Dichloroethene	ND	ug/L	5.0	0.48	1		10/19/23 09:43		
rans-1,2-Dichloroethene	ND	ug/L	5.0	0.48	1		10/19/23 09:43		
,2-Dichloropropane	ND	ug/L	5.0	0.43	1		10/19/23 09:43		
1,3-Dichloropropane	ND ND	ug/L ug/L	5.0	0.30	1		10/19/23 09:43		
2,2-Dichloropropane	ND ND	ug/L ug/L	5.0 5.0	0.30	1		10/19/23 09:43		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: GE Indy
Pace Project No.: 50356622

Date: 11/02/2023 03:28 PM

Sample: MW-425-101723	Lab ID:	50356622001	Collected:	10/17/23	11:25	Received: 1	0/17/23 14:44	Matrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
B260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	•	lytical Services		6					
1,1-Dichloropropene	ND	ug/L	5.0	0.34	1		10/19/23 09:4	13 563-58-6	
cis-1,3-Dichloropropene	ND	ug/L	5.0	0.31	1			3 10061-01-5	
trans-1,3-Dichloropropene	ND	ug/L	5.0	0.28	1			3 10061-02-6	
Ethylbenzene	ND	ug/L	5.0	0.40	1		10/19/23 09:4		
Ethyl methacrylate	ND	ug/L	100	0.32	1		10/19/23 09:4		
Hexachloro-1,3-butadiene	ND	ug/L	5.0	0.48	1		10/19/23 09:4		
n-Hexane	ND	ug/L	5.0	0.36	1		10/19/23 09:4		
2-Hexanone	ND	ug/L	25.0	2.2	1		10/19/23 09:4		
odomethane	ND	ug/L	10.0	2.0	1		10/19/23 09:4		
sopropylbenzene (Cumene)	ND	ug/L	5.0	0.36	1		10/19/23 09:4		
o-Isopropyltoluene	ND	ug/L	5.0	0.41	1		10/19/23 09:4		
Methylene Chloride	ND	ug/L	5.0	3.7	1		10/19/23 09:4		
1-Methylnaphthalene	ND	ug/L	10.0	2.1	1		10/19/23 09:4		
2-Methylnaphthalene	ND	ug/L	10.0	2.1	1		10/19/23 09:4		
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	2.1	1		10/19/23 09:4		
Methyl-tert-butyl ether	ND	ug/L	4.0	0.66	1			3 1634-04-4	
Naphthalene	ND	ug/L	1.2	0.57	1		10/19/23 09:4		
n-Propylbenzene	ND	ug/L	5.0	0.37	1		10/19/23 09:4		
Styrene	ND	ug/L	5.0	0.39	1		10/19/23 09:4		
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.34	1		10/19/23 09:4		
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.35	1		10/19/23 09:4		
Tetrachloroethene	ND ND	ug/L ug/L	5.0	0.36	1		10/19/23 09:4		
Toluene	ND ND	ug/L ug/L	5.0	0.38	1		10/19/23 09:4		
1,2,3-Trichlorobenzene	ND ND	ug/L ug/L	5.0	0.38	1		10/19/23 09:4		
1,2,4-Trichlorobenzene	ND ND	ug/L ug/L	5.0	0.42	1		10/19/23 09:4		
1,1,1-Trichloroethane	ND ND	-	5.0	0.42	1		10/19/23 09:4		
1,1,2-Trichloroethane	ND ND	ug/L	5.0	0.31	1		10/19/23 09:4		
r, r,z- mchloroethane Frichloroethene	ND ND	ug/L	5.0 5.0	0.33	1		10/19/23 09:4		
		ug/L					10/19/23 09:4		
Trichlorofluoromethane	ND	ug/L	5.0	0.36	1 1		10/19/23 09:4		
I,2,3-Trichloropropane	ND	ug/L	5.0	0.33			10/19/23 09:4		
1,2,4-Trimethylbenzene	ND	ug/L	5.0	0.37	1				
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.38 1.7	1		10/19/23 09:4 10/19/23 09:4		
/inyl ablarida	ND	ug/L	50.0		1				
/inyl chloride	4.7 ND	ug/L	2.0	0.40	1		10/19/23 09:4		
(ylene (Total) Surrogates	ND	ug/L	10.0	1.5	1		10/19/23 09:4	3 1330-20-7	
Dibromofluoromethane (S)	103	%.	82-128		1		10/10/23 00-/	3 1868-53-7	
4-Bromofluorobenzene (S)	103	%. %.	79-124		1		10/19/23 09:4		
Foluene-d8 (S)	99	%. %.	73-124		1			3 2037-26-5	
353.2 Nitrogen, NO2/NO3 unpres	Analytical	Method: EPA 3							
555.2 Miliogen, NO2/NO3 unples	•	lytical Services		3					
Nitrogen, NO2 plus NO3	ND	mg/L	0.50	0.055	5		10/18/23 00:1	4	D3
Nitrogen, Noz pius Nos Nitrogen, Nitrate	ND ND	mg/L	0.50	0.055	5 5			4 14797-55-8	D3

Project: GE Indy
Pace Project No.: 50356622

Date: 11/02/2023 03:28 PM

Sample: MW-425-101723 Lab ID: 50356622001 Collected: 10/17/23 11:25 Received: 10/17/23 14:44 Matrix: Water

Report

Parameters Results Units Limit MDL DF Prepared Analyzed CAS No. Qual

5310C TOC Analytical Method: SM 5310C

Pace Analytical Services - Indianapolis

Total Organic Carbon 35800 ug/L 4000 944 4 10/21/23 03:09 7440-44-0

Project: GE Indy
Pace Project No.: 50356622

Date: 11/02/2023 03:28 PM

Sample: MW-331-101723	Lab ID:	50356622002	Collected:	: 10/17/23	3 12:05	Received: 10	0/17/23 14:44	Matrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	•	ytical Services		S					
Acetone	ND	ug/L	100	8.6	1		10/19/23 10	:14 67-64-1	
Acrolein	ND	ug/L	50.0	13.4	1			14 107-02-8	
Acrylonitrile	ND	ug/L	100	3.0	1			:14 107-13-1	
Benzene	ND	ug/L	5.0	0.46	1			14 71-43-2	
3romobenzene	ND	ug/L	5.0	0.41	1			14 108-86-1	
Bromochloromethane	ND	ug/L	5.0	0.33	1			14 74-97-5	
Bromodichloromethane	ND	ug/L	5.0	0.29	1			14 75-27-4	
Bromoform	ND	ug/L	5.0	0.29	1			14 75-25-2	
Bromomethane	ND	ug/L	5.0	0.51	1		10/19/23 10		
2-Butanone (MEK)	ND ND	ug/L ug/L	25.0	3.3	1			:14 78-93-3	
n-Butylbenzene	ND ND	ug/L ug/L	5.0	0.39	1			:14 104-51-8	
sec-Butylbenzene	ND ND	ug/L ug/L	5.0	0.39	1			:14 135-98-8	
ert-Butylbenzene	ND ND	ug/L ug/L	5.0	0.38	1		10/19/23 10:		
Carbon disulfide	ND ND	ug/L ug/L	10.0	0.62	1		10/19/23 10:		
Carbon tetrachloride	ND ND	ug/L ug/L	5.0	0.02	1			:14	
Chlorobenzene	ND ND	-	5.0	0.29	1			:14 108-90-7	
Chloroethane		ug/L		4.4					
Chloroform	689 ND	ug/L	50.0 5.0	4.4 2.6	10 1			:44 75-00-3 :14 67-66-3	
Chloromethane		ug/L			1				
	ND	ug/L	5.0	0.56	1		10/19/23 10		
2-Chlorotoluene	ND	ug/L	5.0	0.37				14 95-49-8	
4-Chlorotoluene	ND	ug/L	5.0	0.40	1			14 106-43-4	
Dibromochloromethane	ND	ug/L	5.0	0.31	1			14 124-48-1	
1,2-Dibromoethane (EDB)	ND	ug/L	5.0	0.29	1			14 106-93-4	
Dibromomethane	ND	ug/L	5.0	0.46	1		10/19/23 10		
1,2-Dichlorobenzene	ND	ug/L	5.0	0.34	1		10/19/23 10		
1,3-Dichlorobenzene	ND	ug/L	5.0	0.40	1			14 541-73-1	
1,4-Dichlorobenzene	ND	ug/L	5.0	0.39	1			14 106-46-7	
rans-1,4-Dichloro-2-butene	ND	ug/L	100	0.42	1			14 110-57-6	
Dichlorodifluoromethane	ND	ug/L	5.0	0.38	1		10/19/23 10:		
1,1-Dichloroethane	ND	ug/L	5.0	0.37	1			14 75-34-3	
1,2-Dichloroethane	ND	ug/L	5.0	0.34	1			:14 107-06-2	
1,1-Dichloroethene	ND	ug/L	5.0	0.37	1			14 75-35-4	
cis-1,2-Dichloroethene	ND	ug/L	5.0	0.48	1			14 156-59-2	
rans-1,2-Dichloroethene	ND	ug/L	5.0	0.48	1			14 156-60-5	
1,2-Dichloropropane	ND	ug/L	5.0	0.33	1			:14 78-87-5	
1,3-Dichloropropane	ND	ug/L	5.0	0.30	1			14 142-28-9	
2,2-Dichloropropane	ND	ug/L	5.0	0.37	1			:14 594-20-7	
1,1-Dichloropropene	ND	ug/L	5.0	0.34	1			14 563-58-6	
cis-1,3-Dichloropropene	ND	ug/L	5.0	0.31	1			14 10061-01-5	
trans-1,3-Dichloropropene	ND	ug/L	5.0	0.28	1			14 10061-02-6	
Ethylbenzene	ND	ug/L	5.0	0.40	1		10/19/23 10	14 100-41-4	
Ethyl methacrylate	ND	ug/L	100	0.32	1		10/19/23 10	14 97-63-2	
Hexachloro-1,3-butadiene	ND	ug/L	5.0	0.48	1		10/19/23 10	14 87-68-3	
n-Hexane	ND	ug/L	5.0	0.36	1		10/19/23 10	:14 110-54-3	
2-Hexanone	ND	ug/L	25.0	2.2	1		10/19/23 10:	14 591-78-6	

Project: GE Indy
Pace Project No.: 50356622

Date: 11/02/2023 03:28 PM

Sample: MW-331-101723	Lab ID:	50356622002	Collected	: 10/17/23	3 12:05	Received: 10	/17/23 14:44 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Anal	ytical Services	 Indianapoli 	s					
lodomethane	ND	ug/L	10.0	2.0	1		10/19/23 10:14	74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	5.0	0.36	1		10/19/23 10:14	98-82-8	
p-Isopropyltoluene	ND	ug/L	5.0	0.41	1		10/19/23 10:14	99-87-6	
Methylene Chloride	ND	ug/L	5.0	3.7	1		10/19/23 10:14	75-09-2	
1-Methylnaphthalene	ND	ug/L	10.0	2.1	1		10/19/23 10:14	90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	2.1	1		10/19/23 10:14	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	2.1	1		10/19/23 10:14	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	4.0	0.66	1		10/19/23 10:14	1634-04-4	
Naphthalene	ND	ug/L	1.2	0.57	1		10/19/23 10:14	91-20-3	
n-Propylbenzene	ND	ug/L	5.0	0.37	1		10/19/23 10:14	103-65-1	
Styrene	ND	ug/L	5.0	0.39	1		10/19/23 10:14	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.34	1		10/19/23 10:14	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.35	1		10/19/23 10:14	79-34-5	
Tetrachloroethene	ND	ug/L	5.0	0.36	1		10/19/23 10:14	127-18-4	
Toluene	ND	ug/L	5.0	0.38	1		10/19/23 10:14	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	0.42	1		10/19/23 10:14	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	5.0	0.42	1		10/19/23 10:14	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	5.0	0.31	1		10/19/23 10:14	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	5.0	0.33	1		10/19/23 10:14	79-00-5	
Trichloroethene	ND	ug/L	5.0	0.41	1		10/19/23 10:14	79-01-6	
Trichlorofluoromethane	ND	ug/L	5.0	0.36	1		10/19/23 10:14	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	5.0	0.33	1		10/19/23 10:14	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/L	5.0	0.37	1		10/19/23 10:14		
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.38	1		10/19/23 10:14	108-67-8	
Vinyl acetate	ND	ug/L	50.0	1.7	1		10/19/23 10:14		
Vinyl chloride	ND	ug/L	2.0	0.40	1		10/19/23 10:14		
Xylene (Total)	ND	ug/L	10.0	1.5	1		10/19/23 10:14		
Surrogates		- 3 -		-					
Dibromofluoromethane (S)	103	%.	82-128		1		10/19/23 10:14	1868-53-7	
4-Bromofluorobenzene (S)	101	%.	79-124		1		10/19/23 10:14	460-00-4	
Toluene-d8 (S)	100	%.	73-122		1		10/19/23 10:14	2037-26-5	

Project: GE Indy
Pace Project No.: 5035662

Date: 11/02/2023 03:28 PM

Sample: W-9-101723	Lab ID:	50356622003	Collected:	10/17/23	12:15	Received: 10	0/17/23 14:44	Matrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
RSK 175 Headspace	Analytical	Method: RSK 1	75 Modified						
	Pace Ana	lytical Services	- Indianapolis	3					
Ethane	302	ug/L	50.0	19.1	5		10/20/23 10:0)5 74-84-0	
Ethene	ND	ug/L	50.0	35.5	5		10/20/23 10:0		
Methane	57400	ug/L	50.0	27.5	5		10/20/23 10:0		
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Ana	lytical Services	- Indianapolis	3					
Acetone	ND	ug/L	100	6.4	1		10/19/23 08:5	8 67-64-1	
Acrolein	ND	ug/L	50.0	13.7	1		10/19/23 08:5	8 107-02-8	
Acrylonitrile	ND	ug/L	100	1.8	1		10/19/23 08:5		
Benzene	ND	ug/L	5.0	0.44	1		10/19/23 08:5		
Bromobenzene	ND	ug/L	5.0	0.38	1		10/19/23 08:5		
Bromochloromethane	ND	ug/L	5.0	0.37	1		10/19/23 08:5		
Bromodichloromethane	ND	ug/L	5.0	0.29	1		10/19/23 08:5		
Bromoform	ND	ug/L	5.0	0.32	1		10/19/23 08:5		
Bromomethane	ND	ug/L	5.0	1.8	1		10/19/23 08:5		
2-Butanone (MEK)	ND	ug/L	25.0	3.6	1		10/19/23 08:5		
n-Butylbenzene	ND	ug/L	5.0	0.39	1		10/19/23 08:5		
sec-Butylbenzene	ND	ug/L	5.0	0.35	1		10/19/23 08:5		
ert-Butylbenzene	ND	ug/L	5.0	0.36	1		10/19/23 08:5		
Carbon disulfide	ND	ug/L	10.0	0.40	1		10/19/23 08:5		
Carbon tetrachloride	ND ND	-	5.0	1.6	1		10/19/23 08:5		
Chlorobenzene		ug/L			1				
	ND	ug/L	5.0	0.32	1		10/19/23 08:5		
Chloroethane	20.6	ug/L	5.0	0.87			10/19/23 08:5		
Chloroform	ND	ug/L	5.0	2.6	1		10/19/23 08:5		
Chloromethane	ND	ug/L	5.0	0.42	1		10/19/23 08:5		
2-Chlorotoluene	ND	ug/L	5.0	0.34	1		10/19/23 08:5		
4-Chlorotoluene	ND	ug/L	5.0	0.38	1		10/19/23 08:5		
Dibromochloromethane	ND	ug/L	5.0	0.27	1		10/19/23 08:5		
1,2-Dibromoethane (EDB)	ND	ug/L	5.0	0.33	1		10/19/23 08:5		
Dibromomethane	ND	ug/L	5.0	0.42	1		10/19/23 08:5		
1,2-Dichlorobenzene	ND	ug/L	5.0	0.36	1		10/19/23 08:5		
1,3-Dichlorobenzene	ND	ug/L	5.0	0.36	1		10/19/23 08:5		
1,4-Dichlorobenzene	ND	ug/L	5.0	0.35	1		10/19/23 08:5		
rans-1,4-Dichloro-2-butene	ND	ug/L	100	0.41	1		10/19/23 08:5		
Dichlorodifluoromethane	ND	ug/L	5.0	0.37	1		10/19/23 08:5		
1,1-Dichloroethane	ND	ug/L	5.0	0.31	1		10/19/23 08:5	8 75-34-3	
1,2-Dichloroethane	ND	ug/L	5.0	0.29	1		10/19/23 08:5	8 107-06-2	
1,1-Dichloroethene	ND	ug/L	5.0	0.27	1		10/19/23 08:5		
cis-1,2-Dichloroethene	ND	ug/L	5.0	0.34	1		10/19/23 08:5	8 156-59-2	
rans-1,2-Dichloroethene	ND	ug/L	5.0	0.37	1		10/19/23 08:5	8 156-60-5	
1,2-Dichloropropane	ND	ug/L	5.0	0.40	1		10/19/23 08:5	8 78-87-5	
1,3-Dichloropropane	ND	ug/L	5.0	0.29	1		10/19/23 08:5	8 142-28-9	
2,2-Dichloropropane	ND	ug/L	5.0	0.33	1		10/19/23 08:5	8 594-20-7	
1,1-Dichloropropene	ND	ug/L	5.0	0.37	1		10/19/23 08:5	58 563-58-6	
cis-1,3-Dichloropropene	ND	ug/L	5.0	0.37	1		10/19/23 08:5	8 10061-01-5	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: GE Indy
Pace Project No.: 50356622

Date: 11/02/2023 03:28 PM

Sample: W-9-101723	Lab ID: 5	0356622003	Collecte	d: 10/17/23	12:15	Received: 10	0/17/23 14:44	Matrix: Water	
_			Report						
Parameters	Results —	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical M	ethod: EPA 5	030/8260						
	Pace Analyt	ical Services	- Indianapo	lis					
trans-1,3-Dichloropropene	ND	ug/L	5.0	0.29	1		10/19/23 08:5	8 10061-02-6	
Ethylbenzene	ND	ug/L	5.0	0.86	1		10/19/23 08:5	8 100-41-4	
Ethyl methacrylate	ND	ug/L	100	0.38	1		10/19/23 08:5	8 97-63-2	
Hexachloro-1,3-butadiene	ND	ug/L	5.0	0.50	1		10/19/23 08:5	87-68-3	
n-Hexane	ND	ug/L	5.0	0.39	1		10/19/23 08:5	8 110-54-3	
2-Hexanone	ND	ug/L	25.0	2.0	1		10/19/23 08:5	58 591-78-6	
lodomethane	ND	ug/L	10.0	1.9	1		10/19/23 08:5	8 74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	5.0	0.34	1		10/19/23 08:5	8 98-82-8	
p-Isopropyltoluene	ND	ug/L	5.0	0.40	1		10/19/23 08:5	8 99-87-6	
Methylene Chloride	ND	ug/L	5.0	3.7	1		10/19/23 08:5	8 75-09-2	
1-Methylnaphthalene	ND	ug/L	10.0	1.6	1		10/19/23 08:5	8 90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	2.0	1		10/19/23 08:5	8 91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	2.0	1		10/19/23 08:5	8 108-10-1	
Methyl-tert-butyl ether	ND	ug/L	4.0	0.31	1		10/19/23 08:5	8 1634-04-4	
Naphthalene	ND	ug/L	1.2	0.43	1		10/19/23 08:5	8 91-20-3	
n-Propylbenzene	ND	ug/L	5.0	0.34	1		10/19/23 08:5	8 103-65-1	
Styrene	ND	ug/L	5.0	0.36	1		10/19/23 08:5		
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.36	1		10/19/23 08:5		
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.33	1		10/19/23 08:5	8 79-34-5	
Tetrachloroethene	ND	ug/L	5.0	0.35	1		10/19/23 08:5		
Toluene	ND	ug/L	5.0	0.38	1		10/19/23 08:5		
1,2,3-Trichlorobenzene	ND	ug/L	5.0	0.45	1		10/19/23 08:5		
1,2,4-Trichlorobenzene	ND	ug/L	5.0	0.43	1		10/19/23 08:5		
1,1,1-Trichloroethane	ND	ug/L	5.0	0.30	1		10/19/23 08:5		
1,1,2-Trichloroethane	ND	ug/L	5.0	0.36	1		10/19/23 08:5		
Trichloroethene	ND	ug/L	5.0	0.31	1		10/19/23 08:5		
Trichlorofluoromethane	ND	ug/L	5.0	0.34	1		10/19/23 08:5		
1,2,3-Trichloropropane	ND	ug/L	5.0	0.40	1		10/19/23 08:5		
1,2,4-Trimethylbenzene	ND	ug/L	5.0	0.37	1		10/19/23 08:5		
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.35	1		10/19/23 08:5		
Vinyl acetate	ND	ug/L	50.0	2.3	1		10/19/23 08:5		
Vinyl chloride	ND	ug/L ug/L	2.0	0.35	1		10/19/23 08:5		
Xylene (Total)	ND	ug/L ug/L	10.0	2.2	1			58 1330-20-7	
Surrogates	ND	ug/L	10.0	۷.۷	'		10/10/20 00.0	7000-20-7	
Dibromofluoromethane (S)	102	%.	82-128		1		10/19/23 08·5	8 1868-53-7	
4-Bromofluorobenzene (S)	102	%.	79-124		1		10/19/23 08:5		
Toluene-d8 (S)	98	%.	73-12-		1			58 2037-26-5	

Project: GE Indy
Pace Project No.: 50356622

Date: 11/02/2023 03:28 PM

Sample: MW-251-101723	Lab ID:	50356622004	Collected:	10/17/23	3 12:30	Received: 10	0/17/23 14:44	Matrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	•	ytical Services		S					
Acetone	ND	ug/L	1000	64.1	10		10/19/23 09:	28 67-64-1	
Acrolein	ND	ug/L	500	137	10			28 107-02-8	
Acrylonitrile	ND ND	ug/L ug/L	1000	18.3	10			28 107-02-0	
Benzene	ND ND	ug/L ug/L	50.0	4.4	10			28 71-43-2	
Bromobenzene	ND ND	ug/L ug/L	50.0	3.8	10			28 108-86-1	
Bromochloromethane	ND ND	-	50.0	3.7	10			28 74-97-5	
		ug/L		2.9					
Bromodichloromethane	ND	ug/L	50.0		10			28 75-27-4	
Bromoform	ND	ug/L	50.0	3.2	10		10/19/23 09:		
Bromomethane	ND	ug/L	50.0	17.5	10		10/19/23 09:		
2-Butanone (MEK)	ND	ug/L	250	36.3	10		10/19/23 09:		
n-Butylbenzene	ND	ug/L	50.0	3.9	10			28 104-51-8	
sec-Butylbenzene	ND	ug/L	50.0	3.5	10			28 135-98-8	
ert-Butylbenzene	ND	ug/L	50.0	3.6	10		10/19/23 09:		
Carbon disulfide	ND	ug/L	100	4.0	10		10/19/23 09:		
Carbon tetrachloride	ND	ug/L	50.0	15.9	10		10/19/23 09:		
Chlorobenzene	ND	ug/L	50.0	3.2	10		10/19/23 09:	28 108-90-7	
Chloroethane	1030	ug/L	50.0	8.7	10			28 75-00-3	
Chloroform	ND	ug/L	50.0	26.0	10		10/19/23 09:	28 67-66-3	
Chloromethane	ND	ug/L	50.0	4.2	10		10/19/23 09:	28 74-87-3	
2-Chlorotoluene	ND	ug/L	50.0	3.4	10		10/19/23 09:	28 95-49-8	
1-Chlorotoluene	ND	ug/L	50.0	3.8	10		10/19/23 09:	28 106-43-4	
Dibromochloromethane	ND	ug/L	50.0	2.7	10		10/19/23 09:	28 124-48-1	
,2-Dibromoethane (EDB)	ND	ug/L	50.0	3.3	10		10/19/23 09:	28 106-93-4	
Dibromomethane	ND	ug/L	50.0	4.2	10		10/19/23 09:	28 74-95-3	
1,2-Dichlorobenzene	ND	ug/L	50.0	3.6	10		10/19/23 09:	28 95-50-1	
1,3-Dichlorobenzene	ND	ug/L	50.0	3.6	10		10/19/23 09:	28 541-73-1	
,4-Dichlorobenzene	ND	ug/L	50.0	3.5	10		10/19/23 09:	28 106-46-7	
rans-1,4-Dichloro-2-butene	ND	ug/L	1000	4.1	10			28 110-57-6	
Dichlorodifluoromethane	ND	ug/L	50.0	3.7	10		10/19/23 09:		
1,1-Dichloroethane	123	ug/L	50.0	3.1	10		10/19/23 09:		
1,2-Dichloroethane	68.5	ug/L	50.0	2.9	10			28 107-06-2	
1,1-Dichloroethene	ND	ug/L	50.0	2.7	10			28 75-35-4	
cis-1,2-Dichloroethene	17800	ug/L	500	33.9	100			:58 156-59-2	
rans-1,2-Dichloroethene	161		50.0	3.7	100		10/19/23 09:		
1,2-Dichloropropane	ND	ug/L ug/L	50.0	4.0	10			28 78-87-5	
1,3-Dichloropropane	ND ND	-	50.0	2.9	10			28 142-28-9	
· '		ug/L							
2,2-Dichloropropane	ND	ug/L	50.0	3.3	10			28 594-20-7	
1,1-Dichloropropene	ND	ug/L	50.0	3.7	10			28 563-58-6	
cis-1,3-Dichloropropene	ND	ug/L	50.0	3.7	10			28 10061-01-5	
trans-1,3-Dichloropropene	ND	ug/L	50.0	2.9	10			28 10061-02-6	
Ethylbenzene	ND	ug/L	50.0	8.6	10			28 100-41-4	
Ethyl methacrylate	ND	ug/L	1000	3.8	10			28 97-63-2	
Hexachloro-1,3-butadiene	ND	ug/L	50.0	5.0	10			28 87-68-3	
n-Hexane	ND	ug/L	50.0	3.9	10			28 110-54-3	
2-Hexanone	ND	ug/L	250	20.5	10		10/19/23 09:	28 591-78-6	

Project: GE Indy
Pace Project No.: 50356622

Date: 11/02/2023 03:28 PM

Sample: MW-251-101723	Lab ID:	50356622004	Collected:	10/17/23	3 12:30	Received: 10	/17/23 14:44 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Ana	lytical Services	- Indianapoli	s					
lodomethane	ND	ug/L	100	19.1	10		10/19/23 09:28	74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	50.0	3.4	10		10/19/23 09:28	98-82-8	
p-Isopropyltoluene	ND	ug/L	50.0	4.0	10		10/19/23 09:28	99-87-6	
Methylene Chloride	ND	ug/L	50.0	37.0	10		10/19/23 09:28	75-09-2	
1-Methylnaphthalene	ND	ug/L	100	16.0	10		10/19/23 09:28	90-12-0	
2-Methylnaphthalene	ND	ug/L	100	20.0	10		10/19/23 09:28	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	250	19.7	10		10/19/23 09:28	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	40.0	3.1	10		10/19/23 09:28	1634-04-4	
Naphthalene	ND	ug/L	12.0	4.3	10		10/19/23 09:28	91-20-3	
n-Propylbenzene	ND	ug/L	50.0	3.4	10		10/19/23 09:28	103-65-1	
Styrene	ND	ug/L	50.0	3.6	10		10/19/23 09:28	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	50.0	3.6	10		10/19/23 09:28	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	50.0	3.3	10		10/19/23 09:28	79-34-5	
Tetrachloroethene	ND	ug/L	50.0	3.5	10		10/19/23 09:28	127-18-4	
Toluene	ND	ug/L	50.0	3.8	10		10/19/23 09:28	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	50.0	4.5	10		10/19/23 09:28	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	50.0	4.3	10		10/19/23 09:28	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	50.0	3.0	10		10/19/23 09:28		
1,1,2-Trichloroethane	ND	ug/L	50.0	3.6	10		10/19/23 09:28		
Trichloroethene	ND	ug/L	50.0	3.1	10		10/19/23 09:28	79-01-6	
Trichlorofluoromethane	ND	ug/L	50.0	3.4	10		10/19/23 09:28		
1,2,3-Trichloropropane	ND	ug/L	50.0	4.0	10		10/19/23 09:28		
1,2,4-Trimethylbenzene	ND	ug/L	50.0	3.7	10		10/19/23 09:28	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	50.0	3.5	10		10/19/23 09:28	108-67-8	
Vinyl acetate	ND	ug/L	500	22.7	10		10/19/23 09:28		
Vinyl chloride	2480	ug/L	20.0	3.5	10		10/19/23 09:28		
Xylene (Total)	ND	ug/L	100	22.0	10		10/19/23 09:28		
Surrogates		- 3			-				
Dibromofluoromethane (S)	102	%.	82-128		10		10/19/23 09:28	1868-53-7	
4-Bromofluorobenzene (S)	102	%.	79-124		10		10/19/23 09:28	460-00-4	
Toluene-d8 (S)	98	%.	73-122		10		10/19/23 09:28	2037-26-5	

Project: GE Indy
Pace Project No.: 50356622

Date: 11/02/2023 03:28 PM

Sample: MW-131-101723	Lab ID:	50356622005	Collected:	10/17/23	13:05	Received: 10	0/17/23 14:44	Matrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	•	ytical Services		S					
Acetone	ND	ug/L	100	6.4	1		10/19/23 10:	29 67-64-1	
Acrolein	ND	ug/L	50.0	13.7	1		10/19/23 10:	29 107-02-8	
Acrylonitrile	ND	ug/L	100	1.8	1		10/19/23 10:	29 107-13-1	
Benzene	ND	ug/L	5.0	0.44	1		10/19/23 10:		
Bromobenzene	ND	ug/L	5.0	0.38	1			29 108-86-1	
Bromochloromethane	ND	ug/L	5.0	0.37	1		10/19/23 10:		
Bromodichloromethane	ND	ug/L	5.0	0.29	1		10/19/23 10:		
Bromoform	ND	ug/L	5.0	0.32	1		10/19/23 10:		
Bromomethane	ND	ug/L	5.0	1.8	1		10/19/23 10:		
2-Butanone (MEK)	ND	ug/L	25.0	3.6	1		10/19/23 10:		
n-Butylbenzene	ND ND	ug/L ug/L	5.0	0.39	1			29 104-51-8	
sec-Butylbenzene	ND	ug/L	5.0	0.35	1			29 135-98-8	
ert-Butylbenzene	ND	ug/L	5.0	0.36	1		10/19/23 10:		
Carbon disulfide	ND	ug/L	10.0	0.40	1		10/19/23 10:		
Carbon tetrachloride	ND ND	ug/L ug/L	5.0	1.6	1		10/19/23 10:		
Chlorobenzene	ND ND	ug/L ug/L	5.0	0.32	1			29 108-90-7	
Chloroethane	ND ND	ug/L ug/L	5.0	0.32	1		10/19/23 10:		
Chloroform	9.3	ug/L ug/L	5.0	2.6	1		10/19/23 10:		
Chloromethane	9.3 ND	ug/L ug/L	5.0	0.42	1		10/19/23 10:		
2-Chlorotoluene	ND ND	-	5.0	0.42	1		10/19/23 10:		
4-Chlorotoluene	ND ND	ug/L	5.0	0.34	1			29 106-43-4	
Dibromochloromethane	ND ND	ug/L	5.0	0.36	1			29 124-48-1	
	ND ND	ug/L	5.0	0.27	1			29 106-93-4	
1,2-Dibromoethane (EDB)		ug/L			1				
Dibromomethane	ND	ug/L	5.0	0.42	1		10/19/23 10:		
1,2-Dichlorobenzene	ND	ug/L	5.0	0.36			10/19/23 10:		
1,3-Dichlorobenzene	ND	ug/L	5.0	0.36	1			29 541-73-1	
1,4-Dichlorobenzene	ND	ug/L	5.0	0.35	1 1			29 106-46-7	
rans-1,4-Dichloro-2-butene	ND	ug/L	100	0.41				29 110-57-6	
Dichlorodifluoromethane	ND	ug/L	5.0	0.37	1		10/19/23 10:		
1,1-Dichloroethane	14.3	ug/L	5.0	0.31	1		10/19/23 10:		
1,2-Dichloroethane	ND	ug/L	5.0	0.29	1			29 107-06-2	
I,1-Dichloroethene	ND	ug/L	5.0	0.27	1		10/19/23 10:		
cis-1,2-Dichloroethene	8.8	ug/L	5.0	0.34	1			29 156-59-2	
rans-1,2-Dichloroethene	ND	ug/L	5.0	0.37	1		10/19/23 10:		
I,2-Dichloropropane	ND	ug/L	5.0	0.40	1		10/19/23 10:		
,3-Dichloropropane	ND	ug/L	5.0	0.29	1			29 142-28-9	
2,2-Dichloropropane	ND	ug/L	5.0	0.33	1			29 594-20-7	
1,1-Dichloropropene	ND	ug/L	5.0	0.37	1			29 563-58-6	
cis-1,3-Dichloropropene	ND	ug/L	5.0	0.37	1			29 10061-01-5	
rans-1,3-Dichloropropene	ND	ug/L	5.0	0.29	1			29 10061-02-6	
Ethylbenzene	ND	ug/L	5.0	0.86	1		10/19/23 10:	29 100-41-4	
Ethyl methacrylate	ND	ug/L	100	0.38	1			29 97-63-2	
Hexachloro-1,3-butadiene	ND	ug/L	5.0	0.50	1		10/19/23 10:	29 87-68-3	
n-Hexane	ND	ug/L	5.0	0.39	1		10/19/23 10:	29 110-54-3	
2-Hexanone	ND	ug/L	25.0	2.0	1		10/19/23 10:	29 591-78-6	

Project: GE Indy
Pace Project No.: 50356622

Date: 11/02/2023 03:28 PM

Sample: MW-131-101723	Lab ID:	50356622005	Collected:	10/17/23	3 13:05	Received: 10	/17/23 14:44 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
3260 MSV Indiana	Analytical	Method: EPA	5030/8260						
	Pace Ana	lytical Services	- Indianapolis	S					
lodomethane	ND	ug/L	10.0	1.9	1		10/19/23 10:29	74-88-4	
sopropylbenzene (Cumene)	ND	ug/L	5.0	0.34	1		10/19/23 10:29	98-82-8	
p-Isopropyltoluene	ND	ug/L	5.0	0.40	1		10/19/23 10:29	99-87-6	
Methylene Chloride	ND	ug/L	5.0	3.7	1		10/19/23 10:29	75-09-2	
1-Methylnaphthalene	ND	ug/L	10.0	1.6	1		10/19/23 10:29	90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	2.0	1		10/19/23 10:29	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	2.0	1		10/19/23 10:29	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	4.0	0.31	1		10/19/23 10:29	1634-04-4	
Naphthalene	ND	ug/L	1.2	0.43	1		10/19/23 10:29	91-20-3	
n-Propylbenzene	ND	ug/L	5.0	0.34	1		10/19/23 10:29	103-65-1	
Styrene	ND	ug/L	5.0	0.36	1		10/19/23 10:29	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.36	1		10/19/23 10:29	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.33	1		10/19/23 10:29	79-34-5	
Tetrachloroethene	ND	ug/L	5.0	0.35	1		10/19/23 10:29	127-18-4	
Toluene	ND	ug/L	5.0	0.38	1		10/19/23 10:29	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	0.45	1		10/19/23 10:29	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	5.0	0.43	1		10/19/23 10:29	120-82-1	
1,1,1-Trichloroethane	132	ug/L	5.0	0.30	1		10/19/23 10:29	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	5.0	0.36	1		10/19/23 10:29	79-00-5	
Trichloroethene	38.0	ug/L	5.0	0.31	1		10/19/23 10:29	79-01-6	
Trichlorofluoromethane	ND	ug/L	5.0	0.34	1		10/19/23 10:29	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	5.0	0.40	1		10/19/23 10:29	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/L	5.0	0.37	1		10/19/23 10:29	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.35	1		10/19/23 10:29	108-67-8	
Vinyl acetate	ND	ug/L	50.0	2.3	1		10/19/23 10:29	108-05-4	
Vinyl chloride	ND	ug/L	2.0	0.35	1		10/19/23 10:29	75-01-4	
Xylene (Total)	ND	ug/L	10.0	2.2	1		10/19/23 10:29	1330-20-7	
Surrogates									
Dibromofluoromethane (S)	104	%.	82-128		1		10/19/23 10:29		
4-Bromofluorobenzene (S)	102	%.	79-124		1		10/19/23 10:29	460-00-4	
Toluene-d8 (S)	99	%.	73-122		1		10/19/23 10:29	2037-26-5	

Project: GE Indy
Pace Project No.: 50356622

Date: 11/02/2023 03:28 PM

Sample: MW-41-101723	Lab ID:	50356622006	Collected:	10/17/23	3 13:20	Received: 10	0/17/23 14:44	Matrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	•	ytical Services		3					
Acetone	ND	ug/L	100	6.4	1		10/19/23 10	:59 67-64-1	
Acrolein	ND	ug/L	50.0	13.7	1		10/19/23 10	59 107-02-8	
Acrylonitrile	ND	ug/L	100	1.8	1		10/19/23 10:	59 107-13-1	
Benzene	ND	ug/L	5.0	0.44	1		10/19/23 10:	59 71-43-2	
Bromobenzene	ND	ug/L	5.0	0.38	1			59 108-86-1	
Bromochloromethane	ND	ug/L	5.0	0.37	1			59 74-97-5	
Bromodichloromethane	ND	ug/L	5.0	0.29	1			59 75-27-4	
Bromoform	ND	ug/L	5.0	0.32	1			59 75-25-2	
Bromomethane	ND	ug/L	5.0	1.8	1		10/19/23 10		
2-Butanone (MEK)	ND	ug/L	25.0	3.6	1			:59 78-93-3	
n-Butylbenzene	ND ND	ug/L	5.0	0.39	1			59 104-51-8	
sec-Butylbenzene	ND	ug/L	5.0	0.35	1			:59 135-98-8	
ert-Butylbenzene	ND	ug/L	5.0	0.36	1			:59 98-06-6	
Carbon disulfide	ND	ug/L	10.0	0.40	1			:59 75-15-0	
Carbon tetrachloride	ND ND	ug/L	5.0	1.6	1			:59 56-23-5	
Chlorobenzene	ND ND	ug/L ug/L	5.0	0.32	1			:59 108-90-7	
Chloroethane	ND ND	_	5.0	0.32	1			:59 75-00-3	
Chloroform	ND ND	ug/L	5.0	2.6	1			:59 67-66-3	
Chloromethane		ug/L			1				
	ND	ug/L	5.0	0.42	1			59 74-87-3	
2-Chlorotoluene	ND	ug/L	5.0	0.34			10/19/23 10		
4-Chlorotoluene	ND	ug/L	5.0	0.38	1			59 106-43-4	
Dibromochloromethane	ND	ug/L	5.0	0.27	1			59 124-48-1	
1,2-Dibromoethane (EDB)	ND	ug/L	5.0	0.33	1			59 106-93-4	
Dibromomethane	ND	ug/L	5.0	0.42	1			59 74-95-3	
1,2-Dichlorobenzene	ND	ug/L	5.0	0.36	1		10/19/23 10		
1,3-Dichlorobenzene	ND	ug/L	5.0	0.36	1			:59 541-73-1	
1,4-Dichlorobenzene	ND	ug/L	5.0	0.35	1			:59 106-46-7	
rans-1,4-Dichloro-2-butene	ND	ug/L	100	0.41	1			:59 110-57-6	
Dichlorodifluoromethane	ND	ug/L	5.0	0.37	1			59 75-71-8	
1,1-Dichloroethane	ND	ug/L	5.0	0.31	1			59 75-34-3	
1,2-Dichloroethane	ND	ug/L	5.0	0.29	1			59 107-06-2	
I,1-Dichloroethene	ND	ug/L	5.0	0.27	1		10/19/23 10	59 75-35-4	
cis-1,2-Dichloroethene	ND	ug/L	5.0	0.34	1			59 156-59-2	
rans-1,2-Dichloroethene	ND	ug/L	5.0	0.37	1		10/19/23 10:	:59 156-60-5	
1,2-Dichloropropane	ND	ug/L	5.0	0.40	1		10/19/23 10	:59 78-87-5	
1,3-Dichloropropane	ND	ug/L	5.0	0.29	1		10/19/23 10	:59 142-28-9	
2,2-Dichloropropane	ND	ug/L	5.0	0.33	1		10/19/23 10	59 594-20-7	
,1-Dichloropropene	ND	ug/L	5.0	0.37	1		10/19/23 10	59 563-58-6	
cis-1,3-Dichloropropene	ND	ug/L	5.0	0.37	1		10/19/23 10	59 10061-01-5	
rans-1,3-Dichloropropene	ND	ug/L	5.0	0.29	1		10/19/23 10	:59 10061-02-6	
Ethylbenzene	ND	ug/L	5.0	0.86	1		10/19/23 10:	:59 100-41-4	
Ethyl methacrylate	ND	ug/L	100	0.38	1			59 97-63-2	
Hexachloro-1,3-butadiene	ND	ug/L	5.0	0.50	1			59 87-68-3	
n-Hexane	ND	ug/L	5.0	0.39	1			59 110-54-3	
2-Hexanone	ND	ug/L	25.0	2.0	1			:59 591-78-6	

Project: GE Indy
Pace Project No.: 50356622

Date: 11/02/2023 03:28 PM

Sample: MW-41-101723	Lab ID:	50356622006	Collecte	d: 10/17/23	3 13:20	Received: 10)/17/23 14:44 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Ana	lytical Services	- Indianapo	lis					
lodomethane	ND	ug/L	10.0	1.9	1		10/19/23 10:59	74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	5.0	0.34	1		10/19/23 10:59	98-82-8	
p-Isopropyltoluene	ND	ug/L	5.0	0.40	1		10/19/23 10:59	99-87-6	
Methylene Chloride	ND	ug/L	5.0	3.7	1		10/19/23 10:59	75-09-2	
1-Methylnaphthalene	ND	ug/L	10.0	1.6	1		10/19/23 10:59	90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	2.0	1		10/19/23 10:59	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	2.0	1		10/19/23 10:59	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	4.0	0.31	1		10/19/23 10:59	1634-04-4	
Naphthalene	ND	ug/L	1.2	0.43	1		10/19/23 10:59	91-20-3	
n-Propylbenzene	ND	ug/L	5.0	0.34	1		10/19/23 10:59	103-65-1	
Styrene	ND	ug/L	5.0	0.36	1		10/19/23 10:59	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.36	1		10/19/23 10:59	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.33	1		10/19/23 10:59	79-34-5	
Tetrachloroethene	ND	ug/L	5.0	0.35	1		10/19/23 10:59	127-18-4	
Toluene	ND	ug/L	5.0	0.38	1		10/19/23 10:59	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	0.45	1		10/19/23 10:59	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	5.0	0.43	1		10/19/23 10:59	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	5.0	0.30	1		10/19/23 10:59	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	5.0	0.36	1		10/19/23 10:59	79-00-5	
Trichloroethene	ND	ug/L	5.0	0.31	1		10/19/23 10:59	79-01-6	
Trichlorofluoromethane	ND	ug/L	5.0	0.34	1		10/19/23 10:59		
1,2,3-Trichloropropane	ND	ug/L	5.0	0.40	1		10/19/23 10:59	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/L	5.0	0.37	1		10/19/23 10:59	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.35	1		10/19/23 10:59	108-67-8	
Vinyl acetate	ND	ug/L	50.0	2.3	1		10/19/23 10:59		
Vinyl chloride	ND	ug/L	2.0	0.35	1		10/19/23 10:59		
Xylene (Total)	ND	ug/L	10.0	2.2	1		10/19/23 10:59		
Surrogates		- 3							
Dibromofluoromethane (S)	104	%.	82-128		1		10/19/23 10:59	1868-53-7	
4-Bromofluorobenzene (S)	103	%.	79-124		1		10/19/23 10:59	460-00-4	
Toluene-d8 (S)	98	%.	73-122		1		10/19/23 10:59	2037-26-5	

Project: GE Indy
Pace Project No.: 50356622

Date: 11/02/2023 03:28 PM

Sample: AD-100-101723	Lab ID:	50356622007	Collected	10/17/23	12:00	Received: 10	/17/23 14:44 N	fatrix: Water	
			Report						
Parameters	Results -	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	-	lytical Services		S					
Acetone	ND	ug/L	100	8.6	1		10/19/23 13:27	7 67-64-1	
Acrolein	ND	ug/L	50.0	13.4	1		10/19/23 13:27	7 107-02-8	
Acrylonitrile	ND	ug/L	100	3.0	1		10/19/23 13:27	7 107-13-1	
Benzene	ND	ug/L	5.0	0.46	1		10/19/23 13:27	7 71-43-2	
Bromobenzene	ND	ug/L	5.0	0.41	1		10/19/23 13:27	7 108-86-1	
Bromochloromethane	ND	ug/L	5.0	0.33	1		10/19/23 13:27		
Bromodichloromethane	ND	ug/L	5.0	0.29	1		10/19/23 13:27		
Bromoform	ND	ug/L	5.0	0.29	1		10/19/23 13:27		
Bromomethane	ND	ug/L	5.0	0.51	1		10/19/23 13:27		
2-Butanone (MEK)	ND ND	ug/L	25.0	3.3	1		10/19/23 13:27		
n-Butylbenzene	ND ND	ug/L	5.0	0.39	1		10/19/23 13:27		
sec-Butylbenzene	ND ND	ug/L	5.0	0.36	1		10/19/23 13:27		
ert-Butylbenzene	ND ND	ug/L ug/L	5.0	0.38	1		10/19/23 13:27		
Carbon disulfide	ND ND	_	10.0	0.62	1		10/19/23 13:27		
		ug/L							
Carbon tetrachloride	ND	ug/L	5.0	0.29	1		10/19/23 13:27		
Chlorobenzene	ND	ug/L	5.0	0.35	1		10/19/23 13:27		
Chloroethane	284	ug/L	50.0	4.4	10		10/23/23 16:58		
Chloroform	ND	ug/L	5.0	2.6	1		10/19/23 13:27		
Chloromethane	ND	ug/L	5.0	0.56	1		10/19/23 13:27		
2-Chlorotoluene	ND	ug/L	5.0	0.37	1		10/19/23 13:27		
1-Chlorotoluene	ND	ug/L	5.0	0.40	1		10/19/23 13:27		
Dibromochloromethane	ND	ug/L	5.0	0.31	1		10/19/23 13:27		
1,2-Dibromoethane (EDB)	ND	ug/L	5.0	0.29	1		10/19/23 13:27		
Dibromomethane	ND	ug/L	5.0	0.46	1		10/19/23 13:27	7 74-95-3	
1,2-Dichlorobenzene	ND	ug/L	5.0	0.34	1		10/19/23 13:27	7 95-50-1	
1,3-Dichlorobenzene	ND	ug/L	5.0	0.40	1		10/19/23 13:27	7 541-73-1	
1,4-Dichlorobenzene	ND	ug/L	5.0	0.39	1		10/19/23 13:27	7 106-46-7	
rans-1,4-Dichloro-2-butene	ND	ug/L	100	0.42	1		10/19/23 13:27	7 110-57-6	
Dichlorodifluoromethane	ND	ug/L	5.0	0.38	1		10/19/23 13:27	7 75-71-8	
1,1-Dichloroethane	21.2	ug/L	5.0	0.37	1		10/19/23 13:27	75-34-3	
1,2-Dichloroethane	ND	ug/L	5.0	0.34	1		10/19/23 13:27	7 107-06-2	
1,1-Dichloroethene	ND	ug/L	5.0	0.37	1		10/19/23 13:27	7 75-35-4	
cis-1,2-Dichloroethene	ND	ug/L	5.0	0.48	1		10/19/23 13:27	7 156-59-2	
rans-1,2-Dichloroethene	ND	ug/L	5.0	0.48	1		10/19/23 13:27	7 156-60-5	
,2-Dichloropropane	ND	ug/L	5.0	0.33	1		10/19/23 13:27	7 78-87-5	
,3-Dichloropropane	ND	ug/L	5.0	0.30	1		10/19/23 13:27	7 142-28-9	
2,2-Dichloropropane	ND	ug/L	5.0	0.37	1		10/19/23 13:27		
I,1-Dichloropropene	ND	ug/L	5.0	0.34	1		10/19/23 13:27		
cis-1,3-Dichloropropene	ND	ug/L	5.0	0.31	1		10/19/23 13:27		
trans-1,3-Dichloropropene	ND	ug/L	5.0	0.28	1		10/19/23 13:27		
Ethylbenzene	ND	ug/L	5.0	0.40	1		10/19/23 13:27		
Ethyl methacrylate	ND	ug/L	100	0.32	1		10/19/23 13:27		
Hexachloro-1,3-butadiene	ND ND	ug/L	5.0	0.32	1		10/19/23 13:27		
n-Hexane	ND ND	ug/L ug/L	5.0	0.46	1		10/19/23 13:27		
1-Hexanie 2-Hexanone	ND ND	ug/L ug/L	25.0	2.2	1		10/19/23 13:27		

Project: GE Indy
Pace Project No.: 50356622

Date: 11/02/2023 03:28 PM

Sample: AD-100-101723	Lab ID:	50356622007	Collected:	10/17/23	3 12:00	Received: 10	/17/23 14:44 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Ana	lytical Services	- Indianapoli	s					
lodomethane	ND	ug/L	10.0	2.0	1		10/19/23 13:27	74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	5.0	0.36	1		10/19/23 13:27	98-82-8	
p-Isopropyltoluene	ND	ug/L	5.0	0.41	1		10/19/23 13:27	99-87-6	
Methylene Chloride	ND	ug/L	5.0	3.7	1		10/19/23 13:27	75-09-2	
1-Methylnaphthalene	ND	ug/L	10.0	2.1	1		10/19/23 13:27	90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	2.1	1		10/19/23 13:27	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	2.1	1		10/19/23 13:27	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	4.0	0.66	1		10/19/23 13:27	1634-04-4	
Naphthalene	ND	ug/L	1.2	0.57	1		10/19/23 13:27	91-20-3	
n-Propylbenzene	ND	ug/L	5.0	0.37	1		10/19/23 13:27	103-65-1	
Styrene	ND	ug/L	5.0	0.39	1		10/19/23 13:27	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.34	1		10/19/23 13:27	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.35	1		10/19/23 13:27		
Tetrachloroethene	ND	ug/L	5.0	0.36	1		10/19/23 13:27		
Toluene	ND	ug/L	5.0	0.38	1		10/19/23 13:27	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	0.42	1		10/19/23 13:27		
1,2,4-Trichlorobenzene	ND	ug/L	5.0	0.42	1		10/19/23 13:27		
1,1,1-Trichloroethane	ND	ug/L	5.0	0.31	1		10/19/23 13:27		
1,1,2-Trichloroethane	ND	ug/L	5.0	0.33	1		10/19/23 13:27		
Trichloroethene	ND	ug/L	5.0	0.41	1		10/19/23 13:27		
Trichlorofluoromethane	ND	ug/L	5.0	0.36	1		10/19/23 13:27		
1,2,3-Trichloropropane	ND	ug/L	5.0	0.33	1		10/19/23 13:27		
1,2,4-Trimethylbenzene	ND	ug/L	5.0	0.37	1		10/19/23 13:27		
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.38	1		10/19/23 13:27		
Vinyl acetate	ND	ug/L	50.0	1.7	1		10/19/23 13:27		
Vinyl chloride	4.6	ug/L	2.0	0.40	1		10/19/23 13:27		
Xylene (Total)	ND	ug/L	10.0	1.5	1		10/19/23 13:27		
Surrogates	140	49, L	10.0	1.0	•		15/10/20 10.21	1000 20 7	
Dibromofluoromethane (S)	104	%.	82-128		1		10/19/23 13:27	1868-53-7	
4-Bromofluorobenzene (S)	105	%.	79-124		1		10/19/23 13:27		
Toluene-d8 (S)	98	%.	73-122		1		10/19/23 13:27		

Project: GE Indy
Pace Project No.: 50356622

Date: 11/02/2023 03:28 PM

Sample: Trip Blank-101723	Lab ID:	50356622008	Collected:	10/17/23	08:00	Received: 10)/17/23 14:44 N	latrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Ana	lytical Services	- Indianapoli	S					
Acetone	ND	ug/L	100	8.6	1		10/19/23 14:24	67-64-1	
Acrolein	ND	ug/L	50.0	13.4	1		10/19/23 14:24		
Acrylonitrile	ND	ug/L	100	3.0	1		10/19/23 14:24		
Benzene	ND	ug/L	5.0	0.46	1		10/19/23 14:24	71-43-2	
Bromobenzene	ND	ug/L	5.0	0.41	1		10/19/23 14:24	-	
Bromochloromethane	ND	ug/L	5.0	0.33	1		10/19/23 14:24		
Bromodichloromethane	ND	ug/L	5.0	0.29	1		10/19/23 14:24		
Bromoform	ND	ug/L	5.0	0.29	1		10/19/23 14:24		
Bromomethane	ND	ug/L	5.0	0.51	1		10/19/23 14:24		
2-Butanone (MEK)	ND	ug/L	25.0	3.3	1		10/19/23 14:24		
n-Butylbenzene	ND ND	ug/L ug/L	5.0	0.39	1		10/19/23 14:24		
sec-Butylbenzene	ND ND		5.0	0.36	1		10/19/23 14:24		
•		ug/L			1				
ert-Butylbenzene	ND	ug/L	5.0	0.38			10/19/23 14:24		
Carbon disulfide	ND	ug/L	10.0	0.62	1		10/19/23 14:24		
Carbon tetrachloride	ND	ug/L	5.0	0.29	1		10/19/23 14:24		
Chlorobenzene	ND	ug/L	5.0	0.35	1		10/19/23 14:24		
Chloroethane	ND	ug/L	5.0	0.44	1		10/19/23 14:24		
Chloroform	ND	ug/L	5.0	2.6	1		10/19/23 14:24		
Chloromethane	ND	ug/L	5.0	0.56	1		10/19/23 14:24		
2-Chlorotoluene	ND	ug/L	5.0	0.37	1		10/19/23 14:24		
1-Chlorotoluene	ND	ug/L	5.0	0.40	1		10/19/23 14:24	106-43-4	
Dibromochloromethane	ND	ug/L	5.0	0.31	1		10/19/23 14:24	124-48-1	
1,2-Dibromoethane (EDB)	ND	ug/L	5.0	0.29	1		10/19/23 14:24	106-93-4	
Dibromomethane	ND	ug/L	5.0	0.46	1		10/19/23 14:24	74-95-3	
1,2-Dichlorobenzene	ND	ug/L	5.0	0.34	1		10/19/23 14:24	95-50-1	
1,3-Dichlorobenzene	ND	ug/L	5.0	0.40	1		10/19/23 14:24	541-73-1	
1,4-Dichlorobenzene	ND	ug/L	5.0	0.39	1		10/19/23 14:24	106-46-7	
rans-1,4-Dichloro-2-butene	ND	ug/L	100	0.42	1		10/19/23 14:24	110-57-6	
Dichlorodifluoromethane	ND	ug/L	5.0	0.38	1		10/19/23 14:24	75-71-8	
1,1-Dichloroethane	ND	ug/L	5.0	0.37	1		10/19/23 14:24	75-34-3	
1,2-Dichloroethane	ND	ug/L	5.0	0.34	1		10/19/23 14:24	107-06-2	
1,1-Dichloroethene	ND	ug/L	5.0	0.37	1		10/19/23 14:24	75-35-4	
cis-1,2-Dichloroethene	ND	ug/L	5.0	0.48	1		10/19/23 14:24	156-59-2	
rans-1,2-Dichloroethene	ND	ug/L	5.0	0.48	1		10/19/23 14:24	156-60-5	
1,2-Dichloropropane	ND	ug/L	5.0	0.33	1		10/19/23 14:24		
1,3-Dichloropropane	ND	ug/L	5.0	0.30	1		10/19/23 14:24		
2,2-Dichloropropane	ND	ug/L	5.0	0.37	1		10/19/23 14:24		
1,1-Dichloropropene	ND	ug/L	5.0	0.34	1		10/19/23 14:24		
cis-1,3-Dichloropropene	ND	ug/L	5.0	0.31	1		10/19/23 14:24		
rans-1,3-Dichloropropene	ND	ug/L	5.0	0.28	1		10/19/23 14:24		
Ethylbenzene	ND ND	ug/L ug/L	5.0	0.40	1		10/19/23 14:24		
Ethyl methacrylate	ND ND		100	0.40	1		10/19/23 14:24		
Etnyi methaciyiate Hexachloro-1,3-butadiene	ND ND	ug/L	5.0	0.32	1		10/19/23 14:24		
iexacilioro-1,3-butadiene		ug/L	5.0 5.0	0.48	1		10/19/23 14:24		
n-Hexane	ND	ug/L							

Project: GE Indy
Pace Project No.: 50356622

Date: 11/02/2023 03:28 PM

Sample: Trip Blank-101723	Lab ID:	50356622008	Collected:	10/17/23	08:00	Received: 10)/17/23 14:44 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL .	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA	5030/8260						
	Pace Anal	ytical Services	s - Indianapolis	5					
lodomethane	ND	ug/L	10.0	2.0	1		10/19/23 14:24	74-88-4	
sopropylbenzene (Cumene)	ND	ug/L	5.0	0.36	1		10/19/23 14:24	98-82-8	
p-Isopropyltoluene	ND	ug/L	5.0	0.41	1		10/19/23 14:24	99-87-6	
Methylene Chloride	ND	ug/L	5.0	3.7	1		10/19/23 14:24	75-09-2	
1-Methylnaphthalene	ND	ug/L	10.0	2.1	1		10/19/23 14:24	90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	2.1	1		10/19/23 14:24	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	2.1	1		10/19/23 14:24	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	4.0	0.66	1		10/19/23 14:24	1634-04-4	
Naphthalene	ND	ug/L	1.2	0.57	1		10/19/23 14:24	91-20-3	
n-Propylbenzene	ND	ug/L	5.0	0.37	1		10/19/23 14:24	103-65-1	
Styrene	ND	ug/L	5.0	0.39	1		10/19/23 14:24	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.34	1		10/19/23 14:24	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.35	1		10/19/23 14:24	79-34-5	
Tetrachloroethene	ND	ug/L	5.0	0.36	1		10/19/23 14:24	127-18-4	
Toluene	ND	ug/L	5.0	0.38	1		10/19/23 14:24	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	0.42	1		10/19/23 14:24	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	5.0	0.42	1		10/19/23 14:24	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	5.0	0.31	1		10/19/23 14:24	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	5.0	0.33	1		10/19/23 14:24	79-00-5	
Trichloroethene	ND	ug/L	5.0	0.41	1		10/19/23 14:24	79-01-6	
Trichlorofluoromethane	ND	ug/L	5.0	0.36	1		10/19/23 14:24	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	5.0	0.33	1		10/19/23 14:24	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/L	5.0	0.37	1		10/19/23 14:24	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.38	1		10/19/23 14:24	108-67-8	
√inyl acetate	ND	ug/L	50.0	1.7	1		10/19/23 14:24	108-05-4	
√inyl chloride	ND	ug/L	2.0	0.40	1		10/19/23 14:24		
Kylene (Total)	ND	ug/L	10.0	1.5	1		10/19/23 14:24		
Surrogates		- 3 -		-					
Dibromofluoromethane (S)	104	%.	82-128		1		10/19/23 14:24	1868-53-7	
4-Bromofluorobenzene (S)	101	%.	79-124		1		10/19/23 14:24	460-00-4	
Toluene-d8 (S)	100	%.	73-122		1		10/19/23 14:24	2037-26-5	

QUALITY CONTROL DATA

Project: GE Indy Pace Project No.: 50356622

Sulfate

Date: 11/02/2023 03:28 PM

QC Batch: 759164 QC Batch Method: EPA 300.0 Analysis Method: EPA 300.0 Analysis Description:

300.0 IC Anions

Laboratory:

Pace Analytical Services - Indianapolis

Associated Lab Samples: 50356622001

METHOD BLANK: 3479083 Matrix: Water

Associated Lab Samples: 50356622001

> Blank Reporting

MDL Parameter Units Result Limit Analyzed Qualifiers ND 250 190 10/27/23 10:12 ug/L

LABORATORY CONTROL SAMPLE: 3479084

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Sulfate 5000 4830 97 90-110 ug/L

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3479091 3479092

MSD MS 52124554002 Spike Spike MS MSD MS MSD % Rec Max Parameter Units **RPD** RPD Result Conc. Conc. Result Result % Rec % Rec Limits Qual Sulfate ug/L 67.5 mg/L 50000 50000 112000 112000 89 89 80-120 0 15

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3479093 3479094

MS MSD 50356667001 MSD MS MSD Spike Spike MS % Rec Max **RPD** RPD Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits Qual Sulfate 90 <2.0 mg/L 5000 5000 4990 5000 91 0 15 ug/L 80-120

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

RSK 175 Modified

Project: GE Indy
Pace Project No.: 50356622

QC Batch: 758324 Analysis Method:

QC Batch Method: RSK 175 Modified Analysis Description: RSK 175 HEADSPACE

Laboratory: Pace Analytical Services - Indianapolis

Associated Lab Samples: 50356622003

METHOD BLANK: 3475449 Matrix: Water

Associated Lab Samples: 50356622003

Blank Reporting Units Limit MDL Qualifiers Parameter Result Analyzed Ethane ug/L ND 10.0 3.8 10/20/23 09:20 Ethene ug/L ND 10.0 7.1 10/20/23 09:20 Methane ug/L ND 10.0 5.5 10/20/23 09:20

LABORATORY CONTROL SAMPLE: 3475450

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Ethane	ug/L	1980	2070	105	68-135	
Ethene	ug/L	2250	2440	108	79-128	
Methane	ug/L	1980	2040	103	64-132	

SAMPLE DUPLICATE: 3475846

Date: 11/02/2023 03:28 PM

Parameter	Units	50356925005 Result	Dup Result	RPD	Max RPD	Qualifiers
Ethane	ug/L	73.2	71.1	3	20	
Ethene	ug/L	123	122	1	20	
Methane	ug/L	1330	1310	2	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: GE Indy
Pace Project No.: 50356622

QC Batch: 760470

QC Batch Method: EPA 3010

Date: 11/02/2023 03:28 PM

Analysis Method: EPA 6010

Analysis Description: 6010 MET Dissolved

Laboratory: Pace Analytical Services - Indianapolis

Associated Lab Samples: 50356622001

METHOD BLANK: 3485252 Matrix: Water

Associated Lab Samples: 50356622001

Blank Reporting
Parameter Units Result Limit MDL Analyzed Qualifiers

Iron, Dissolved ug/L ND 100 18.1 11/02/23 11:52

LABORATORY CONTROL SAMPLE: 3485253

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Iron, Dissolved ug/L 10000 9820 98 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3485254 3485255

MS MSD

50356622001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Conc. Conc. Result Result % Rec % Rec **RPD** RPD Qual Result Limits Iron, Dissolved 8200 10000 18000 20 ug/L 10000 17900 98 97 75-125 0

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50356622

Date: 11/02/2023 03:28 PM

QC Batch: 758059 Analysis Method: EPA 5030/8260
QC Batch Method: EPA 5030/8260 Analysis Description: 8260 MSV

Laboratory: Pace Analytical Services - Indianapolis

Associated Lab Samples: 50356622001, 50356622002

METHOD BLANK: 3473866 Matrix: Water

Associated Lab Samples: 50356622001, 50356622002

Parameter			Blank	Reporting			
1,1,1,2-Tetrachloroethane	Parameter	Units			MDL	Analyzed	Qualifiers
1,1.1-Trichloroethane ug/L ND 5.0 0.31 10/19/23 00:35 1,1.2-Trichloroethane ug/L ND 5.0 0.35 10/19/23 00:35 1,1-2-Trichloroethane ug/L ND 5.0 0.37 10/19/23 00:35 1,1-Dichloroethane ug/L ND 5.0 0.37 10/19/23 00:35 1,1-Dichloroptopene ug/L ND 5.0 0.34 10/19/23 00:35 1,2-3-Trichlorobenzene ug/L ND 5.0 0.42 10/19/23 00:35 1,2-3-Trichloroporpane ug/L ND 5.0 0.42 10/19/23 00:35 1,2-4-Trichlorobenzene ug/L ND 5.0 0.42 10/19/23 00:35 1,2-4-Trimethylbenzene ug/L ND 5.0 0.42 10/19/23 00:35 1,2-Dichlorobenzene ug/L ND 5.0 0.34 10/19/23 00:35 1,2-Dichloropropane ug/L ND 5.0 0.34 10/19/23 00:35 1,3-Dichlorobenzene ug/L ND 5.0 0.3				5.0			
1,1,2,2-Tertachloroethane ug/L ND 5.0 0.35 10/19/23 00:35 1,1,2-Trichloroethane ug/L ND 5.0 0.37 10/19/23 00:35 1,1-Dichloroethane ug/L ND 5.0 0.37 10/19/23 00:35 1,1-Dichloropropene ug/L ND 5.0 0.34 10/19/23 00:35 1,2,3-Trichloropropane ug/L ND 5.0 0.42 10/19/23 00:35 1,2,3-Trichloropropane ug/L ND 5.0 0.42 10/19/23 00:35 1,2,4-Trichlorobenzene ug/L ND 5.0 0.42 10/19/23 00:35 1,2,4-Trichlorobenzene ug/L ND 5.0 0.37 10/19/23 00:35 1,2,4-Trichlorobenzene ug/L ND 5.0 0.34 10/19/23 00:35 1,2-Dichlorobenzene ug/L ND 5.0 0.34 10/19/23 00:35 1,2-Dichlorobenzene ug/L ND 5.0 0.34 10/19/23 00:35 1,2-Dichloropropane ug/L ND 5.0 <t< td=""><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td></t<>		_					
1,1,2-Trichloroethane ug/L ND 5.0 0.33 10/19/23 00:35 1,1-Dichloroethane ug/L ND 5.0 0.37 10/19/23 00:35 1,1-Dichloroethene ug/L ND 5.0 0.34 10/19/23 00:35 1,1-Dichloropropene ug/L ND 5.0 0.42 10/19/23 00:35 1,2,3-Trichlorobenzene ug/L ND 5.0 0.42 10/19/23 00:35 1,2,4-Trinethylbenzene ug/L ND 5.0 0.42 10/19/23 00:35 1,2,4-Trichlorobenzene ug/L ND 5.0 0.42 10/19/23 00:35 1,2,4-Trimethylbenzene ug/L ND 5.0 0.37 10/19/23 00:35 1,2-Dichlorobenzene ug/L ND 5.0 0.34 10/19/23 00:35 1,2-Dichlorobenzene ug/L ND 5.0 0.34 10/19/23 00:35 1,2-Dichloropropane ug/L ND 5.0 0.33 10/19/23 00:35 1,3-Dichlorobenzene ug/L ND 5.0 0.33 <td>, ,</td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td>	, ,	_					
1.1-Dichloroethane ug/L ND 5.0 0.37 10/19/23 00:35 1,1-Dichloroethene ug/L ND 5.0 0.37 10/19/23 00:35 1,1-Dichloropropane ug/L ND 5.0 0.42 10/19/23 00:35 1,2,3-Trichlorobenzene ug/L ND 5.0 0.33 10/19/23 00:35 1,2,4-Trichlorobenzene ug/L ND 5.0 0.42 10/19/23 00:35 1,2,4-Trichlorobenzene ug/L ND 5.0 0.42 10/19/23 00:35 1,2-Li-Trimethylbenzene ug/L ND 5.0 0.37 10/19/23 00:35 1,2-Dichlorobenzene ug/L ND 5.0 0.37 10/19/23 00:35 1,2-Dichlorobenzene ug/L ND 5.0 0.29 10/19/23 00:35 1,2-Dichlorobenzene ug/L ND 5.0 0.34 10/19/23 00:35 1,2-Dichlorobenzene ug/L ND 5.0 0.34 10/19/23 00:35 1,3-Dichlorobenzene ug/L ND 5.0 0.40 10/19/23 00:35 1,3-Dichlorobenzene ug/L ND <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
1.1-Dichloroethene ug/L ND 5.0 0.34 10/19/23 00:35 1.2.3-Trichlorobenzene ug/L ND 5.0 0.44 10/19/23 00:35 1.2.3-Trichlorobenzene ug/L ND 5.0 0.42 10/19/23 00:35 1.2.3-Trichlorobenzene ug/L ND 5.0 0.42 10/19/23 00:35 1.2.4-Trimethylbenzene ug/L ND 5.0 0.42 10/19/23 00:35 1.2.4-Trimethylbenzene ug/L ND 5.0 0.29 10/19/23 00:35 1.2-Dichloroberzene ug/L ND 5.0 0.29 10/19/23 00:35 1.2-Dichloroberzene ug/L ND 5.0 0.29 10/19/23 00:35 1.2-Dichloropropane ug/L ND 5.0 0.34 10/19/23 00:35 1.2-Dichloroberzene ug/L ND 5.0 0.33 10/19/23 00:35 1.3-Dichloroberzene ug/L ND 5.0 0.33 10/19/23 00:35 1.3-Dichloroberzene ug/L ND 5.0 0.0 10/19/23 00:35 1.3-Dichloroberzene ug/L ND <							
1.1-Dichloropropene ug/L ND 5.0 0.34 10/19/23 00:35 1,2,3-Trichlorobenzene ug/L ND 5.0 0.42 10/19/23 00:35 1,2,3-Trichlorobenzene ug/L ND 5.0 0.42 10/19/23 00:35 1,2,4-Trichlorobenzene ug/L ND 5.0 0.42 10/19/23 00:35 1,2,4-Trimethylbenzene ug/L ND 5.0 0.29 10/19/23 00:35 1,2-Dichlorobenzene ug/L ND 5.0 0.29 10/19/23 00:35 1,2-Dichlorobenzene ug/L ND 5.0 0.34 10/19/23 00:35 1,2-Dichlorobenzene ug/L ND 5.0 0.34 10/19/23 00:35 1,3-Dichlorobenzene ug/L ND 5.0 0.38 10/19/23 00:35 1,3-Dichlorobenzene ug/L ND 5.0 0.38 10/19/23 00:35 1,3-Dichlorobenzene ug/L ND 5.0 0.30 10/19/23 00:35 1,4-Dichlorobenzene ug/L ND 5.0 0.39 <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	•						
1,2,3-Trichlorobenzene ug/L ND 5.0 0.42 10/19/23 00:35 1,2,3-Trichloropropane ug/L ND 5.0 0.33 10/19/23 00:35 1,2,4-Trichlorobenzene ug/L ND 5.0 0.42 10/19/23 00:35 1,2,4-Trimethylbenzene ug/L ND 5.0 0.29 10/19/23 00:35 1,2-Dibloromethane (EDB) ug/L ND 5.0 0.29 10/19/23 00:35 1,2-Dichlorobenzene ug/L ND 5.0 0.34 10/19/23 00:35 1,2-Dichlorobenzene ug/L ND 5.0 0.34 10/19/23 00:35 1,2-Dichloropropane ug/L ND 5.0 0.33 10/19/23 00:35 1,3-Dichlorobenzene ug/L ND 5.0 0.38 10/19/23 00:35 1,3-Dichloroporpane ug/L ND 5.0 0.40 10/19/23 00:35 1,4-Dichlorobenzene ug/L ND 5.0 0.39 10/19/23 00:35 1,4-Dichloroporpane ug/L ND 5.0 0.3	•						
1,2,3-Trichloropropane ug/L ND 5.0 0.33 10/19/23 00:35 1,2,4-Trichlorobenzene ug/L ND 5.0 0.42 10/19/23 00:35 1,2,4-Trichlorobenzene ug/L ND 5.0 0.37 10/19/23 00:35 1,2-Dichlorobenzene ug/L ND 5.0 0.34 10/19/23 00:35 1,2-Dichloropetane ug/L ND 5.0 0.34 10/19/23 00:35 1,2-Dichloropropane ug/L ND 5.0 0.34 10/19/23 00:35 1,2-Dichloropropane ug/L ND 5.0 0.33 10/19/23 00:35 1,3-Dichloropropane ug/L ND 5.0 0.33 10/19/23 00:35 1,3-Dichloropropane ug/L ND 5.0 0.40 10/19/23 00:35 1,3-Dichloropropane ug/L ND 5.0 0.30 10/19/23 00:35 1,3-Dichloropropane ug/L ND 5.0 0.39 10/19/23 00:35 1,4-Dichlorobenzene ug/L ND 5.0 0.37		_					
1,2,4-Trichlorobenzene ug/L ND 5.0 0.42 10/19/23 00:35 1,2,4-Trimethylbenzene ug/L ND 5.0 0.37 10/19/23 00:35 1,2-Dibromoethane (EDB) ug/L ND 5.0 0.29 10/19/23 00:35 1,2-Dichlorobenzene ug/L ND 5.0 0.34 10/19/23 00:35 1,2-Dichloropethane ug/L ND 5.0 0.33 10/19/23 00:35 1,2-Dichloropenane ug/L ND 5.0 0.33 10/19/23 00:35 1,3-Dichlorobenzene ug/L ND 5.0 0.33 10/19/23 00:35 1,3-Dichloropenane ug/L ND 5.0 0.40 10/19/23 00:35 1,4-Dichlorobenzene ug/L ND 5.0 0.39 10/19/23 00:35 1,4-Dichloropopane ug/L ND 5.0 0.39 10/19/23 00:35 1,4-Bichlorobenzene ug/L ND 5.0 0.33 10/19/23 00:35 2,2-Dichloropropane ug/L ND 5.0 0.33 10/19/23 00:35 2,2-Dichloropropane ug/L ND 5.0							
1,2,4-Trimethylbenzene ug/L ND 5.0 0.37 10/19/23 00:35 1,2-Dichlorobenzene ug/L ND 5.0 0.29 10/19/23 00:35 1,2-Dichlorobenzene ug/L ND 5.0 0.34 10/19/23 00:35 1,2-Dichloropropane ug/L ND 5.0 0.33 10/19/23 00:35 1,2-Dichlorobenzene ug/L ND 5.0 0.33 10/19/23 00:35 1,3-Frimethylbenzene ug/L ND 5.0 0.40 10/19/23 00:35 1,3-Dichlorobenzene ug/L ND 5.0 0.40 10/19/23 00:35 1,3-Dichloropropane ug/L ND 5.0 0.30 10/19/23 00:35 1,3-Dichloropropane ug/L ND 5.0 0.30 10/19/23 00:35 1,4-Dichlorobenzene ug/L ND 5.0 0.31 10/19/23 00:35 1,4-Dichloropropane ug/L ND 5.0 0.37 10/19/23 00:35 2,2-Dichloropropane ug/L ND 5.0 0.37 10/19/23 00:35 2-Butanone (MEK) ug/L ND 5.0		_					
1,2-Dibromoethane (EDB) ug/L ND 5.0 0.29 10/19/23 00:35 1,2-Dichlorobenzene ug/L ND 5.0 0.34 10/19/23 00:35 1,2-Dichloroptopane ug/L ND 5.0 0.33 10/19/23 00:35 1,2-Dichloropropane ug/L ND 5.0 0.33 10/19/23 00:35 1,3-Dichlorobenzene ug/L ND 5.0 0.30 10/19/23 00:35 1,3-Dichlorobenzene ug/L ND 5.0 0.30 10/19/23 00:35 1,3-Dichlorobenzene ug/L ND 5.0 0.30 10/19/23 00:35 1,4-Dichlorobenzene ug/L ND 5.0 0.39 10/19/23 00:35 1,4-Dichlorobenzene ug/L ND 5.0 0.39 10/19/23 00:35 1,4-Dichlorobenzene ug/L ND 5.0 0.37 10/19/23 00:35 1,4-Dichlorobenzene ug/L ND 5.0 0.37 10/19/23 00:35 2-Polichlorobenzene ug/L ND 5.0 0.37							
1,2-Dichlorobenzene ug/L ND 5.0 0.34 10/19/23 00:35 1,2-Dichloroethane ug/L ND 5.0 0.34 10/19/23 00:35 1,2-Dichloropropane ug/L ND 5.0 0.33 10/19/23 00:35 1,3-Dichlorobenzene ug/L ND 5.0 0.40 10/19/23 00:35 1,3-Dichloropropane ug/L ND 5.0 0.40 10/19/23 00:35 1,3-Dichlorobenzene ug/L ND 5.0 0.30 10/19/23 00:35 1,4-Dichlorobenzene ug/L ND 5.0 0.30 10/19/23 00:35 1-Methylnaphthalene ug/L ND 5.0 0.39 10/19/23 00:35 2-Butanone (MEK) ug/L ND 5.0 0.37 10/19/23 00:35 2-Hexanone ug/L ND 5.0 0.37 10/19/23 00:35 2-Hexanone ug/L ND 5.0 0.37 10/19/23 00:35 2-Hexanone ug/L ND 5.0 0.21 10/19/23 00:35	•	_					
1,2-Dichloroethane ug/L ND 5.0 0.34 10/19/23 00:35 1,2-Dichloropropane ug/L ND 5.0 0.33 10/19/23 00:35 1,3,5-Trimethylbenzene ug/L ND 5.0 0.40 10/19/23 00:35 1,3-Dichlorobenzene ug/L ND 5.0 0.40 10/19/23 00:35 1,3-Dichloropenpane ug/L ND 5.0 0.30 10/19/23 00:35 1,4-Dichlorobenzene ug/L ND 5.0 0.39 10/19/23 00:35 1-Methylnaphthalene ug/L ND 5.0 0.39 10/19/23 00:35 2-Butanone (MEK) ug/L ND 5.0 0.37 10/19/23 00:35 2-Butanone (MEK) ug/L ND 5.0 0.37 10/19/23 00:35 2-Butanone (MEK) ug/L ND 5.0 0.37 10/19/23 00:35 2-Hothylnaphthalene ug/L ND 5.0 0.21 10/19/23 00:35 4-Chlorotoluene ug/L ND 5.0 0.40 10/19/23							
1,2-Dichloropropane ug/L ND 5.0 0.33 10/19/23 00:35 1,3-5-Trimethylbenzene ug/L ND 5.0 0.40 10/19/23 00:35 1,3-Dichlorobenzene ug/L ND 5.0 0.40 10/19/23 00:35 1,3-Dichloropropane ug/L ND 5.0 0.30 10/19/23 00:35 1,4-Dichlorobenzene ug/L ND 5.0 0.39 10/19/23 00:35 1,4-Dichlorobenzene ug/L ND 10.0 2.1 10/19/23 00:35 1,4-Dichlorobenzene ug/L ND 5.0 0.39 10/19/23 00:35 1,4-Dichlorobenzene ug/L ND 10.0 2.1 10/19/23 00:35 2,2-Dichloroppane ug/L ND 5.0 0.37 10/19/23 00:35 2,2-Dichloroppane ug/L ND 5.0 0.37 10/19/23 00:35 2,2-Dichloroppane ug/L ND 5.0 0.37 10/19/23 00:35 2-Hethylnaphthalene ug/L ND 5.0 0.2 10	<i>'</i>						
1,3,5-Trimethylbenzene ug/L ND 5.0 0.38 10/19/23 00:35 1,3-Dichlorobenzene ug/L ND 5.0 0.40 10/19/23 00:35 1,3-Dichloropropane ug/L ND 5.0 0.30 10/19/23 00:35 1,4-Dichlorobenzene ug/L ND 5.0 0.39 10/19/23 00:35 1,4-Dichlorobenzene ug/L ND 10.0 2.1 10/19/23 00:35 1,4-Dichlorobenzene ug/L ND 10.0 2.1 10/19/23 00:35 2,2-Dichloropropane ug/L ND 5.0 0.37 10/19/23 00:35 2-Butanone ug/L ND 5.0 0.37 10/19/23 00:35 2-Hexanone ug/L ND 5.0 0.40 10/19/23 00:3	<i>'</i>	· ·					
1,3-Dichlorobenzene ug/L ND 5.0 0.40 10/19/23 00:35 1,3-Dichloropropane ug/L ND 5.0 0.30 10/19/23 00:35 1,4-Dichlorobenzene ug/L ND 5.0 0.39 10/19/23 00:35 1-Methylnaphthalene ug/L ND 10.0 2.1 10/19/23 00:35 2-2-Dichloropropane ug/L ND 5.0 0.37 10/19/23 00:35 2-Butanone (MEK) ug/L ND 5.0 0.37 10/19/23 00:35 2-Chlorotoluene ug/L ND 5.0 0.37 10/19/23 00:35 2-Hexanone ug/L ND 5.0 0.37 10/19/23 00:35 2-Hexanone ug/L ND 5.0 0.22 10/19/23 00:35 2-Hexanone ug/L ND 5.0 0.2 10/19/23 00:35 2-Hexanone ug/L ND 5.0 0.40 10/19/23 00:35 4-Chlorotoluene ug/L ND 5.0 0.40 10/19/23 00:35	• •	· ·					
1,3-Dichloropropane ug/L ND 5.0 0.30 10/19/23 00:35 1,4-Dichlorobenzene ug/L ND 5.0 0.39 10/19/23 00:35 1-Methylnaphthalene ug/L ND 10.0 2.1 10/19/23 00:35 2,2-Dichloropropane ug/L ND 5.0 0.37 10/19/23 00:35 2-Butanone (MEK) ug/L ND 5.0 0.37 10/19/23 00:35 2-Butanone (MEK) ug/L ND 5.0 0.37 10/19/23 00:35 2-Chlorotoluene ug/L ND 5.0 0.37 10/19/23 00:35 2-Hexanone ug/L ND 10.0 2.1 10/19/23 00:35 4-Chlorotoluene ug/L ND 5.0 0.40 10/19/23 00:35 <	•	_					
1,4-Dichlorobenzene ug/L ND 5.0 0.39 10/19/23 00:35 1-Methylnaphthalene ug/L ND 10.0 2.1 10/19/23 00:35 2,2-Dichloropropane ug/L ND 5.0 0.37 10/19/23 00:35 2-Butanone (MEK) ug/L ND 25.0 3.3 10/19/23 00:35 2-Chlorotoluene ug/L ND 5.0 0.37 10/19/23 00:35 2-Hexanone ug/L ND 25.0 2.2 10/19/23 00:35 2-Hethylnaphthalene ug/L ND 10.0 2.1 10/19/23 00:35 4-Chlorotoluene ug/L ND 5.0 0.40 10/19/23 00:35 4-Chlorotoluene ug/L ND 5.0 0.41 10/19/23 00:35 Actoric methologic ug/L ND 5.0 0.41 10/19/23	*	· ·					
I-Methylnaphthalene ug/L ND 10.0 2.1 10/19/23 00:35 2,2-Dichloropropane ug/L ND 5.0 0.37 10/19/23 00:35 2-Butanone (MEK) ug/L ND 25.0 3.3 10/19/23 00:35 2-Chlorotoluene ug/L ND 5.0 0.37 10/19/23 00:35 2-Hexanone ug/L ND 5.0 0.22 10/19/23 00:35 2-Methylnaphthalene ug/L ND 10.0 2.1 10/19/23 00:35 4-Chlorotoluene ug/L ND 5.0 0.40 10/19/23 00:35 4-Chlorotoluene ug/L ND 50.0 10 10/19/23 00:35							
2,2-Dichloropropane ug/L ND 5.0 0.37 10/19/23 00:35 2-Butanone (MEK) ug/L ND 25.0 3.3 10/19/23 00:35 2-Chlorotoluene ug/L ND 5.0 0.37 10/19/23 00:35 2-Hexanone ug/L ND 25.0 2.2 10/19/23 00:35 2-Methylnaphthalene ug/L ND 10.0 2.1 10/19/23 00:35 4-Chlorotoluene ug/L ND 5.0 0.40 10/19/23 00:35 4-Methyl-2-pentanone (MIBK) ug/L ND 25.0 2.1 10/19/23 00:35 Acetone ug/L ND 100 8.6 10/19/23 00:35 Acrolein ug/L ND 50.0 13.4 10/19/23 00:35 Acrolein ug/L ND 50.0 13.4 10/19/23 00:35 Acrolein ug/L ND 50.0 0.46 10/19/23 00:35 Benzene ug/L ND 5.0 0.41 10/19/23 00:35 Bromochloromet	-						
2-Butanone (MEK) ug/L ND 25.0 3.3 10/19/23 00:35 2-Chlorotoluene ug/L ND 5.0 0.37 10/19/23 00:35 2-Hexanone ug/L ND 25.0 2.2 10/19/23 00:35 2-Methylnaphthalene ug/L ND 10.0 2.1 10/19/23 00:35 4-Chlorotoluene ug/L ND 5.0 0.40 10/19/23 00:35 4-Methyl-2-pentanone (MIBK) ug/L ND 25.0 2.1 10/19/23 00:35 Acetone ug/L ND 100 8.6 10/19/23 00:35 Acrolein ug/L ND 50.0 13.4 10/19/23 00:35 Acrylonitrile ug/L ND 50.0 13.4 10/19/23 00:35 Benzene ug/L ND 5.0 0.46 10/19/23 00:35 Bromobenzene ug/L ND 5.0 0.41 10/19/23 00:35 Bromochloromethane ug/L ND 5.0 0.33 10/19/23 00:35 Bromoform ug/L ND 5.0 0.29 10/19/23 00:35							
2-Chlorotoluene ug/L ND 5.0 0.37 10/19/23 00:35 2-Hexanone ug/L ND 25.0 2.2 10/19/23 00:35 2-Methylnaphthalene ug/L ND 10.0 2.1 10/19/23 00:35 4-Chlorotoluene ug/L ND 5.0 0.40 10/19/23 00:35 4-Methyl-2-pentanone (MIBK) ug/L ND 25.0 2.1 10/19/23 00:35 Acetone ug/L ND 100 8.6 10/19/23 00:35 Acrolein ug/L ND 50.0 13.4 10/19/23 00:35 Acrylonitrile ug/L ND 100 3.0 10/19/23 00:35 Benzene ug/L ND 5.0 0.46 10/19/23 00:35 Bromobenzene ug/L ND 5.0 0.41 10/19/23 00:35 Bromochloromethane ug/L ND 5.0 0.29 10/19/23 00:35 Bromoform ug/L ND 5.0 0.29 10/19/23 00:35 Bromomethane <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
2-Hexanone ug/L ND 25.0 2.2 10/19/23 00:35 2-Methylnaphthalene ug/L ND 10.0 2.1 10/19/23 00:35 4-Chlorotoluene ug/L ND 5.0 0.40 10/19/23 00:35 4-Methyl-2-pentanone (MIBK) ug/L ND 25.0 2.1 10/19/23 00:35 Acetone ug/L ND 100 8.6 10/19/23 00:35 Acrolein ug/L ND 50.0 13.4 10/19/23 00:35 Acrylonitrile ug/L ND 100 3.0 10/19/23 00:35 Benzene ug/L ND 5.0 0.46 10/19/23 00:35 Bromobenzene ug/L ND 5.0 0.41 10/19/23 00:35 Bromochloromethane ug/L ND 5.0 0.33 10/19/23 00:35 Bromoform ug/L ND 5.0 0.29 10/19/23 00:35 Bromomethane ug/L ND 5.0 0.51 10/19/23 00:35 Bromomethane ug/L ND 5.0 0.51 10/19/23 00:35 C		_					
2-Methylnaphthalene ug/L ND 10.0 2.1 10/19/23 00:35 4-Chlorotoluene ug/L ND 5.0 0.40 10/19/23 00:35 4-Methyl-2-pentanone (MIBK) ug/L ND 25.0 2.1 10/19/23 00:35 Acetone ug/L ND 100 8.6 10/19/23 00:35 Acrolein ug/L ND 50.0 13.4 10/19/23 00:35 Acrylonitrile ug/L ND 100 3.0 10/19/23 00:35 Benzene ug/L ND 5.0 0.46 10/19/23 00:35 Bromobenzene ug/L ND 5.0 0.41 10/19/23 00:35 Bromochloromethane ug/L ND 5.0 0.41 10/19/23 00:35 Bromoform ug/L ND 5.0 0.29 10/19/23 00:35 Bromomethane ug/L ND 5.0 0.29 10/19/23 00:35 Bromomethane ug/L ND 5.0 0.51 10/19/23 00:35 Carbon disulfide<							
4-Chlorotoluene ug/L ND 5.0 0.40 10/19/23 00:35 4-Methyl-2-pentanone (MIBK) ug/L ND 25.0 2.1 10/19/23 00:35 Acetone ug/L ND 100 8.6 10/19/23 00:35 Acrolein ug/L ND 50.0 13.4 10/19/23 00:35 Acrylonitrile ug/L ND 100 3.0 10/19/23 00:35 Benzene ug/L ND 5.0 0.46 10/19/23 00:35 Bromobenzene ug/L ND 5.0 0.41 10/19/23 00:35 Bromochloromethane ug/L ND 5.0 0.33 10/19/23 00:35 Bromoform ug/L ND 5.0 0.29 10/19/23 00:35 Bromomethane ug/L ND 5.0 0.51 10/19/23 00:35 Carbon disulfide ug/L ND 5.0 0.29 10/19/23 00:35 Carbon tetrachloride ug/L ND 5.0 0.29 10/19/23 00:35 Chlorobenzene ug/L ND 5.0 0.35 10/19/23 00:35 <							
4-Methyl-2-pentanone (MIBK) ug/L ND 25.0 2.1 10/19/23 00:35 Acetone ug/L ND 100 8.6 10/19/23 00:35 Acrolein ug/L ND 50.0 13.4 10/19/23 00:35 Acrylonitrile ug/L ND 100 3.0 10/19/23 00:35 Benzene ug/L ND 5.0 0.46 10/19/23 00:35 Bromobenzene ug/L ND 5.0 0.41 10/19/23 00:35 Bromochloromethane ug/L ND 5.0 0.33 10/19/23 00:35 Bromoform ug/L ND 5.0 0.29 10/19/23 00:35 Bromomethane ug/L ND 5.0 0.51 10/19/23 00:35 Carbon disulfide ug/L ND 10.0 0.62 10/19/23 00:35 Carbon tetrachloride ug/L ND 5.0 0.29 10/19/23 00:35 Chlorobenzene ug/L ND 5.0 0.35 10/19/23 00:35					0.40		
Acetone ug/L ND 100 8.6 10/19/23 00:35 Acrolein ug/L ND 50.0 13.4 10/19/23 00:35 Acrylonitrile ug/L ND 100 3.0 10/19/23 00:35 Benzene ug/L ND 5.0 0.46 10/19/23 00:35 Bromobenzene ug/L ND 5.0 0.41 10/19/23 00:35 Bromochloromethane ug/L ND 5.0 0.33 10/19/23 00:35 Bromoform ug/L ND 5.0 0.29 10/19/23 00:35 Bromomethane ug/L ND 5.0 0.51 10/19/23 00:35 Carbon disulfide ug/L ND 10.0 0.62 10/19/23 00:35 Carbon tetrachloride ug/L ND 5.0 0.29 10/19/23 00:35 Chlorobenzene ug/L ND 5.0 0.35 10/19/23 00:35		_					
Acrolein ug/L ND 50.0 13.4 10/19/23 00:35 Acrylonitrile ug/L ND 100 3.0 10/19/23 00:35 Benzene ug/L ND 5.0 0.46 10/19/23 00:35 Bromobenzene ug/L ND 5.0 0.41 10/19/23 00:35 Bromochloromethane ug/L ND 5.0 0.33 10/19/23 00:35 Bromoform ug/L ND 5.0 0.29 10/19/23 00:35 Bromomethane ug/L ND 5.0 0.51 10/19/23 00:35 Carbon disulfide ug/L ND 10.0 0.62 10/19/23 00:35 Carbon tetrachloride ug/L ND 5.0 0.29 10/19/23 00:35 Chlorobenzene ug/L ND 5.0 0.29 10/19/23 00:35	• • • • • • • • • • • • • • • • • • • •				8.6		
Acrylonitrile ug/L ND 100 3.0 10/19/23 00:35 Benzene ug/L ND 5.0 0.46 10/19/23 00:35 Bromobenzene ug/L ND 5.0 0.41 10/19/23 00:35 Bromochloromethane ug/L ND 5.0 0.33 10/19/23 00:35 Bromoform ug/L ND 5.0 0.29 10/19/23 00:35 Bromomethane ug/L ND 5.0 0.51 10/19/23 00:35 Carbon disulfide ug/L ND 10.0 0.62 10/19/23 00:35 Carbon tetrachloride ug/L ND 5.0 0.29 10/19/23 00:35 Chlorobenzene ug/L ND 5.0 0.35 10/19/23 00:35	Acrolein						
Benzene ug/L ND 5.0 0.46 10/19/23 00:35 Bromobenzene ug/L ND 5.0 0.41 10/19/23 00:35 Bromochloromethane ug/L ND 5.0 0.33 10/19/23 00:35 Bromodichloromethane ug/L ND 5.0 0.29 10/19/23 00:35 Bromoform ug/L ND 5.0 0.29 10/19/23 00:35 Bromomethane ug/L ND 5.0 0.51 10/19/23 00:35 Carbon disulfide ug/L ND 10.0 0.62 10/19/23 00:35 Carbon tetrachloride ug/L ND 5.0 0.29 10/19/23 00:35 Chlorobenzene ug/L ND 5.0 0.35 10/19/23 00:35	Acrylonitrile	· ·					
Bromobenzene ug/L ND 5.0 0.41 10/19/23 00:35 Bromochloromethane ug/L ND 5.0 0.33 10/19/23 00:35 Bromodichloromethane ug/L ND 5.0 0.29 10/19/23 00:35 Bromoform ug/L ND 5.0 0.29 10/19/23 00:35 Bromomethane ug/L ND 5.0 0.51 10/19/23 00:35 Carbon disulfide ug/L ND 10.0 0.62 10/19/23 00:35 Carbon tetrachloride ug/L ND 5.0 0.29 10/19/23 00:35 Chlorobenzene ug/L ND 5.0 0.35 10/19/23 00:35	•	· ·	ND	5.0	0.46	10/19/23 00:35	
Bromochloromethane ug/L ND 5.0 0.33 10/19/23 00:35 Bromodichloromethane ug/L ND 5.0 0.29 10/19/23 00:35 Bromoform ug/L ND 5.0 0.29 10/19/23 00:35 Bromomethane ug/L ND 5.0 0.51 10/19/23 00:35 Carbon disulfide ug/L ND 10.0 0.62 10/19/23 00:35 Carbon tetrachloride ug/L ND 5.0 0.29 10/19/23 00:35 Chlorobenzene ug/L ND 5.0 0.35 10/19/23 00:35	Bromobenzene	_	ND	5.0	0.41	10/19/23 00:35	
Bromoform ug/L ND 5.0 0.29 10/19/23 00:35 Bromomethane ug/L ND 5.0 0.51 10/19/23 00:35 Carbon disulfide ug/L ND 10.0 0.62 10/19/23 00:35 Carbon tetrachloride ug/L ND 5.0 0.29 10/19/23 00:35 Chlorobenzene ug/L ND 5.0 0.35 10/19/23 00:35	Bromochloromethane	ug/L	ND	5.0	0.33	10/19/23 00:35	
Bromoform ug/L ND 5.0 0.29 10/19/23 00:35 Bromomethane ug/L ND 5.0 0.51 10/19/23 00:35 Carbon disulfide ug/L ND 10.0 0.62 10/19/23 00:35 Carbon tetrachloride ug/L ND 5.0 0.29 10/19/23 00:35 Chlorobenzene ug/L ND 5.0 0.35 10/19/23 00:35	Bromodichloromethane	ug/L	ND	5.0	0.29	10/19/23 00:35	
Bromomethane ug/L ND 5.0 0.51 10/19/23 00:35 Carbon disulfide ug/L ND 10.0 0.62 10/19/23 00:35 Carbon tetrachloride ug/L ND 5.0 0.29 10/19/23 00:35 Chlorobenzene ug/L ND 5.0 0.35 10/19/23 00:35	Bromoform						
Carbon disulfide ug/L ND 10.0 0.62 10/19/23 00:35 Carbon tetrachloride ug/L ND 5.0 0.29 10/19/23 00:35 Chlorobenzene ug/L ND 5.0 0.35 10/19/23 00:35	Bromomethane					10/19/23 00:35	
Carbon tetrachloride ug/L ND 5.0 0.29 10/19/23 00:35 Chlorobenzene ug/L ND 5.0 0.35 10/19/23 00:35	Carbon disulfide						
Chlorobenzene ug/L ND 5.0 0.35 10/19/23 00:35	Carbon tetrachloride	_					
· · · · · · · · · · · · · · · · · · ·	Chlorobenzene						
	Chloroethane	_	ND		0.44	10/19/23 00:35	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50356622

Date: 11/02/2023 03:28 PM

METHOD BLANK: 3473866 Matrix: Water

Associated Lab Samples: 50356622001, 50356622002

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Chloroform	ug/L	ND	5.0	2.6	10/19/23 00:35	-
Chloromethane	ug/L	ND	5.0	0.56	10/19/23 00:35	
cis-1,2-Dichloroethene	ug/L	ND	5.0	0.48	10/19/23 00:35	
cis-1,3-Dichloropropene	ug/L	ND	5.0	0.31	10/19/23 00:35	
Dibromochloromethane	ug/L	ND	5.0	0.31	10/19/23 00:35	
Dibromomethane	ug/L	ND	5.0	0.46	10/19/23 00:35	
Dichlorodifluoromethane	ug/L	ND	5.0	0.38	10/19/23 00:35	
Ethyl methacrylate	ug/L	ND	100	0.32	10/19/23 00:35	
Ethylbenzene	ug/L	ND	5.0	0.40	10/19/23 00:35	
Hexachloro-1,3-butadiene	ug/L	ND	5.0	0.48	10/19/23 00:35	
Iodomethane	ug/L	ND	10.0	2.0	10/19/23 00:35	
Isopropylbenzene (Cumene)	ug/L	ND	5.0	0.36	10/19/23 00:35	
Methyl-tert-butyl ether	ug/L	ND	4.0	0.66	10/19/23 00:35	
Methylene Chloride	ug/L	ND	5.0	3.7	10/19/23 00:35	
n-Butylbenzene	ug/L	ND	5.0	0.39	10/19/23 00:35	
n-Hexane	ug/L	ND	5.0	0.36	10/19/23 00:35	
n-Propylbenzene	ug/L	ND	5.0	0.37	10/19/23 00:35	
Naphthalene	ug/L	ND	1.2	0.57	10/19/23 00:35	
p-Isopropyltoluene	ug/L	ND	5.0	0.41	10/19/23 00:35	
sec-Butylbenzene	ug/L	ND	5.0	0.36	10/19/23 00:35	
Styrene	ug/L	ND	5.0	0.39	10/19/23 00:35	
tert-Butylbenzene	ug/L	ND	5.0	0.38	10/19/23 00:35	
Tetrachloroethene	ug/L	ND	5.0	0.36	10/19/23 00:35	
Toluene	ug/L	ND	5.0	0.38	10/19/23 00:35	
trans-1,2-Dichloroethene	ug/L	ND	5.0	0.48	10/19/23 00:35	
trans-1,3-Dichloropropene	ug/L	ND	5.0	0.28	10/19/23 00:35	
trans-1,4-Dichloro-2-butene	ug/L	ND	100	0.42	10/19/23 00:35	
Trichloroethene	ug/L	ND	5.0	0.41	10/19/23 00:35	
Trichlorofluoromethane	ug/L	ND	5.0	0.36	10/19/23 00:35	
Vinyl acetate	ug/L	ND	50.0	1.7	10/19/23 00:35	
Vinyl chloride	ug/L	ND	2.0	0.40	10/19/23 00:35	
Xylene (Total)	ug/L	ND	10.0	1.5	10/19/23 00:35	
4-Bromofluorobenzene (S)	%.	101	79-124		10/19/23 00:35	
Dibromofluoromethane (S)	%.	103	82-128		10/19/23 00:35	1d
Toluene-d8 (S)	%.	99	73-122		10/19/23 00:35	

LABORATORY CONTROL SAMPLE:	3473867					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1-Trichloroethane	ug/L	50	49.9	100	76-127	_
1,1,2,2-Tetrachloroethane	ug/L	50	46.5	93	70-126	
1,1-Dichloroethene	ug/L	50	51.0	102	73-133	
1,2,4-Trimethylbenzene	ug/L	50	46.7	93	70-127	
1,2-Dibromoethane (EDB)	ug/L	50	49.1	98	80-126	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50356622

Date: 11/02/2023 03:28 PM

LABORATORY CONTROL SAMPLE	: 3473867					
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
						Qualificio
1,2-Dichloroethane	ug/L	50	48.7	97	70-124	
1,2-Dichloropropane	ug/L	50	47.8	96	74-128	
1,3,5-Trimethylbenzene	ug/L	50	47.3	95	71-124	
Benzene	ug/L	50	48.7	97	74-124	
Chlorobenzene	ug/L	50	47.6	95	77-121	
Chloroform	ug/L	50	49.2	98	75-118	
cis-1,2-Dichloroethene	ug/L	50	48.7	97	76-125	
Ethylbenzene	ug/L	50	47.7	95	74-125	
Isopropylbenzene (Cumene)	ug/L	50	48.6	97	75-126	
Methyl-tert-butyl ether	ug/L	50	47.8	96	74-129	
n-Hexane	ug/L	50	50.1	100	58-131	
Naphthalene	ug/L	50	46.1	92	70-132	
Tetrachloroethene	ug/L	50	47.3	95	73-132	
Toluene	ug/L	50	48.3	97	72-119	
trans-1,2-Dichloroethene	ug/L	50	49.0	98	74-125	
Trichloroethene	ug/L	50	48.3	97	75-127	
Vinyl chloride	ug/L	50	49.8	100	48-133	
Xylene (Total)	ug/L	100	95.6	96	73-123	
4-Bromofluorobenzene (S)	%.			101	79-124	
Dibromofluoromethane (S)	%.			101	82-128	
Toluene-d8 (S)	%.			100	73-122	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50356622

Date: 11/02/2023 03:28 PM

QC Batch: 758068 Analysis Method: EPA 5030/8260
QC Batch Method: EPA 5030/8260 Analysis Description: 8260 MSV

Laboratory: Pace Analytical Services - Indianapolis

Associated Lab Samples: 50356622003, 50356622004, 50356622005, 50356622006

METHOD BLANK: 3473890 Matrix: Water
Associated Lab Samples: 50356622003, 50356622004, 50356622005, 50356622006

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	ND	5.0	0.36	10/19/23 00:50	
1,1,1-Trichloroethane	ug/L	ND	5.0	0.30	10/19/23 00:50	
1,1,2,2-Tetrachloroethane	ug/L	ND	5.0	0.33	10/19/23 00:50	
1,1,2-Trichloroethane	ug/L	ND	5.0	0.36	10/19/23 00:50	
1,1-Dichloroethane	ug/L	ND	5.0	0.31	10/19/23 00:50	
1,1-Dichloroethene	ug/L	ND	5.0	0.27	10/19/23 00:50	
1,1-Dichloropropene	ug/L	ND	5.0	0.37	10/19/23 00:50	
1,2,3-Trichlorobenzene	ug/L	ND	5.0	0.45	10/19/23 00:50	
1,2,3-Trichloropropane	ug/L	ND	5.0	0.40	10/19/23 00:50	
1,2,4-Trichlorobenzene	ug/L	ND	5.0	0.43	10/19/23 00:50	
1,2,4-Trimethylbenzene	ug/L	ND	5.0	0.37	10/19/23 00:50	
1,2-Dibromoethane (EDB)	ug/L	ND	5.0	0.33	10/19/23 00:50	
1,2-Dichlorobenzene	ug/L	ND	5.0	0.36	10/19/23 00:50	
1,2-Dichloroethane	ug/L	ND	5.0	0.29	10/19/23 00:50	
1,2-Dichloropropane	ug/L	ND	5.0	0.40	10/19/23 00:50	
1,3,5-Trimethylbenzene	ug/L	ND	5.0	0.35	10/19/23 00:50	
1,3-Dichlorobenzene	ug/L	ND	5.0	0.36	10/19/23 00:50	
1,3-Dichloropropane	ug/L	ND	5.0	0.29	10/19/23 00:50	
1,4-Dichlorobenzene	ug/L	ND	5.0	0.35	10/19/23 00:50	
1-Methylnaphthalene	ug/L	ND	10.0	1.6	10/19/23 00:50	
2,2-Dichloropropane	ug/L	ND	5.0	0.33	10/19/23 00:50	
2-Butanone (MEK)	ug/L	ND	25.0	3.6	10/19/23 00:50	
2-Chlorotoluene	ug/L	ND	5.0	0.34	10/19/23 00:50	
2-Hexanone	ug/L	ND	25.0	2.0	10/19/23 00:50	
2-Methylnaphthalene	ug/L	ND	10.0	2.0	10/19/23 00:50	
4-Chlorotoluene	ug/L	ND	5.0	0.38	10/19/23 00:50	
4-Methyl-2-pentanone (MIBK)	ug/L	ND	25.0	2.0	10/19/23 00:50	
Acetone	ug/L	ND	100	6.4	10/19/23 00:50	
Acrolein	ug/L	ND	50.0	13.7	10/19/23 00:50	
Acrylonitrile	ug/L	ND	100	1.8	10/19/23 00:50	
Benzene	ug/L	ND	5.0	0.44	10/19/23 00:50	
Bromobenzene	ug/L	ND	5.0	0.38	10/19/23 00:50	
Bromochloromethane	ug/L	ND	5.0	0.37	10/19/23 00:50	
Bromodichloromethane	ug/L	ND	5.0	0.29	10/19/23 00:50	
Bromoform	ug/L	ND	5.0	0.32	10/19/23 00:50	
Bromomethane	ug/L	ND	5.0	1.8	10/19/23 00:50	
Carbon disulfide	ug/L	ND	10.0	0.40	10/19/23 00:50	
Carbon tetrachloride	ug/L	ND	5.0	1.6	10/19/23 00:50	
Chlorobenzene	ug/L	ND	5.0	0.32	10/19/23 00:50	
Chloroethane	ug/L	ND	5.0	0.87	10/19/23 00:50	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50356622

Date: 11/02/2023 03:28 PM

METHOD BLANK: 3473890 Matrix: Water
Associated Lab Samples: 50356622003, 50356622004, 50356622005, 50356622006

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Chloroform	ug/L	ND	5.0	2.6	10/19/23 00:50	-
Chloromethane	ug/L	ND	5.0	0.42	10/19/23 00:50	
cis-1,2-Dichloroethene	ug/L	ND	5.0	0.34	10/19/23 00:50	
cis-1,3-Dichloropropene	ug/L	ND	5.0	0.37	10/19/23 00:50	
Dibromochloromethane	ug/L	ND	5.0	0.27	10/19/23 00:50	
Dibromomethane	ug/L	ND	5.0	0.42	10/19/23 00:50	
Dichlorodifluoromethane	ug/L	ND	5.0	0.37	10/19/23 00:50	
Ethyl methacrylate	ug/L	ND	100	0.38	10/19/23 00:50	
Ethylbenzene	ug/L	ND	5.0	0.86	10/19/23 00:50	
Hexachloro-1,3-butadiene	ug/L	ND	5.0	0.50	10/19/23 00:50	
odomethane	ug/L	ND	10.0	1.9	10/19/23 00:50	
sopropylbenzene (Cumene)	ug/L	ND	5.0	0.34	10/19/23 00:50	
Methyl-tert-butyl ether	ug/L	ND	4.0	0.31	10/19/23 00:50	
Methylene Chloride	ug/L	ND	5.0	3.7	10/19/23 00:50	
n-Butylbenzene	ug/L	ND	5.0	0.39	10/19/23 00:50	
n-Hexane	ug/L	ND	5.0	0.39	10/19/23 00:50	
n-Propylbenzene	ug/L	ND	5.0	0.34	10/19/23 00:50	
Naphthalene	ug/L	ND	1.2	0.43	10/19/23 00:50	
o-Isopropyltoluene	ug/L	ND	5.0	0.40	10/19/23 00:50	
sec-Butylbenzene	ug/L	ND	5.0	0.35	10/19/23 00:50	
Styrene	ug/L	ND	5.0	0.36	10/19/23 00:50	
ert-Butylbenzene	ug/L	ND	5.0	0.36	10/19/23 00:50	
Tetrachloroethene	ug/L	ND	5.0	0.35	10/19/23 00:50	
Toluene	ug/L	ND	5.0	0.38	10/19/23 00:50	
rans-1,2-Dichloroethene	ug/L	ND	5.0	0.37	10/19/23 00:50	
rans-1,3-Dichloropropene	ug/L	ND	5.0	0.29	10/19/23 00:50	
trans-1,4-Dichloro-2-butene	ug/L	ND	100	0.41	10/19/23 00:50	
Trichloroethene	ug/L	ND	5.0	0.31	10/19/23 00:50	
Trichlorofluoromethane	ug/L	ND	5.0	0.34	10/19/23 00:50	
√inyl acetate	ug/L	ND	50.0	2.3	10/19/23 00:50	
√inyl chloride	ug/L	ND	2.0	0.35	10/19/23 00:50	
Xylene (Total)	ug/L	ND	10.0	2.2	10/19/23 00:50	
4-Bromofluorobenzene (S)	%.	102	79-124		10/19/23 00:50	
Dibromofluoromethane (S)	%.	105	82-128		10/19/23 00:50	1d
Toluene-d8 (S)	%.	98	73-122		10/19/23 00:50	

LABORATORY CONTROL SAMPLE:	3473891					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1-Trichloroethane	ug/L	50	46.6	93	76-127	
1,1,2,2-Tetrachloroethane	ug/L	50	40.9	82	70-126	
1,1-Dichloroethene	ug/L	50	48.7	97	73-133	
1,2,4-Trimethylbenzene	ug/L	50	40.3	81	70-127	
1,2-Dibromoethane (EDB)	ug/L	50	45.1	90	80-126	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50356622

Date: 11/02/2023 03:28 PM

LABORATORY CONTROL SAMPLE	E: 3473891					
Demonstra	I I a Ya	Spike	LCS	LCS	% Rec	0
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,2-Dichloroethane	ug/L	50	44.6	89	70-124	
1,2-Dichloropropane	ug/L	50	44.7	89	74-128	
1,3,5-Trimethylbenzene	ug/L	50	41.1	82	71-124	
Benzene	ug/L	50	45.1	90	74-124	
Chlorobenzene	ug/L	50	43.4	87	77-121	
Chloroform	ug/L	50	45.4	91	75-118	
cis-1,2-Dichloroethene	ug/L	50	44.6	89	76-125	
Ethylbenzene	ug/L	50	44.5	89	74-125	
Isopropylbenzene (Cumene)	ug/L	50	44.8	90	75-126	
Methyl-tert-butyl ether	ug/L	50	42.5	85	74-129	
n-Hexane	ug/L	50	42.1	84	58-131	
Naphthalene	ug/L	50	41.5	83	70-132	
Tetrachloroethene	ug/L	50	43.2	86	73-132	
Toluene	ug/L	50	43.8	88	72-119	
trans-1,2-Dichloroethene	ug/L	50	45.6	91	74-125	
Trichloroethene	ug/L	50	45.0	90	75-127	
Vinyl chloride	ug/L	50	49.6	99	48-133	
Xylene (Total)	ug/L	150	130	86	73-123	
4-Bromofluorobenzene (S)	%.			101	79-124	
Dibromofluoromethane (S)	%.			101	82-128	
Toluene-d8 (S)	%.			100	73-122	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50356622

Date: 11/02/2023 03:28 PM

QC Batch: 758269 Analysis Method: EPA 5030/8260
QC Batch Method: EPA 5030/8260 Analysis Description: 8260 MSV

Laboratory: Pace Analytical Services - Indianapolis

Associated Lab Samples: 50356622007, 50356622008

METHOD BLANK: 3475063 Matrix: Water

Associated Lab Samples: 50356622007, 50356622008

,		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane		ND	5.0	0.34	10/19/23 12:57	
1,1,1-Trichloroethane	ug/L	ND	5.0	0.31	10/19/23 12:57	
1,1,2,2-Tetrachloroethane	ug/L	ND	5.0	0.35	10/19/23 12:57	
1,1,2-Trichloroethane	ug/L	ND	5.0	0.33	10/19/23 12:57	
1,1-Dichloroethane	ug/L	ND	5.0	0.37	10/19/23 12:57	
1,1-Dichloroethene	ug/L	ND	5.0	0.37	10/19/23 12:57	
1,1-Dichloropropene	ug/L	ND	5.0	0.34	10/19/23 12:57	
1,2,3-Trichlorobenzene	ug/L	ND	5.0	0.42	10/19/23 12:57	
1,2,3-Trichloropropane	ug/L	ND	5.0	0.33	10/19/23 12:57	
1,2,4-Trichlorobenzene	ug/L	ND	5.0	0.42	10/19/23 12:57	
1,2,4-Trimethylbenzene	ug/L	ND	5.0	0.37	10/19/23 12:57	
1,2-Dibromoethane (EDB)	ug/L	ND	5.0	0.29	10/19/23 12:57	
1,2-Dichlorobenzene	ug/L	ND	5.0	0.34	10/19/23 12:57	
1,2-Dichloroethane	ug/L	ND	5.0	0.34	10/19/23 12:57	
1,2-Dichloropropane	ug/L	ND	5.0	0.33	10/19/23 12:57	
1,3,5-Trimethylbenzene	ug/L	ND	5.0	0.38	10/19/23 12:57	
1,3-Dichlorobenzene	ug/L	ND	5.0	0.40	10/19/23 12:57	
1,3-Dichloropropane	ug/L	ND	5.0	0.30	10/19/23 12:57	
1,4-Dichlorobenzene	ug/L	ND	5.0	0.39	10/19/23 12:57	
1-Methylnaphthalene	ug/L	ND	10.0	2.1	10/19/23 12:57	
2,2-Dichloropropane	ug/L	ND	5.0	0.37	10/19/23 12:57	
2-Butanone (MEK)	ug/L	ND	25.0	3.3	10/19/23 12:57	
2-Chlorotoluene	ug/L	ND	5.0	0.37	10/19/23 12:57	
2-Hexanone	ug/L	ND	25.0	2.2	10/19/23 12:57	
2-Methylnaphthalene	ug/L	ND	10.0	2.1	10/19/23 12:57	
4-Chlorotoluene	ug/L	ND	5.0	0.40	10/19/23 12:57	
4-Methyl-2-pentanone (MIBK)	ug/L	ND	25.0	2.1	10/19/23 12:57	
Acetone	ug/L	ND	100	8.6	10/19/23 12:57	
Acrolein	ug/L	ND	50.0	13.4	10/19/23 12:57	
Acrylonitrile	ug/L	ND	100	3.0	10/19/23 12:57	
Benzene	ug/L	ND	5.0	0.46	10/19/23 12:57	
Bromobenzene	ug/L	ND	5.0	0.41	10/19/23 12:57	
Bromochloromethane	ug/L	ND	5.0	0.33	10/19/23 12:57	
Bromodichloromethane	ug/L	ND	5.0	0.29	10/19/23 12:57	
Bromoform	ug/L	ND	5.0	0.29	10/19/23 12:57	
Bromomethane	ug/L	ND	5.0	0.51	10/19/23 12:57	
Carbon disulfide	ug/L	ND	10.0	0.62	10/19/23 12:57	
Carbon tetrachloride	ug/L	ND	5.0	0.29	10/19/23 12:57	
Chlorobenzene	ug/L	ND	5.0	0.35	10/19/23 12:57	
Chloroethane	ug/L	ND	5.0	0.44	10/19/23 12:57	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50356622

Date: 11/02/2023 03:28 PM

METHOD BLANK: 3475063 Matrix: Water

Associated Lab Samples: 50356622007, 50356622008

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Chloroform	ug/L	ND	5.0	2.6	10/19/23 12:57	-
Chloromethane	ug/L	ND	5.0	0.56	10/19/23 12:57	
cis-1,2-Dichloroethene	ug/L	ND	5.0	0.48	10/19/23 12:57	
cis-1,3-Dichloropropene	ug/L	ND	5.0	0.31	10/19/23 12:57	
Dibromochloromethane	ug/L	ND	5.0	0.31	10/19/23 12:57	
Dibromomethane	ug/L	ND	5.0	0.46	10/19/23 12:57	
Dichlorodifluoromethane	ug/L	ND	5.0	0.38	10/19/23 12:57	
Ethyl methacrylate	ug/L	ND	100	0.32	10/19/23 12:57	
Ethylbenzene	ug/L	ND	5.0	0.40	10/19/23 12:57	
Hexachloro-1,3-butadiene	ug/L	ND	5.0	0.48	10/19/23 12:57	
Iodomethane	ug/L	ND	10.0	2.0	10/19/23 12:57	
Isopropylbenzene (Cumene)	ug/L	ND	5.0	0.36	10/19/23 12:57	
Methyl-tert-butyl ether	ug/L	ND	4.0	0.66	10/19/23 12:57	
Methylene Chloride	ug/L	ND	5.0	3.7	10/19/23 12:57	
n-Butylbenzene	ug/L	ND	5.0	0.39	10/19/23 12:57	
n-Hexane	ug/L	ND	5.0	0.36	10/19/23 12:57	
n-Propylbenzene	ug/L	ND	5.0	0.37	10/19/23 12:57	
Naphthalene	ug/L	ND	1.2	0.57	10/19/23 12:57	
p-Isopropyltoluene	ug/L	ND	5.0	0.41	10/19/23 12:57	
sec-Butylbenzene	ug/L	ND	5.0	0.36	10/19/23 12:57	
Styrene	ug/L	ND	5.0	0.39	10/19/23 12:57	
tert-Butylbenzene	ug/L	ND	5.0	0.38	10/19/23 12:57	
Tetrachloroethene	ug/L	ND	5.0	0.36	10/19/23 12:57	
Toluene	ug/L	ND	5.0	0.38	10/19/23 12:57	
trans-1,2-Dichloroethene	ug/L	ND	5.0	0.48	10/19/23 12:57	
trans-1,3-Dichloropropene	ug/L	ND	5.0	0.28	10/19/23 12:57	
trans-1,4-Dichloro-2-butene	ug/L	ND	100	0.42	10/19/23 12:57	
Trichloroethene	ug/L	ND	5.0	0.41	10/19/23 12:57	
Trichlorofluoromethane	ug/L	ND	5.0	0.36	10/19/23 12:57	
Vinyl acetate	ug/L	ND	50.0	1.7	10/19/23 12:57	
Vinyl chloride	ug/L	ND	2.0	0.40	10/19/23 12:57	
Xylene (Total)	ug/L	ND	10.0	1.5	10/19/23 12:57	
4-Bromofluorobenzene (S)	%.	101	79-124		10/19/23 12:57	
Dibromofluoromethane (S)	%.	104	82-128		10/19/23 12:57	1d
Toluene-d8 (S)	%.	100	73-122		10/19/23 12:57	

LABORATORY CONTROL SAMPLE:	3475064					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1-Trichloroethane	ug/L	50	42.0	84	76-127	
1,1,2,2-Tetrachloroethane	ug/L	50	39.4	79	70-126	
1,1-Dichloroethene	ug/L	50	42.7	85	73-133	
1,2,4-Trimethylbenzene	ug/L	50	36.2	72	70-127	
1,2-Dibromoethane (EDB)	ug/L	50	42.0	84	80-126	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50356622

Date: 11/02/2023 03:28 PM

LABORATORY CONTROL SAMPLI	E: 3475064					
ъ.	11. %	Spike	LCS	LCS	% Rec	0 ""
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,2-Dichloroethane	ug/L	50	42.5	85	70-124	
1,2-Dichloropropane	ug/L	50	39.8	80	74-128	
1,3,5-Trimethylbenzene	ug/L	50	36.2	72	71-124	
Benzene	ug/L	50	40.5	81	74-124	
Chlorobenzene	ug/L	50	39.3	79	77-121	
Chloroform	ug/L	50	41.8	84	75-118	
cis-1,2-Dichloroethene	ug/L	50	41.4	83	76-125	
Ethylbenzene	ug/L	50	38.4	77	74-125	
Isopropylbenzene (Cumene)	ug/L	50	38.6	77	75-126	
Methyl-tert-butyl ether	ug/L	50	40.3	81	74-129	
n-Hexane	ug/L	50	34.1	68	58-131	
Naphthalene	ug/L	50	37.8	76	70-132	
Tetrachloroethene	ug/L	50	37.8	76	73-132	
Toluene	ug/L	50	39.2	78	72-119	
trans-1,2-Dichloroethene	ug/L	50	41.9	84	74-125	
Trichloroethene	ug/L	50	39.9	80	75-127	
Vinyl chloride	ug/L	50	44.6	89	48-133	
Xylene (Total)	ug/L	150	115	77	73-123	
4-Bromofluorobenzene (S)	%.			102	79-124	
Dibromofluoromethane (S)	%.			103	82-128	
Toluene-d8 (S)	%.			100	73-122	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50356622

QC Batch: 757869

QC Batch Method:

69 Analysis Method:

Analysis Description:

EPA 353.2

Laboratory:

353.2 Nitrate + Nitrite, Unpres.
Pace Analytical Services - Indianapolis

Associated Lab Samples: 50356622001

EPA 353.2

METHOD BLANK: 3473217

Nitrogen, NO2 plus NO3

Date: 11/02/2023 03:28 PM

Matrix: Water

Associated Lab Samples: 50356622001

Blank Reporting
Parameter Units Result Limit

mg/L

 Parameter
 Units
 Result
 Limit
 MDL
 Analyzed
 Qualifiers

 Nitrogen, Nitrate
 mg/L
 ND
 0.10
 0.011
 10/17/23 23:35

 Nitrogen, NO2 plus NO3
 mg/L
 ND
 0.10
 0.011
 10/17/23 23:35

LABORATORY CONTROL SAMPLE: 3473218

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Nitrogen, Nitrate 1.0 100 90-110 mg/L 1 Nitrogen, NO2 plus NO3 mg/L 2 2.0 100 90-110

MATRIX SPIKE SAMPLE: 3473219 50356561003 Spike MS MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers 2.1 Nitrogen, Nitrate mg/L 3.1 94 90-110 2.1 Nitrogen, NO2 plus NO3 mg/L 2 4.1 97 90-110

MATRIX SPIKE SAMPLE: 3473220 MS 50356558001 Spike MS % Rec Qualifiers Parameter Units Result Conc. Result % Rec Limits Nitrogen, Nitrate ND 1.1 103 90-110 mg/L

ND

2

2.1

101

90-110

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50356622

QC Batch: 758409

QC Batch Method: SM 5310C

Analysis Method: SM 5310C

Analysis Description:

5310C Total Organic Carbon

Laboratory:

Pace Analytical Services - Indianapolis

Associated Lab Samples: 50356622001

METHOD BLANK: 3475754

Associated Lab Samples: 50356622001

Blank Reporting

ParameterUnitsResultLimitMDLAnalyzedQualifiersTotal Organic Carbonug/LND100023610/20/23 20:02

Matrix: Water

LABORATORY CONTROL SAMPLE: 3475755

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units ug/L **Total Organic Carbon** 10000 9800 98 90-110

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3475756 3475757

MS MSD

10672369003 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Conc. Result Result **RPD** RPD Qual Result Conc. % Rec % Rec Limits **Total Organic Carbon** 11200 20 ug/L 1.4 mg/L 10000 10000 11200 97 98 80-120 0

MATRIX SPIKE SAMPLE: 3475758

Date: 11/02/2023 03:28 PM

10672369004 MS MS % Rec Spike % Rec Qualifiers Parameter Units Result Conc. Result Limits 1.3 mg/L Total Organic Carbon 10000 11000 97 80-120 ug/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: GE Indy
Pace Project No.: 50356622

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 11/02/2023 03:28 PM

- 1d A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.
- D3 Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.

METHOD CROSS REFERENCE TABLE

Project: GE Indy
Pace Project No.: 50356622

Parameter	Matrix	Analytical Method	Preparation Method	
6010 MET ICP, Dissolved	Water	SW-846 6010B	SW-846 3010A	

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: GE Indy
Pace Project No.: 50356622

Date: 11/02/2023 03:28 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
50356622001	MW-425-101723	EPA 300.0	759164		
50356622003	W-9-101723	RSK 175 Modified	758324		
50356622001	MW-425-101723	EPA 3010	760470	EPA 6010	760479
50356622001	MW-425-101723	EPA 5030/8260	758059		
50356622002	MW-331-101723	EPA 5030/8260	758059		
50356622003	W-9-101723	EPA 5030/8260	758068		
50356622004	MW-251-101723	EPA 5030/8260	758068		
50356622005	MW-131-101723	EPA 5030/8260	758068		
50356622006	MW-41-101723	EPA 5030/8260	758068		
50356622007	AD-100-101723	EPA 5030/8260	758269		
50356622008	Trip Blank-101723	EPA 5030/8260	758269		
50356622001	MW-425-101723	EPA 353.2	757869		
50356622001	MW-425-101723	SM 5310C	758409		

•
Pace Analytical*
WWW.PACELABS.COM

CHAIN-OF-CUSTODY / Analytical Request Docu

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be

WO#:50356622

1111		1 11 11	-	-
5035	6622			

Submitting a sample via this chain of custody constitutes acknowledgment and acceptance of the Pace Terms and Conditions found at https://info.pacelabs.c Section B Section C Section A Required Client Information: **Required Project Information:** Invoice Information: Company: Ramboll C Address: 8805 Gov Cincinnati, OH 45249 Email: chase.forman@ Ramboll OH Report To: Chase Forman Accounts Payable Copy To: Company Name: Ramboll OH 8805 Governor's Hill Drive Suite 205 Address: chase.forman@ramboll.com Purchase Order #: 1940006425 Pace Quote Phone: (740)
Requested Due Date: (740)403-1387 Fax: Project Name: GE Indy Pace Project Manager: heather.patterson@pacelabs.com

Pace Profile #: Project #: 9761-8 Standard C=COMP) Preservatives COLLECTED MATRIX **Drinking Water** Water (G=GRAB Waste Water Product 300.0 SAMPLE ID (see Soil/Solid START **END** Nitrate by 353.2 Oil One Character per box. Wipe MATRIX CODE SAMPLE TYPE /OC by 8260 Sulfate by (A-Z, 0-9/, -) Other Sample Ids must be unique ITEM 를 무 DATE TIME DATE G 9 2 UM UUS 006 R wit 001 10 ADDITIONAL COMMENTS ACCEPTED BY / AFFILIATION **RELINQUISHED BY / AFFILIATION** SAMPLE CONDITIONS 10117123 1444 18.0 NITRATE by 353.2 SHORT HOLD

SAMPLER NAME AND SIGNATURE

PRINT Name of SAMPLER: SIGNATURE of SAMPLER:

i g e24	of 42	
3 2		

6

TEMP in C

SAMPLE CONDITION UPON RECEIPT FORM

Date/Time and Initials of person examining content	s: 10117123	1505	cor		_			
1. Courier: ☐ FED EX ☐UPS ☐ CLIENT ☐ PACE	□ NOW/JE	TT [OTHER	5. Packing Material:	☑ Bubble Wrap	Bubb	le Bags	
2. Custody Seal on Cooler/Box Present: Yes	No				None	☐ Other		
(If yes)Seals Intact:	k if no seals w	ere pres	sent)	,				
3. Thermometer: 12345678 ABCD	EFGH			6. Ice Type: Wet	☐ Blue ☐ None			
4. Cooler Temperature(s): (ロッ/ル.o				7. If temp. is over 6°C or u	under 0°C was the DM	notified?	□ Van	A.
(Initial/Corrected) RECORD TEMPS OF ALL COOLERS RECE	EIVED (use Com	nents belo	ow to add more)		p should be above free			_ No
				omments section below.				
	Yes	No				Yes	No	N/A
USDA Regulated Soils? (HI, ID, NY, WA, OR,CA, NM, TX, OK, AR, LA, TN, AL, MS, NC, SC, GA, FL, or Puerto Rico)		/	CHECKED?: Excepany container with a	ing acid/base preservation h ptions: VOA, coliform, LLHg, septum cap or preserved with	O&G, RAD CHEM, and			
Short Hold Time Analysis (48 hours or less)? Analysis: んっていっろ	/		Circle; I(NO3.(<2) H2SO4 Any non-conformance count form	(<2) NaOH (>10) NaOH/Zn to pH recommendations will be	Ac (>9) noted on the container	/ .		
Time 5035A TC placed in Freezer or Short Holds To Lab	Time: 162	00	Residual Chlorine (Check (SVOC 625 Pest/PCB	608)	Present	Absent	N/A
Rush TAT Requested (4 days or less):		/	Residual Chlorine (Check (Total/Amenable/Free	Cyanide)			_
Custody Signatures Present?	/		Headspace Wiscons	in Sulfide?				_
Containers Intact?:			Headspace in VOA \ See Containter Cou			Present	Absent	No VOA Vials Sent
Sample Label (IDs/Dates/Times) Match COC?: Except TCs, which only require sample ID	/		Trip Blank Present?	•		-		
Extra labels on Terracore Vials? (soils only)	*		Trip Blank Custody	Seals?:		_		
COMMENTS:								
				Þ			·	,
								Page 41 of 42

** Place a RED dot on containers

that are out of conformance **

			MeOH (only)	1		ı		1										D	407	10					OTI	IED			Nitric	Sulfurio	Sodium Hydroxide	Sodium Hydroxide/ ZnAc
			SBS							AME	BER G	LASS						P	LAST	IC					OII	HER			Red	Yellow	Green	Black
COC Line Item	WGFU	WGKU BG1U	R	DG9H	VOA VIAL HS >6mm	Deson	VG9T	AGOU	AG1H	AG10	AG3U	AG3S	AG3SF	AG3B	BP1U	BP1N	BP2U	BP3U	BP3N	BP3F	BP3S	вьзв	BP3Z	ССЗН	CG3F	Syringe Kit		ž	HNO3 <2	H2SO4 <2	NaOH >10	NaOH/Zn Ac >9
1				3								1						l		1							-	5	~	1		
2				1																							1	UT				
3						3																						LT				
4																											1	N				
5																												1				
6																											1	J				
7																											V	ú				
8				_																							1	J				
9																																
10																											1	1				
11																											\perp	1				
12																																

Container Codes

	Glass										
DG9H	40mL HCl amber voa vial	BG1T	glass								
DG9P	40mL TSP amber vial	BG1U	1L unpreserved glass								
DG9S	40mL H2SO4 amber vial	CG3U	250mL Unpres Clear Glass								
DG9T	40mL Na Thio amber vial	AG0U	100mL unpres amber glass								
DG9U	40mL unpreserved amber vial	AG1H	1L HCl amber glass								
VG9H	40mL HCl clear vial	AG1S	1L H2SO4 amber glass								
VG9T	40mL Na Thio. clear vial	AG1T	1L Na Thiosulfate amber glass								
VG9U	40mL unpreserved clear vial	AG1U	1liter unpres amber glass								
I	40mL w/hexane wipe vial	AG2N	500mL HNO3 amber glass								
WGKU	8oz unpreserved clear jar	AG2S	500mL H2SO4 amber glass								
WGFU	4oz clear soil jar	AG2U	500mL unpres amber glass								
JGFU	4oz unpreserved amber wide	AG3S	250mL H2SO4 amber glass								
СG3H	250mL clear glass HCI	AG3SF	250mL H2SO4 amb glass -field filtered								
CG3F	250mL clear glass HCI, Field Filter	AG3U	250mL unpres amber glass								
BG1H	1L HCl clear glass	AG3B	250mL NaOH amber glass								
BG1S	1L H2SO4 clear glass		The state of the s								

			PI	astic			
BP1B	1L NaOH plastic	BP4L	125m	L unpreserved plastic			
BP1N	1L HNO3 plastic	BP4N	125m	L HNO3 plastic			
BP1S	1L H2SO4 plastic	BP4S	P4S 125mL H2SO4 plastic				
BP1U	1L unpreserved plastic			Miscellaneous			
BP1Z	1L NaOH, Zn, Ac			Miscenarieous			
BP2N	500mL HNO3 plastic	Syring	ge Kit	LL Cr+6 sampling kit			
BP2C	500mL NaOH plastic	ZPLC	Ziploc	Bag			
BP2S	500mL H2SO4 plastic	R	Terra	core Kit			
BP2U	500mL unpreserved plastic	SP5T	120m	L Coliform Sodium Thiosulfate			
BP2Z	500mL NaOH, Zn Ac	GN	Gene	ral Container			
врзв	250mL NaOH plastic *	U	Sumn	na Can (air sample)			
BP3N	250mL HNO3 plastic	WT	Water				
BP3F	250mL HNO3 plastic-field filtered	SL	Solid				
BP3U	250mL unpreserved plastic	OL:	Oil				
BP3S	250mL H2SO4 plastic	NAL	Non-a	queous liquid			
BP3Z	250mL NaOH, ZnAc plastic	WP	Wipe				
BP3R	250mL Unpres. FF SO4/OH buffer						

December 19, 2023

Chase Forman Ramboll 8805 Governor's Hill Drive Suite 205 Cincinnati, OH 45249

RE: Project: GE Indy

Pace Project No.: 50361374

Dear Chase Forman:

Enclosed are the analytical results for sample(s) received by the laboratory on December 11, 2023. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Indianapolis

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Heather Patterson

heather.patterson@pacelabs.com

Heath Pathson

(317)228-3146

Project Manager

Enclosures

cc: Mr. Tyler Carter, Ramboll Environ

Matt Starrett, Ramboll Dana Williams, Ramboll

CERTIFICATIONS

Project: GE Indy
Pace Project No.: 50361374

Pace Analytical Services Indianapolis

7726 Moller Road, Indianapolis, IN 46268
Illinois Accreditation #: 200074
Indiana Drinking Water Laboratory #: C-49-06
Kansas/TNI Certification #: E-10177
Kentucky UST Agency Interest #: 80226
Kentucky WW Laboratory ID #: 98019
Michigan Drinking Water Laboratory #9050

Ohio VAP Certified Laboratory #: CL0065 Oklahoma Laboratory #: 9204 Texas Certification #: T104704355 Washington Dept of Ecology #: C1081 Wisconsin Laboratory #: 999788130 USDA Foreign Soil Permit #: 525-23-13-23119 USDA Compliance Agreement #: IN-SL-22-001

SAMPLE SUMMARY

Project: GE Indy
Pace Project No.: 50361374

Lab ID	Sample ID	Matrix	Date Collected	Date Received	
50361374001	W-8-121123	Water	12/11/23 12:10	12/11/23 13:25	
50361374002	W-10-121123	Water	12/11/23 12:20	12/11/23 13:25	
50361374003	MW-241-121123	Water	12/11/23 12:30	12/11/23 13:25	
50361374004	Trip Blank-121123	Water	12/11/23 08:00	12/11/23 13:25	

SAMPLE ANALYTE COUNT

Project: GE Indy
Pace Project No.: 50361374

Sample ID	Method	Analysts	Reported	Laboratory
W-8-121123	RSK 175 Modified	JRW	3	PASI-I
	EPA 5030/8260	DAP	75	PASI-I
W-10-121123	EPA 5030/8260	DAP	75	PASI-I
MW-241-121123	EPA 5030/8260	DAP	75	PASI-I
Trip Blank-121123	EPA 5030/8260	DAP	75	PASI-I
\	N-10-121123 MW-241-121123	EPA 5030/8260 N-10-121123 EPA 5030/8260 MW-241-121123 EPA 5030/8260	EPA 5030/8260 DAP N-10-121123 EPA 5030/8260 DAP MW-241-121123 EPA 5030/8260 DAP	EPA 5030/8260 DAP 75 N-10-121123 EPA 5030/8260 DAP 75 MW-241-121123 EPA 5030/8260 DAP 75

PASI-I = Pace Analytical Services - Indianapolis

SUMMARY OF DETECTION

Project: GE Indy
Pace Project No.: 50361374

Lab Sample ID Method	Client Sample ID Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
50361374001	W-8-121123					
RSK 175 Modified	Methane	644	ug/L	10.0	12/15/23 14:47	

Project: GE Indy
Pace Project No.: 5036137

Date: 12/19/2023 01:36 PM

Sample: W-8-121123	Lab ID:	50361374001	Collecte	d: 12/11/23	3 12:10	Received: 12	2/11/23 13:25 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
RSK 175 Headspace	Analytical	Method: RSK	I75 Modifie			H-		•	
ton 110 Houdopado		ytical Services							
		•	•						
Ethane	ND	ug/L	10.0	8.9	1		12/15/23 14:47		
Ethene	ND	ug/L	10.0	8.0	1		12/15/23 14:47		
Methane	644	ug/L	10.0	7.9	1		12/15/23 14:47	74-82-8	
3260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Anal	ytical Services	- Indianapo	lis					
Acetone	ND	ug/L	100	3.9	1		12/16/23 05:27	67-64-1	
Acrolein	ND ND	ug/L ug/L	50.0	8.9	1		12/16/23 05:27		
Acrylonitrile	ND	ug/L	100	1.5	1		12/16/23 05:27		
Benzene	ND ND	ug/L ug/L	5.0	0.33	1		12/16/23 05:27		
Bromobenzene	ND ND	ug/L ug/L	5.0	0.53	1		12/16/23 05:27		
Bromochloromethane	ND ND	ug/L ug/L	5.0	0.35	1		12/16/23 05:27		
Bromodichloromethane	ND ND	ug/L ug/L	5.0	0.55	1		12/16/23 05:27		
Bromoform	ND ND	ug/L ug/L	5.0	0.80	1		12/16/23 05:27		
Bromomethane	ND ND	ū	5.0	2.4	1		12/16/23 05:27		
		ug/L			1		12/16/23 05:27		
-Butanone (MEK)	ND	ug/L	25.0	1.4					
-Butylbenzene	ND	ug/L	5.0	0.35	1		12/16/23 05:27		
sec-Butylbenzene	ND	ug/L	5.0	0.30	1		12/16/23 05:27		
ert-Butylbenzene	ND	ug/L	5.0	0.33	1		12/16/23 05:27		
Carbon disulfide	ND	ug/L	10.0	0.33	1		12/16/23 05:27		
Carbon tetrachloride	ND	ug/L	5.0	0.74	1		12/16/23 05:27		
Chlorobenzene	ND	ug/L	5.0	0.31	1		12/16/23 05:27		
Chloroethane	ND	ug/L	5.0	0.77	1		12/16/23 05:27		
Chloroform	ND	ug/L	5.0	0.89	1		12/16/23 05:27		
Chloromethane	ND	ug/L	5.0	0.63	1		12/16/23 05:27		
2-Chlorotoluene	ND	ug/L	5.0	0.33	1		12/16/23 05:27		
l-Chlorotoluene	ND	ug/L	5.0	0.36	1		12/16/23 05:27		
Dibromochloromethane	ND	ug/L	5.0	0.70	1		12/16/23 05:27		
,2-Dibromoethane (EDB)	ND	ug/L	5.0	0.41	1		12/16/23 05:27		
Dibromomethane	ND	ug/L	5.0	0.51	1		12/16/23 05:27		
,2-Dichlorobenzene	ND	ug/L	5.0	0.34	1		12/16/23 05:27		
,3-Dichlorobenzene	ND	ug/L	5.0	0.40	1		12/16/23 05:27		
1,4-Dichlorobenzene	ND	ug/L	5.0	0.35	1		12/16/23 05:27	106-46-7	
rans-1,4-Dichloro-2-butene	ND	ug/L	100	0.60	1		12/16/23 05:27		
Dichlorodifluoromethane	ND	ug/L	5.0	0.93	1		12/16/23 05:27	75-71-8	
,1-Dichloroethane	ND	ug/L	5.0	0.35	1		12/16/23 05:27	75-34-3	
,2-Dichloroethane	ND	ug/L	5.0	0.35	1		12/16/23 05:27		
,1-Dichloroethene	ND	ug/L	5.0	0.31	1		12/16/23 05:27		
cis-1,2-Dichloroethene	ND	ug/L	5.0	0.39	1		12/16/23 05:27		
rans-1,2-Dichloroethene	ND	ug/L	5.0	0.35	1		12/16/23 05:27		
,2-Dichloropropane	ND	ug/L	5.0	0.36	1		12/16/23 05:27	78-87-5	
,3-Dichloropropane	ND	ug/L	5.0	0.27	1		12/16/23 05:27	142-28-9	
2,2-Dichloropropane	ND	ug/L	5.0	0.47	1		12/16/23 05:27	594-20-7	
1,1-Dichloropropene	ND	ug/L	5.0	0.58	1		12/16/23 05:27	563-58-6	
cis-1,3-Dichloropropene	ND	ug/L	5.0	0.69	1		12/16/23 05:27	10061-01-5	

Project: GE Indy
Pace Project No.: 50361374

Date: 12/19/2023 01:36 PM

Sample: W-8-121123	Lab ID: 5036	1374001 Colle	cted: 12/11/2	3 12:10	Received: 12	2/11/23 13:25 I	Matrix: Water	
Doromotoro	Results Un	Report	MDL	DF	Droporod	Analyzad	CACNo	Oue
Parameters	Results Un				Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical Metho	od: EPA 5030/826	0					
	Pace Analytical	Services - Indiana	apolis					
trans-1,3-Dichloropropene	ND ug	/L 5.	0 0.68	1		12/16/23 05:2	7 10061-02-6	
Ethylbenzene	ND ug	/L 5.	0 0.32	1		12/16/23 05:2	7 100-41-4	
Ethyl methacrylate	ND ug	/L 10	0 0.50	1		12/16/23 05:2	7 97-63-2	
Hexachloro-1,3-butadiene	ND ug	/L 5.	0 0.64	1		12/16/23 05:2	7 87-68-3	
n-Hexane	ND ug	/L 5.	0 4.2	1		12/16/23 05:2	7 110-54-3	
2-Hexanone	ND ug	/L 25.	0 2.1	1		12/16/23 05:2	7 591-78-6	
lodomethane	ND ug		0 0.82	1		12/16/23 05:2	7 74-88-4	
Isopropylbenzene (Cumene)	ND ug		0 0.29	1		12/16/23 05:2	7 98-82-8	
p-lsopropyltoluene	ND ug		0 0.35	1		12/16/23 05:2	7 99-87-6	
Methylene Chloride	ND ug	/L 5.	0 2.8	1		12/16/23 05:2	7 75-09-2	
1-Methylnaphthalene	ND ug		0 1.4	1		12/16/23 05:2		
2-Methylnaphthalene	ND ug		0 1.3	1		12/16/23 05:2	7 91-57-6	
4-Methyl-2-pentanone (MIBK)	ND ug			1		12/16/23 05:2		
Methyl-tert-butyl ether	ND ug		0 0.29	1		12/16/23 05:2	7 1634-04-4	
Naphthalene	ND ug			1		12/16/23 05:2	7 91-20-3	
n-Propylbenzene	ND ug			1		12/16/23 05:2		
Styrene	ND ug			1		12/16/23 05:2		
1,1,1,2-Tetrachloroethane	ND ug			1		12/16/23 05:2		
1,1,2,2-Tetrachloroethane	ND ug			1		12/16/23 05:2		
Tetrachloroethene	ND ug			1		12/16/23 05:2		
Toluene	ND ug			1		12/16/23 05:2	7 108-88-3	
1,2,3-Trichlorobenzene	ND ug			1		12/16/23 05:2		
1,2,4-Trichlorobenzene	ND ug			1		12/16/23 05:2		
1,1,1-Trichloroethane	ND ug			1		12/16/23 05:2		
1,1,2-Trichloroethane	ND ug			1		12/16/23 05:2		
Trichloroethene	ND ug			1		12/16/23 05:2		
Trichlorofluoromethane	ND ug		-	1		12/16/23 05:2		
1,2,3-Trichloropropane	ND ug			1		12/16/23 05:2		
1,2,4-Trimethylbenzene	ND ug			1		12/16/23 05:2		
1,3,5-Trimethylbenzene	ND ug			1		12/16/23 05:2		
Vinyl acetate	ND ug			1		12/16/23 05:2		
Vinyl chloride	ND ug			1		12/16/23 05:2		
Xylene (Total)	ND ug			1		12/16/23 05:2		
Surrogates	11D ug	, _ 10.	0.02	•		12/10/20 00.2	000 20 7	
Dibromofluoromethane (S)	98 %	s. 82-12	8	1		12/16/23 05:2	7 1868-53-7	
4-Bromofluorobenzene (S)	97 %		-	1		12/16/23 05:2		
Toluene-d8 (S)	101 %	-		1		12/16/23 05:2		

Project: GE Indy
Pace Project No.: 50361374

Date: 12/19/2023 01:36 PM

Sample: W-10-121123	Lab ID:	50361374002	Collected	: 12/11/23	12:20	Received: 12	/11/23 13:25 M	latrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	-	lytical Services		S					
Acetone	ND	ug/L	100	3.9	1		12/16/23 06:23	67-64-1	
Acrolein	ND	ug/L	50.0	8.9	1		12/16/23 06:23	107-02-8	
Acrylonitrile	ND	ug/L	100	1.5	1		12/16/23 06:23		
Benzene	ND	ug/L	5.0	0.33	1		12/16/23 06:23	71-43-2	
Bromobenzene	ND	ug/L	5.0	0.67	1		12/16/23 06:23		
Bromochloromethane	ND	ug/L	5.0	0.35	1		12/16/23 06:23		
Bromodichloromethane	ND	ug/L	5.0	0.55	1		12/16/23 06:23		
Bromoform	ND	ug/L	5.0	0.80	1		12/16/23 06:23		
Bromomethane	ND	ug/L	5.0	2.4	1		12/16/23 06:23		
2-Butanone (MEK)	ND ND	ug/L	25.0	1.4	1		12/16/23 06:23		
n-Butylbenzene	ND	ug/L	5.0	0.35	1		12/16/23 06:23		
sec-Butylbenzene	ND ND	ug/L	5.0	0.30	1		12/16/23 06:23		
ert-Butylbenzene	ND ND	ug/L ug/L	5.0	0.33	1		12/16/23 06:23		
Carbon disulfide	ND ND	-	10.0	0.33	1		12/16/23 06:23		
		ug/L		0.33					
Carbon tetrachloride	ND	ug/L	5.0		1		12/16/23 06:23		
Chlorobenzene	ND	ug/L	5.0	0.31	1		12/16/23 06:23		
Chloroethane	ND	ug/L	5.0	0.77	1		12/16/23 06:23		
Chloroform	ND	ug/L	5.0	0.89	1		12/16/23 06:23		
Chloromethane	ND	ug/L	5.0	0.63	1		12/16/23 06:23		
2-Chlorotoluene	ND	ug/L	5.0	0.33	1		12/16/23 06:23		
4-Chlorotoluene	ND	ug/L	5.0	0.36	1		12/16/23 06:23		
Dibromochloromethane	ND	ug/L	5.0	0.70	1		12/16/23 06:23		
1,2-Dibromoethane (EDB)	ND	ug/L	5.0	0.41	1		12/16/23 06:23		
Dibromomethane	ND	ug/L	5.0	0.51	1		12/16/23 06:23	74-95-3	
1,2-Dichlorobenzene	ND	ug/L	5.0	0.34	1		12/16/23 06:23	95-50-1	
1,3-Dichlorobenzene	ND	ug/L	5.0	0.40	1		12/16/23 06:23	541-73-1	
1,4-Dichlorobenzene	ND	ug/L	5.0	0.35	1		12/16/23 06:23	106-46-7	
rans-1,4-Dichloro-2-butene	ND	ug/L	100	0.60	1		12/16/23 06:23	110-57-6	
Dichlorodifluoromethane	ND	ug/L	5.0	0.93	1		12/16/23 06:23	75-71-8	
1,1-Dichloroethane	ND	ug/L	5.0	0.35	1		12/16/23 06:23	75-34-3	
1,2-Dichloroethane	ND	ug/L	5.0	0.35	1		12/16/23 06:23	107-06-2	
1,1-Dichloroethene	ND	ug/L	5.0	0.31	1		12/16/23 06:23	75-35-4	
cis-1,2-Dichloroethene	ND	ug/L	5.0	0.39	1		12/16/23 06:23	156-59-2	
rans-1,2-Dichloroethene	ND	ug/L	5.0	0.35	1		12/16/23 06:23	156-60-5	
1,2-Dichloropropane	ND	ug/L	5.0	0.36	1		12/16/23 06:23	78-87-5	
1,3-Dichloropropane	ND	ug/L	5.0	0.27	1		12/16/23 06:23	142-28-9	
2,2-Dichloropropane	ND	ug/L	5.0	0.47	1		12/16/23 06:23		
1,1-Dichloropropene	ND	ug/L	5.0	0.58	1		12/16/23 06:23		
cis-1,3-Dichloropropene	ND	ug/L	5.0	0.69	1		12/16/23 06:23		
trans-1,3-Dichloropropene	ND	ug/L	5.0	0.68	1		12/16/23 06:23		
Ethylbenzene	ND ND	ug/L	5.0	0.32	1		12/16/23 06:23		
Ethyl methacrylate	ND ND	ug/L ug/L	100	0.50	1		12/16/23 06:23		
Hexachloro-1,3-butadiene	ND ND	ug/L ug/L	5.0	0.50	1		12/16/23 06:23		
n-Hexane	ND ND	-	5.0 5.0	4.2			12/16/23 06:23		
n-Hexane 2-Hexanone	ND ND	ug/L ug/L	5.0 25.0	4.2 2.1	1 1		12/16/23 06:23		

Project: GE Indy
Pace Project No.: 50361374

Date: 12/19/2023 01:36 PM

Sample: W-10-121123	Lab ID:	50361374002	Collecte	d: 12/11/23	3 12:20	Received: 12	2/11/23 13:25 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Ana	lytical Services	- Indianapo	olis					
lodomethane	ND	ug/L	10.0	0.82	1		12/16/23 06:23	74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	5.0	0.29	1		12/16/23 06:23	98-82-8	
p-Isopropyltoluene	ND	ug/L	5.0	0.35	1		12/16/23 06:23	99-87-6	
Methylene Chloride	ND	ug/L	5.0	2.8	1		12/16/23 06:23	75-09-2	
1-Methylnaphthalene	ND	ug/L	10.0	1.4	1		12/16/23 06:23	90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	1.3	1		12/16/23 06:23	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	1.9	1		12/16/23 06:23	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	4.0	0.29	1		12/16/23 06:23	1634-04-4	
Naphthalene	ND	ug/L	1.2	0.75	1		12/16/23 06:23	91-20-3	
n-Propylbenzene	ND	ug/L	5.0	0.33	1		12/16/23 06:23	103-65-1	
Styrene	ND	ug/L	5.0	0.31	1		12/16/23 06:23	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.73	1		12/16/23 06:23	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.22	1		12/16/23 06:23	79-34-5	
Tetrachloroethene	ND	ug/L	5.0	0.25	1		12/16/23 06:23	127-18-4	
Toluene	ND	ug/L	5.0	0.30	1		12/16/23 06:23	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	0.41	1		12/16/23 06:23	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	5.0	0.40	1		12/16/23 06:23	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	5.0	0.67	1		12/16/23 06:23	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	5.0	0.36	1		12/16/23 06:23	79-00-5	
Trichloroethene	ND	ug/L	5.0	0.44	1		12/16/23 06:23		
Trichlorofluoromethane	ND	ug/L	5.0	0.43	1		12/16/23 06:23	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	5.0	0.42	1		12/16/23 06:23		
1,2,4-Trimethylbenzene	ND	ug/L	5.0	0.34	1		12/16/23 06:23		
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.34	1		12/16/23 06:23		
Vinyl acetate	ND	ug/L	50.0	1.7	1		12/16/23 06:23		
Vinyl chloride	ND	ug/L	2.0	0.62	1		12/16/23 06:23		
Xylene (Total)	ND	ug/L	10.0	0.32	1		12/16/23 06:23		
Surrogates	.12	~ 5 , –		0.02	•		,	. 300 _0 .	
Dibromofluoromethane (S)	99	%.	82-128		1		12/16/23 06:23	1868-53-7	
4-Bromofluorobenzene (S)	96	%.	79-124		1		12/16/23 06:23	460-00-4	
Toluene-d8 (S)	99	%.	73-122		1		12/16/23 06:23		

Project: GE Indy
Pace Project No.: 50361374

Date: 12/19/2023 01:36 PM

Sample: MW-241-121123	Lab ID:	50361374003	Collected	: 12/11/23	12:30	Received: 12	2/11/23 13:25	Matrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	•	ytical Services		S					
Acetone	ND	ug/L	100	4.0	1		12/15/23 23:	38 67-64-1	
Acrolein	ND	ug/L	50.0	8.5	1			38 107-02-8	
Acrylonitrile	ND	ug/L	100	1.2	1			38 107-13-1	
Benzene	ND	ug/L	5.0	0.26	1		12/15/23 23:		
Bromobenzene	ND	ug/L	5.0	0.38	1			38 108-86-1	
Bromochloromethane	ND	ug/L	5.0	0.49	1		12/15/23 23:		
Bromodichloromethane	ND	ug/L	5.0	0.37	1		12/15/23 23:		
Bromoform	ND	ug/L	5.0	0.95	1		12/15/23 23:		
Bromomethane	ND	ug/L	5.0	2.7	1		12/15/23 23:		
2-Butanone (MEK)	ND	ug/L	25.0	2.2	1		12/15/23 23:		
n-Butylbenzene	ND	ug/L	5.0	0.36	1			38 104-51-8	
sec-Butylbenzene	ND	ug/L	5.0	0.28	1			38 135-98-8	
ert-Butylbenzene	ND	ug/L	5.0	0.24	1		12/15/23 23:		
Carbon disulfide	ND	ug/L	10.0	0.24	1		12/15/23 23:		
Carbon tetrachloride	ND	ug/L	5.0	0.83	1		12/15/23 23:		
Chlorobenzene	ND	ug/L ug/L	5.0	0.31	1			38 108-90-7	
Chloroethane	ND	ug/L ug/L	5.0	2.0	1		12/15/23 23:		
Chloroform	ND ND	ug/L ug/L	5.0	0.87	1		12/15/23 23:		
Chloromethane	ND ND	_	5.0	0.61	1		12/15/23 23:		
		ug/L			1				
2-Chlorotoluene	ND	ug/L	5.0	0.28			12/15/23 23:		
4-Chlorotoluene	ND	ug/L	5.0	0.39	1			38 106-43-4	
Dibromochloromethane	ND	ug/L	5.0	0.80	1			38 124-48-1	
1,2-Dibromoethane (EDB)	ND	ug/L	5.0	0.44	1			38 106-93-4	
Dibromomethane	ND	ug/L	5.0	0.57	1		12/15/23 23:		
1,2-Dichlorobenzene	ND	ug/L	5.0	0.28	1		12/15/23 23:		
1,3-Dichlorobenzene	ND	ug/L	5.0	0.28	1			38 541-73-1	
1,4-Dichlorobenzene	ND	ug/L	5.0	0.26	1			38 106-46-7	
rans-1,4-Dichloro-2-butene	ND	ug/L	100	0.84	1			38 110-57-6	
Dichlorodifluoromethane	ND	ug/L	5.0	1.2	1		12/15/23 23:		
1,1-Dichloroethane	ND	ug/L	5.0	0.30	1		12/15/23 23:		
1,2-Dichloroethane	ND	ug/L	5.0	0.26	1			38 107-06-2	
I,1-Dichloroethene	ND	ug/L	5.0	0.42	1		12/15/23 23:		
cis-1,2-Dichloroethene	ND	ug/L	5.0	0.48	1			38 156-59-2	
rans-1,2-Dichloroethene	ND	ug/L	5.0	0.37	1			38 156-60-5	
1,2-Dichloropropane	ND	ug/L	5.0	0.48	1		12/15/23 23:		
1,3-Dichloropropane	ND	ug/L	5.0	0.33	1			38 142-28-9	
2,2-Dichloropropane	ND	ug/L	5.0	0.62	1			38 594-20-7	
I,1-Dichloropropene	ND	ug/L	5.0	0.61	1			38 563-58-6	
cis-1,3-Dichloropropene	ND	ug/L	5.0	0.70	1			38 10061-01-5	
rans-1,3-Dichloropropene	ND	ug/L	5.0	0.74	1			38 10061-02-6	
Ethylbenzene	ND	ug/L	5.0	0.33	1		12/15/23 23:	38 100-41-4	
Ethyl methacrylate	ND	ug/L	100	0.50	1		12/15/23 23:	38 97-63-2	
Hexachloro-1,3-butadiene	ND	ug/L	5.0	0.63	1		12/15/23 23:	38 87-68-3	
n-Hexane	ND	ug/L	5.0	0.51	1		12/15/23 23:	38 110-54-3	
2-Hexanone	ND	ug/L	25.0	1.9	1		12/15/23 23:	38 591-78-6	

Project: GE Indy
Pace Project No.: 50361374

Date: 12/19/2023 01:36 PM

Sample: MW-241-121123	Lab ID:	50361374003	Collected	d: 12/11/23	3 12:30	Received: 12	2/11/23 13:25 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	Pace Ana	lytical Services	- Indianapo	lis					
lodomethane	ND	ug/L	10.0	0.79	1		12/15/23 23:38	74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	5.0	0.29	1		12/15/23 23:38	98-82-8	
p-Isopropyltoluene	ND	ug/L	5.0	0.30	1		12/15/23 23:38	99-87-6	
Methylene Chloride	ND	ug/L	5.0	3.2	1		12/15/23 23:38	75-09-2	
1-Methylnaphthalene	ND	ug/L	10.0	1.5	1		12/15/23 23:38	90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	0.57	1		12/15/23 23:38	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	1.8	1		12/15/23 23:38	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	4.0	0.26	1		12/15/23 23:38	1634-04-4	
Naphthalene	ND	ug/L	1.2	0.33	1		12/15/23 23:38	91-20-3	
n-Propylbenzene	ND	ug/L	5.0	0.28	1		12/15/23 23:38	103-65-1	
Styrene	ND	ug/L	5.0	0.33	1		12/15/23 23:38	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.67	1		12/15/23 23:38	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.39	1		12/15/23 23:38	79-34-5	
Tetrachloroethene	ND	ug/L	5.0	0.34	1		12/15/23 23:38	127-18-4	
Toluene	ND	ug/L	5.0	0.93	1		12/15/23 23:38	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	0.32	1		12/15/23 23:38	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	5.0	0.31	1		12/15/23 23:38	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	5.0	0.60	1		12/15/23 23:38	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	5.0	0.38	1		12/15/23 23:38	79-00-5	
Trichloroethene	ND	ug/L	5.0	0.28	1		12/15/23 23:38	79-01-6	
Trichlorofluoromethane	ND	ug/L	5.0	0.39	1		12/15/23 23:38	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	5.0	0.36	1		12/15/23 23:38	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/L	5.0	0.31	1		12/15/23 23:38	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.28	1		12/15/23 23:38	108-67-8	
Vinyl acetate	ND	ug/L	50.0	1.6	1		12/15/23 23:38	108-05-4	
Vinyl chloride	ND	ug/L	2.0	0.49	1		12/15/23 23:38		
Xylene (Total)	ND	ug/L	10.0	0.60	1		12/15/23 23:38		
Surrogates		J							
Dibromofluoromethane (S)	101	%.	82-128		1		12/15/23 23:38	1868-53-7	
4-Bromofluorobenzene (S)	95	%.	79-124		1		12/15/23 23:38	460-00-4	
Toluene-d8 (S)	101	%.	73-122		1		12/15/23 23:38	2037-26-5	

Project: GE Indy
Pace Project No.: 50361374

Date: 12/19/2023 01:36 PM

Sample: Trip Blank-121123	Lab ID:	50361374004	Collected	12/11/23	08:00	Received: 12	2/11/23 13:25	Matrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA 5	030/8260						
	•	ytical Services		is					
Acetone	ND	ug/L	100	4.0	1		12/15/23 22:	42 67-64-1	
Acrolein	ND	ug/L	50.0	8.5	1			42 107-02-8	
Acrylonitrile	ND	ug/L	100	1.2	1			42 107-13-1	
Benzene	ND	ug/L	5.0	0.26	1		12/15/23 22:		
Bromobenzene	ND	ug/L	5.0	0.38	1			42 108-86-1	
Bromochloromethane	ND	ug/L	5.0	0.49	1		12/15/23 22:		
Bromodichloromethane	ND	ug/L	5.0	0.37	1		12/15/23 22:		
Bromoform	ND	ug/L	5.0	0.95	1		12/15/23 22:		
Bromomethane	ND	ug/L	5.0	2.7	1		12/15/23 22:		
2-Butanone (MEK)	ND	ug/L ug/L	25.0	2.2	1		12/15/23 22:		
n-Butylbenzene	ND ND	ug/L ug/L	5.0	0.36	1			42 104-51-8	
sec-Butylbenzene	ND ND	ug/L ug/L	5.0	0.30	1			42 135-98-8	
ert-Butylbenzene	ND ND	ug/L ug/L	5.0	0.24	1		12/15/23 22:		
Carbon disulfide	ND	ug/L ug/L	10.0	0.24	1		12/15/23 22:		
Carbon tetrachloride	ND	ug/L ug/L	5.0	0.24	1		12/15/23 22:		
Chlorobenzene	ND ND	_	5.0	0.83	1			42 108-90-7	
Chloroethane		ug/L		2.0					
Chloroform	ND ND	ug/L	5.0 5.0	0.87	1 1		12/15/23 22: 12/15/23 22:		
		ug/L			1				
Chloromethane	ND	ug/L	5.0	0.61	1		12/15/23 22: 12/15/23 22:		
2-Chlorotoluene	ND	ug/L	5.0	0.28					
4-Chlorotoluene	ND	ug/L	5.0	0.39	1			42 106-43-4	
Dibromochloromethane	ND	ug/L	5.0	0.80	1			42 124-48-1	
1,2-Dibromoethane (EDB)	ND	ug/L	5.0	0.44	1			42 106-93-4	
Dibromomethane	ND	ug/L	5.0	0.57	1		12/15/23 22:		
1,2-Dichlorobenzene	ND	ug/L	5.0	0.28	1		12/15/23 22:		
1,3-Dichlorobenzene	ND	ug/L	5.0	0.28	1			42 541-73-1	
1,4-Dichlorobenzene	ND	ug/L	5.0	0.26	1			42 106-46-7	
rans-1,4-Dichloro-2-butene	ND	ug/L	100	0.84	1			42 110-57-6	
Dichlorodifluoromethane	ND	ug/L	5.0	1.2	1		12/15/23 22:		
1,1-Dichloroethane	ND	ug/L	5.0	0.30	1		12/15/23 22:		
1,2-Dichloroethane	ND	ug/L	5.0	0.26	1			42 107-06-2	
1,1-Dichloroethene	ND	ug/L	5.0	0.42	1		12/15/23 22:		
cis-1,2-Dichloroethene	ND	ug/L	5.0	0.48	1			42 156-59-2	
rans-1,2-Dichloroethene	ND	ug/L	5.0	0.37	1			42 156-60-5	
1,2-Dichloropropane	ND	ug/L	5.0	0.48	1		12/15/23 22:		
,3-Dichloropropane	ND	ug/L	5.0	0.33	1			42 142-28-9	
2,2-Dichloropropane	ND	ug/L	5.0	0.62	1			42 594-20-7	
,1-Dichloropropene	ND	ug/L	5.0	0.61	1			42 563-58-6	
cis-1,3-Dichloropropene	ND	ug/L	5.0	0.70	1			42 10061-01-5	
rans-1,3-Dichloropropene	ND	ug/L	5.0	0.74	1		12/15/23 22:	42 10061-02-6	
Ethylbenzene	ND	ug/L	5.0	0.33	1		12/15/23 22:	42 100-41-4	
Ethyl methacrylate	ND	ug/L	100	0.50	1			42 97-63-2	
Hexachloro-1,3-butadiene	ND	ug/L	5.0	0.63	1		12/15/23 22:	42 87-68-3	
n-Hexane	ND	ug/L	5.0	0.51	1		12/15/23 22:	42 110-54-3	
2-Hexanone	ND	ug/L	25.0	1.9	1		12/15/23 22:	42 591-78-6	

Project: GE Indy
Pace Project No.: 50361374

Date: 12/19/2023 01:36 PM

Sample: Trip Blank-121123	Lab ID:	50361374004	Collected:	12/11/23	08:00	Received: 12	2/11/23 13:25 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV Indiana	Analytical	Method: EPA	5030/8260						
	Pace Anal	ytical Services	s - Indianapolis	S					
lodomethane	ND	ug/L	10.0	0.79	1		12/15/23 22:42	74-88-4	
sopropylbenzene (Cumene)	ND	ug/L	5.0	0.29	1		12/15/23 22:42	98-82-8	
o-Isopropyltoluene	ND	ug/L	5.0	0.30	1		12/15/23 22:42	99-87-6	
Methylene Chloride	ND	ug/L	5.0	3.2	1		12/15/23 22:42	75-09-2	
1-Methylnaphthalene	ND	ug/L	10.0	1.5	1		12/15/23 22:42	90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	0.57	1		12/15/23 22:42	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	1.8	1		12/15/23 22:42	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	4.0	0.26	1		12/15/23 22:42	1634-04-4	
Naphthalene	ND	ug/L	1.2	0.33	1		12/15/23 22:42	91-20-3	
n-Propylbenzene	ND	ug/L	5.0	0.28	1		12/15/23 22:42	103-65-1	
Styrene	ND	ug/L	5.0	0.33	1		12/15/23 22:42	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	0.67	1		12/15/23 22:42	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	0.39	1		12/15/23 22:42	79-34-5	
Tetrachloroethene	ND	ug/L	5.0	0.34	1		12/15/23 22:42	127-18-4	
Toluene	ND	ug/L	5.0	0.93	1		12/15/23 22:42	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	0.32	1		12/15/23 22:42	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	5.0	0.31	1		12/15/23 22:42	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	5.0	0.60	1		12/15/23 22:42	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	5.0	0.38	1		12/15/23 22:42	79-00-5	
Trichloroethene	ND	ug/L	5.0	0.28	1		12/15/23 22:42	79-01-6	
Trichlorofluoromethane	ND	ug/L	5.0	0.39	1		12/15/23 22:42	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	5.0	0.36	1		12/15/23 22:42	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/L	5.0	0.31	1		12/15/23 22:42	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	5.0	0.28	1		12/15/23 22:42	108-67-8	
Vinyl acetate	ND	ug/L	50.0	1.6	1		12/15/23 22:42	108-05-4	
Vinyl chloride	ND	ug/L	2.0	0.49	1		12/15/23 22:42	75-01-4	
Xylene (Total)	ND	ug/L	10.0	0.60	1		12/15/23 22:42	1330-20-7	
Surrogates		J							
Dibromofluoromethane (S)	98	%.	82-128		1		12/15/23 22:42	1868-53-7	
4-Bromofluorobenzene (S)	96	%.	79-124		1		12/15/23 22:42	460-00-4	
Toluene-d8 (S)	101	%.	73-122		1		12/15/23 22:42	2037-26-5	

Project: GE Indy
Pace Project No.: 50361374

QC Batch: 767830 Analysis Method: RSK 175 Modified

QC Batch Method: RSK 175 Modified Analysis Description: RSK 175 HEADSPACE

Laboratory: Pace Analytical Services - Indianapolis

Associated Lab Samples: 50361374001

METHOD BLANK: 3517933 Matrix: Water

Associated Lab Samples: 50361374001

Blank Reporting Units Limit MDL Qualifiers Parameter Result Analyzed Ethane ug/L ND 10.0 8.9 12/15/23 14:02 12/15/23 14:02 Ethene ug/L ND 10.0 8.0 Methane ug/L ND 10.0 12/15/23 14:02 7.9

LABORATORY CONTROL SAMPLE: 3517934

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Ethane	ug/L	1980	2170	110	68-135	
Ethene	ug/L	2250	2450	109	79-128	
Methane	ug/L	1980	2100	106	64-132	

SAMPLE DUPLICATE: 3519728

Date: 12/19/2023 01:36 PM

Parameter	Units	50361659001 Result	Dup Result	RPD	Max RPD	Qualifiers
Ethane -	ug/L	ND ND	ND		20	
Ethene	ug/L	ND	ND		20	
Methane	ug/L	ND	ND		20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50361374

Date: 12/19/2023 01:36 PM

QC Batch: 768060 Analysis Method: EPA 5030/8260
QC Batch Method: EPA 5030/8260 Analysis Description: 8260 MSV

Laboratory: Pace Analytical Services - Indianapolis

Associated Lab Samples: 50361374001, 50361374002

METHOD BLANK: 3519461 Matrix: Water

Associated Lab Samples: 50361374001, 50361374002

	, , , , , , , , , , , , , , , , , , , ,	Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane		ND	5.0	0.73	12/15/23 21:32	
1,1,1-Trichloroethane	ug/L	ND	5.0	0.67	12/15/23 21:32	
1,1,2,2-Tetrachloroethane	ug/L	ND	5.0	0.22	12/15/23 21:32	
1,1,2-Trichloroethane	ug/L	ND	5.0	0.36	12/15/23 21:32	
1,1-Dichloroethane	ug/L	ND	5.0	0.35	12/15/23 21:32	
1,1-Dichloroethene	ug/L	ND	5.0	0.31	12/15/23 21:32	
1,1-Dichloropropene	ug/L	ND	5.0	0.58	12/15/23 21:32	
1,2,3-Trichlorobenzene	ug/L	ND	5.0	0.41	12/15/23 21:32	
1,2,3-Trichloropropane	ug/L	ND	5.0	0.42	12/15/23 21:32	
1,2,4-Trichlorobenzene	ug/L	ND	5.0	0.40	12/15/23 21:32	
1,2,4-Trimethylbenzene	ug/L	ND	5.0	0.34	12/15/23 21:32	
1,2-Dibromoethane (EDB)	ug/L	ND	5.0	0.41	12/15/23 21:32	
1,2-Dichlorobenzene	ug/L	ND	5.0	0.34	12/15/23 21:32	
1,2-Dichloroethane	ug/L	ND	5.0	0.35	12/15/23 21:32	
1,2-Dichloropropane	ug/L	ND	5.0	0.36	12/15/23 21:32	
1,3,5-Trimethylbenzene	ug/L	ND	5.0	0.34	12/15/23 21:32	
1,3-Dichlorobenzene	ug/L	ND	5.0	0.40	12/15/23 21:32	
1,3-Dichloropropane	ug/L	ND	5.0	0.27	12/15/23 21:32	
1,4-Dichlorobenzene	ug/L	ND	5.0	0.35	12/15/23 21:32	
1-Methylnaphthalene	ug/L	ND	10.0	1.4	12/15/23 21:32	
2,2-Dichloropropane	ug/L	ND	5.0	0.47	12/15/23 21:32	
2-Butanone (MEK)	ug/L	ND	25.0	1.4	12/15/23 21:32	
2-Chlorotoluene	ug/L	ND	5.0	0.33	12/15/23 21:32	
2-Hexanone	ug/L	ND	25.0	2.1	12/15/23 21:32	
2-Methylnaphthalene	ug/L	ND	10.0	1.3	12/15/23 21:32	
4-Chlorotoluene	ug/L	ND	5.0	0.36	12/15/23 21:32	
4-Methyl-2-pentanone (MIBK)	ug/L	ND	25.0	1.9	12/15/23 21:32	
Acetone	ug/L	ND	100	3.9	12/15/23 21:32	
Acrolein	ug/L	ND	50.0	8.9	12/15/23 21:32	
Acrylonitrile	ug/L	ND	100	1.5	12/15/23 21:32	
Benzene	ug/L	ND	5.0	0.33	12/15/23 21:32	
Bromobenzene	ug/L	ND	5.0	0.67	12/15/23 21:32	
Bromochloromethane	ug/L	ND	5.0	0.35	12/15/23 21:32	
Bromodichloromethane	ug/L	ND	5.0	0.55	12/15/23 21:32	
Bromoform	ug/L	ND	5.0	0.80	12/15/23 21:32	
Bromomethane	ug/L	ND	5.0	2.4	12/15/23 21:32	
Carbon disulfide	ug/L	ND	10.0	0.33	12/15/23 21:32	
Carbon tetrachloride	ug/L	ND	5.0	0.74	12/15/23 21:32	
Chlorobenzene	ug/L	ND	5.0	0.31	12/15/23 21:32	
Chloroethane	ug/L	ND	5.0	0.77	12/15/23 21:32	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50361374

Date: 12/19/2023 01:36 PM

METHOD BLANK: 3519461 Matrix: Water

Associated Lab Samples: 50361374001, 50361374002

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Chloroform	ug/L	ND	5.0	0.89	12/15/23 21:32	
Chloromethane	ug/L	ND	5.0	0.63	12/15/23 21:32	
cis-1,2-Dichloroethene	ug/L	ND	5.0	0.39	12/15/23 21:32	
cis-1,3-Dichloropropene	ug/L	ND	5.0	0.69	12/15/23 21:32	
Dibromochloromethane	ug/L	ND	5.0	0.70	12/15/23 21:32	
Dibromomethane	ug/L	ND	5.0	0.51	12/15/23 21:32	
Dichlorodifluoromethane	ug/L	ND	5.0	0.93	12/15/23 21:32	
Ethyl methacrylate	ug/L	ND	100	0.50	12/15/23 21:32	
Ethylbenzene	ug/L	ND	5.0	0.32	12/15/23 21:32	
Hexachloro-1,3-butadiene	ug/L	ND	5.0	0.64	12/15/23 21:32	
Iodomethane	ug/L	ND	10.0	0.82	12/15/23 21:32	
Isopropylbenzene (Cumene)	ug/L	ND	5.0	0.29	12/15/23 21:32	
Methyl-tert-butyl ether	ug/L	ND	4.0	0.29	12/15/23 21:32	
Methylene Chloride	ug/L	ND	5.0	2.8	12/15/23 21:32	
n-Butylbenzene	ug/L	ND	5.0	0.35	12/15/23 21:32	
n-Hexane	ug/L	ND	5.0	4.2	12/15/23 21:32	
n-Propylbenzene	ug/L	ND	5.0	0.33	12/15/23 21:32	
Naphthalene	ug/L	ND	1.2	0.75	12/15/23 21:32	
p-Isopropyltoluene	ug/L	ND	5.0	0.35	12/15/23 21:32	
sec-Butylbenzene	ug/L	ND	5.0	0.30	12/15/23 21:32	
Styrene	ug/L	ND	5.0	0.31	12/15/23 21:32	
tert-Butylbenzene	ug/L	ND	5.0	0.33	12/15/23 21:32	
Tetrachloroethene	ug/L	ND	5.0	0.25	12/15/23 21:32	
Toluene	ug/L	ND	5.0	0.30	12/15/23 21:32	
trans-1,2-Dichloroethene	ug/L	ND	5.0	0.35	12/15/23 21:32	
trans-1,3-Dichloropropene	ug/L	ND	5.0	0.68	12/15/23 21:32	
trans-1,4-Dichloro-2-butene	ug/L	ND	100	0.60	12/15/23 21:32	
Trichloroethene	ug/L	ND	5.0	0.44	12/15/23 21:32	
Trichlorofluoromethane	ug/L	ND	5.0	0.43	12/15/23 21:32	
Vinyl acetate	ug/L	ND	50.0	1.7	12/15/23 21:32	
Vinyl chloride	ug/L	ND	2.0	0.62	12/15/23 21:32	
Xylene (Total)	ug/L	ND	10.0	0.32	12/15/23 21:32	
4-Bromofluorobenzene (S)	%.	98	79-124		12/15/23 21:32	
Dibromofluoromethane (S)	%.	99	82-128		12/15/23 21:32	
Toluene-d8 (S)	%.	100	73-122		12/15/23 21:32	

LABORATORY CONTROL SAMPLE:	3519462					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	50	51.5	103	81-130	_
1,1,1-Trichloroethane	ug/L	50	50.7	101	76-127	
1,1,2,2-Tetrachloroethane	ug/L	50	55.2	110	70-126	
1,1,2-Trichloroethane	ug/L	50	53.2	106	79-124	
1,1-Dichloroethane	ug/L	50	48.4	97	76-123	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50361374

Date: 12/19/2023 01:36 PM

ABORATORY CONTROL SAMPLE	: 3519462					
ъ.		Spike	LCS	LCS	% Rec	0
Parameter	Units	Conc	Result	% Rec	Limits	Qualifier
,1-Dichloroethene	ug/L	50	52.4	105	73-133	
,1-Dichloropropene	ug/L	50	50.9	102	78-144	
,2,3-Trichlorobenzene	ug/L	50	52.7	105	72-138	
,2,3-Trichloropropane	ug/L	50	56.2	112	75-121	
,2,4-Trichlorobenzene	ug/L	50	49.0	98	71-138	
,2,4-Trimethylbenzene	ug/L	50	49.4	99	70-127	
,2-Dibromoethane (EDB)	ug/L	50	52.2	104	80-126	
,2-Dichlorobenzene	ug/L	50	52.9	106	79-123	
,2-Dichloroethane	ug/L	50	54.3	109	70-124	
,2-Dichloropropane	ug/L	50	49.8	100	74-128	
,3,5-Trimethylbenzene	ug/L	50	50.5	101	71-124	
,3-Dichlorobenzene	ug/L	50	51.0	102	77-124	
,3-Dichloropropane	ug/L	50	52.9	106	77-126	
,4-Dichlorobenzene	ug/L	50	51.4	103	77-120	
-Methylnaphthalene	ug/L	50	60.3	121	49-175	
,2-Dichloropropane	ug/L	50	38.7	77	65-136	
-Butanone (MEK)	ug/L	250	274	109	59-134	
-Chlorotoluene	ug/L	50	49.9	100	74-121	
-Hexanone	ug/L	250	292	117	63-134	
-Methylnaphthalene	ug/L	50	61.3	123	52-170	
-Chlorotoluene	ug/L	50	50.1	100	78-123	
-Methyl-2-pentanone (MIBK)	ug/L	250	286	115	67-133	
cetone	ug/L	250	314	126	32-133	
crolein	ug/L	1000	1390	139	35-166	
crylonitrile	ug/L	250	334	133	69-137	
enzene	ug/L	50	47.6	95	74-124	
Bromobenzene	ug/L	50	53.8	108	76-122	
romochloromethane	ug/L	50	47.1	94	66-127	
romodichloromethane	ug/L	50	54.6	109	80-126	
romoform	ug/L	50	55.7	111	75-128	
Bromomethane	ug/L	50	64.4	129	10-183	
Carbon disulfide	ug/L	50	49.2	98	68-123	
Carbon tetrachloride	ug/L	50 50	50.3	101	78-132	
Chlorobenzene	ug/L	50 50	51.0	102	77-121	
Chloroethane	ug/L	50	60.9	122	43-140	
Chloroform	ug/L	50 50	52.2	104	75-118	
Chloromethane	ug/L	50 50	57.2	114	45-130	
is-1,2-Dichloroethene	ug/L	50 50	48.7	97	76-125	
is-1,3-Dichloropropene	ug/L	50	50.6	101	76-123 76-132	
bibromochloromethane	ug/L	50	54.9	110	70-132 79-130	
ibromomethane	ug/L	50	54.1	108	79-130	
vichlorodifluoromethane	ug/L	50	38.9	78	10-124	
thyl methacrylate	_	50 50	56.5J	113	73-137	
thylbenzene	ug/L					
•	ug/L	50 50	49.5	99 84	74-125 66 141	
lexachloro-1,3-butadiene	ug/L	50 50	41.9	84 64	66-141	
odomethane sopropylbenzene (Cumene)	ug/L ug/L	50 50	32.0 49.6	64 99	10-160 75-126	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50361374

Date: 12/19/2023 01:36 PM

ABORATORY CONTROL SAMPLE:	3519462					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
ethyl-tert-butyl ether	ug/L	50	57.8	116	74-129	
ethylene Chloride	ug/L	50	56.7	113	77-126	
utylbenzene	ug/L	50	50.7	101	72-131	
exane	ug/L	50	40.6	81	58-131	
ropylbenzene	ug/L	50	46.1	92	76-127	
phthalene	ug/L	50	56.3	113	70-132	
sopropyltoluene	ug/L	50	48.7	97	76-126	
c-Butylbenzene	ug/L	50	47.0	94	76-129	
ene	ug/L	50	52.9	106	81-129	
Butylbenzene	ug/L	50	54.6	109	76-129	
achloroethene	ug/L	50	46.3	93	73-132	
ene	ug/L	50	49.0	98	72-119	
s-1,2-Dichloroethene	ug/L	50	51.9	104	74-125	
s-1,3-Dichloropropene	ug/L	50	50.7	101	75-132	
s-1,4-Dichloro-2-butene	ug/L	50	54.7J	109	66-152	
hloroethene	ug/L	50	48.8	98	75-127	
nlorofluoromethane	ug/L	50	56.5	113	64-136	
d acetate	ug/L	200	244	122	62-159	
yl chloride	ug/L	50	56.3	113	48-133	
ene (Total)	ug/L	150	143	95	73-123	
omofluorobenzene (S)	%.			102	79-124	
omofluoromethane (S)	%.			100	82-128	
iene-d8 (S)	%.			102	73-122	

MATRIX SPIKE SAMPLE:	3519464						
		50361374002	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	 ug/L	ND	50	50.9	102	60-150	
1,1,1-Trichloroethane	ug/L	ND	50	53.7	107	63-138	
1,1,2,2-Tetrachloroethane	ug/L	ND	50	52.7	105	58-146	
1,1,2-Trichloroethane	ug/L	ND	50	52.4	105	63-142	
1,1-Dichloroethane	ug/L	ND	50	50.7	101	64-138	
1,1-Dichloroethene	ug/L	ND	50	56.2	112	65-139	
1,1-Dichloropropene	ug/L	ND	50	54.9	110	68-155	
1,2,3-Trichlorobenzene	ug/L	ND	50	49.6	99	32-141	
1,2,3-Trichloropropane	ug/L	ND	50	53.3	107	54-144	
1,2,4-Trichlorobenzene	ug/L	ND	50	47.3	95	31-140	
1,2,4-Trimethylbenzene	ug/L	ND	50	49.9	100	34-144	
1,2-Dibromoethane (EDB)	ug/L	ND	50	50.5	101	64-139	
1,2-Dichlorobenzene	ug/L	ND	50	52.2	104	50-136	
1,2-Dichloroethane	ug/L	ND	50	54.7	109	55-146	
1,2-Dichloropropane	ug/L	ND	50	50.5	101	66-134	
1,3,5-Trimethylbenzene	ug/L	ND	50	50.9	102	29-151	
1,3-Dichlorobenzene	ug/L	ND	50	50.9	102	47-133	
1,3-Dichloropropane	ug/L	ND	50	51.7	103	61-144	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: GE Indy
Pace Project No.: 50361374

Date: 12/19/2023 01:36 PM

MATRIX SPIKE SAMPLE:	3519464						
Dovernator	1.1:	50361374002	Spike	MS	MS % Rec	% Rec	Oue!!fie
Parameter	Units	Result	Conc.	Result	% Rec	Limits -	Qualifiers
1,4-Dichlorobenzene	ug/L	ND	50	50.6	101	50-131	
1-Methylnaphthalene	ug/L	ND	50	51.1	102	20-176	
2,2-Dichloropropane	ug/L	ND	50	32.9	66	33-146	
2-Butanone (MEK)	ug/L	ND	250	262	105	45-155	
2-Chlorotoluene	ug/L	ND	50	50.2	100	43-142	
2-Hexanone	ug/L	ND	250	280	112	48-157	
2-Methylnaphthalene	ug/L	ND	50	52.9	106	21-175	
4-Chlorotoluene	ug/L	ND	50	49.9	100	47-137	
4-Methyl-2-pentanone (MIBK)	ug/L	ND	250	272	109	53-156	
Acetone	ug/L	ND	250	308	123	16-162	
Acrolein	ug/L	ND	1000	1120	112	39-184	
Acrylonitrile	ug/L	ND	250	318	127	58-140	
Benzene	ug/L	ND	50	50.1	100	65-137	
Bromobenzene	ug/L	ND	50	52.2	104	56-137	
Bromochloromethane	ug/L	ND	50	48.8	98	56-139	
Bromodichloromethane	ug/L	ND	50	55.2	110	61-149	
Bromoform	ug/L	ND	50	52.6	105	51-138	
Bromomethane	ug/L	ND	50	45.1	90	10-169	
Carbon disulfide	ug/L	ND	50	51.2	102	55-126	
Carbon tetrachloride	ug/L	ND	50	54.0	108	65-156	
Chlorobenzene	ug/L	ND	50	51.1	102	54-135	
Chloroethane	ug/L	ND	50	66.2	132	46-142	
Chloroform	ug/L	ND	50	54.1	108	64-133	
Chloromethane	ug/L	ND	50	58.8	118	30-139	
cis-1,2-Dichloroethene	ug/L	ND	50	50.6	99	59-141	
cis-1,3-Dichloropropene	ug/L	ND	50	46.9	94	57-141	
Dibromochloromethane	ug/L	ND	50	52.8	106	59-147	
Dibromomethane	ug/L	ND	50	54.3	109	64-142	
Dichlorodifluoromethane	ug/L	ND	50	42.2	84	10-144	
Ethyl methacrylate	ug/L	ND	50	53.1J	106	58-147	
Ethylbenzene	ug/L	ND	50	50.7	101	50-143	
Hexachloro-1,3-butadiene	ug/L	ND	50	42.0	84	16-155	
odomethane	ug/L	ND	50	19.2	38	10-154	
sopropylbenzene (Cumene)	ug/L	ND	50	52.0	104	36-151	
Methyl-tert-butyl ether	ug/L	ND	50	55.1	110	66-138	
Methylene Chloride	ug/L	ND	50	55.6	111	53-126	
n-Butylbenzene	ug/L	ND	50	50.2	100	31-142	
n-Hexane	ug/L	ND	50	47.9	96	53-129	
n-Propylbenzene	ug/L	ND	50	47.8	96	39-145	
Naphthalene	ug/L	ND	50	52.5	105	51-135	
o-Isopropyltoluene	ug/L	ND	50	50.6	101	38-145	
sec-Butylbenzene	ug/L	ND	50	48.3	97	33-153	
Styrene	ug/L	ND	50	53.5	107	57-141	
ert-Butylbenzene	ug/L	ND	50	50.6	107	45-145	
Fetrachloroethene	ug/L ug/L	ND ND	50 50	48.3	97	43-149	
Toluene		ND ND	50 50	46.3 50.4	101	57-137	
rans-1,2-Dichloroethene	ug/L ug/L	ND ND	50 50	50.4 53.2	101	63-133	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50361374

Date: 12/19/2023 01:36 PM

MATRIX SPIKE SAMPLE:	3519464						
		50361374002	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
trans-1,3-Dichloropropene	 ug/L	ND	50	46.5	93	56-140	
trans-1,4-Dichloro-2-butene	ug/L	ND	50	50.1J	100	36-169	
Trichloroethene	ug/L	ND	50	51.4	103	52-145	
Trichlorofluoromethane	ug/L	ND	50	62.3	125	52-144	
/inyl acetate	ug/L	ND	200	160	80	27-179	
Vinyl chloride	ug/L	ND	50	61.3	121	43-139	
Xylene (Total)	ug/L	ND	150	147	98	52-137	
1-Bromofluorobenzene (S)	%.				101	79-124	
Dibromofluoromethane (S)	%.				99	82-128	
Toluene-d8 (S)	%.				101	73-122	

Parameter Units So361374001 Result Dup Result 1,1,1,2-Tetrachloroethane ug/L ND ND 1,1,1-Trichloroethane ug/L ND ND 1,1,2-Tetrachloroethane ug/L ND ND 1,1,2-Trichloroethane ug/L ND ND 1,1-Dichloroethane ug/L ND ND 1,1-Dichloroethane ug/L ND ND 1,1-Dichloropropene ug/L ND ND 1,2,3-Trichlorobenzene ug/L ND ND 1,2,3-Trichlorobenzene ug/L ND ND 1,2,4-Trimethylbenzene ug/L ND ND 1,2-Dibromoethane (EDB) ug/L ND ND	Max RPD RPD Qualifiers
1,1,1,2-Tetrachloroethane ug/L ND ND 1,1,1-Trichloroethane ug/L ND ND 1,1,2,2-Tetrachloroethane ug/L ND ND 1,1,2-Trichloroethane ug/L ND ND 1,1-Dichloroethane ug/L ND ND 1,1-Dichloroethene ug/L ND ND 1,1-Dichloropropene ug/L ND ND 1,2,3-Trichlorobenzene ug/L ND ND 1,2,3-Trichloropropane ug/L ND ND 1,2,4-Trichlorobenzene ug/L ND ND 1,2,4-Trimethylbenzene ug/L ND ND	RPD RPD Qualifiers
1,1,1-Trichloroethane ug/L ND ND 1,1,2,2-Tetrachloroethane ug/L ND ND 1,1,2-Trichloroethane ug/L ND ND 1,1-Dichloroethane ug/L ND ND 1,1-Dichloroethene ug/L ND ND 1,1-Dichloropropene ug/L ND ND 1,2,3-Trichlorobenzene ug/L ND ND 1,2,3-Trichloropropane ug/L ND ND 1,2,4-Trichlorobenzene ug/L ND ND 1,2,4-Trimethylbenzene ug/L ND ND	
1,1,2,2-Tetrachloroethane ug/L ND ND 1,1,2-Trichloroethane ug/L ND ND 1,1-Dichloroethane ug/L ND ND 1,1-Dichloroethene ug/L ND ND 1,1-Dichloropropene ug/L ND ND 1,2,3-Trichlorobenzene ug/L ND ND 1,2,3-Trichloropropane ug/L ND ND 1,2,4-Trichlorobenzene ug/L ND ND 1,2,4-Trimethylbenzene ug/L ND ND	
1,1,2-Trichloroethane ug/L ND ND 1,1-Dichloroethane ug/L ND ND 1,1-Dichloroethene ug/L ND ND 1,1-Dichloropropene ug/L ND ND 1,2,3-Trichlorobenzene ug/L ND ND 1,2,3-Trichloropropane ug/L ND ND 1,2,4-Trichlorobenzene ug/L ND ND 1,2,4-Trimethylbenzene ug/L ND ND	20
1,1-Dichloroethane ug/L ND ND 1,1-Dichloroethene ug/L ND ND 1,1-Dichloropropene ug/L ND ND 1,2,3-Trichlorobenzene ug/L ND ND 1,2,3-Trichloropropane ug/L ND ND 1,2,4-Trichlorobenzene ug/L ND ND 1,2,4-Trimethylbenzene ug/L ND ND	20
1,1-Dichloroethene ug/L ND ND 1,1-Dichloropropene ug/L ND ND 1,2,3-Trichlorobenzene ug/L ND ND 1,2,3-Trichloropropane ug/L ND ND 1,2,4-Trichlorobenzene ug/L ND ND 1,2,4-Trimethylbenzene ug/L ND ND	20
1,1-Dichloropropene ug/L ND ND 1,2,3-Trichlorobenzene ug/L ND ND 1,2,3-Trichloropropane ug/L ND ND 1,2,4-Trichlorobenzene ug/L ND ND 1,2,4-Trimethylbenzene ug/L ND ND	20
1,2,3-Trichlorobenzene ug/L ND ND 1,2,3-Trichloropropane ug/L ND ND 1,2,4-Trichlorobenzene ug/L ND ND 1,2,4-Trimethylbenzene ug/L ND ND	20
1,2,3-Trichlorobenzene ug/L ND ND 1,2,3-Trichloropropane ug/L ND ND 1,2,4-Trichlorobenzene ug/L ND ND 1,2,4-Trimethylbenzene ug/L ND ND	20
1,2,4-Trichlorobenzene ug/L ND ND 1,2,4-Trimethylbenzene ug/L ND ND	20
1,2,4-Trimethylbenzene ug/L ND ND	20
	20
1.2-Dibromoethane (EDB) ug/l ND ND	20
1,2 Distribution (LDD) ag/L	20
1,2-Dichlorobenzene ug/L ND ND	20
1,2-Dichloroethane ug/L ND ND	20
1,2-Dichloropropane ug/L ND ND	20
1,3,5-Trimethylbenzene ug/L ND ND	20
1,3-Dichlorobenzene ug/L ND ND	20
1,3-Dichloropropane ug/L ND ND	20
1,4-Dichlorobenzene ug/L ND ND	20
1-Methylnaphthalene ug/L ND ND	20
2,2-Dichloropropane ug/L ND ND	20
2-Butanone (MEK) ug/L ND ND	20
2-Chlorotoluene ug/L ND ND	20
2-Hexanone ug/L ND ND	20
2-Methylnaphthalene ug/L ND ND	20
4-Chlorotoluene ug/L ND ND	20
4-Methyl-2-pentanone (MIBK) ug/L ND ND	20
Acetone ug/L ND 10.5J	20
Acrolein ug/L ND ND	00
Acrylonitrile ug/L ND ND	20
Benzene ug/L ND ND	20 20

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50361374

Date: 12/19/2023 01:36 PM

		50361374001	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Bromobenzene	ug/L	ND ND	ND		20	
Bromochloromethane	ug/L	ND	ND		20	
Bromodichloromethane	ug/L	ND	ND		20	
Bromoform	ug/L	ND	ND		20	
Bromomethane	ug/L	ND	ND		20	
Carbon disulfide	ug/L	ND	ND		20	
Carbon tetrachloride	ug/L	ND	ND		20	
Chlorobenzene	ug/L	ND	ND		20	
Chloroethane	ug/L	ND	ND		20	
Chloroform	ug/L	ND	ND		20	
Chloromethane	ug/L	ND	ND		20	
is-1,2-Dichloroethene	ug/L	ND	ND		20	
sis-1,3-Dichloropropene	ug/L	ND	ND		20	
Dibromochloromethane	ug/L	ND	ND		20	
Dibromomethane	ug/L	ND	ND		20	
Dichlorodifluoromethane	ug/L	ND	ND		20	
Ethyl methacrylate	ug/L	ND	ND		20	
Ethylbenzene	ug/L	ND	ND		20	
Hexachloro-1,3-butadiene	ug/L	ND	ND		20	
odomethane	ug/L	ND	ND		20	
sopropylbenzene (Cumene)	ug/L	ND	ND		20	
Methyl-tert-butyl ether	ug/L	ND	ND		20	
Methylene Chloride	ug/L	ND	ND		20	
n-Butylbenzene	ug/L	ND	ND		20	
-Hexane	ug/L	ND	ND		20	
n-Propylbenzene	ug/L	ND	ND		20	
laphthalene	ug/L	ND	ND		20	
-Isopropyltoluene	ug/L	ND	ND		20	
ec-Butylbenzene	ug/L	ND	ND		20	
Styrene	ug/L	ND	ND		20	
ert-Butylbenzene	ug/L	ND	ND		20	
etrachloroethene	ug/L	ND	ND		20	
oluene	ug/L	ND	ND		20	
rans-1,2-Dichloroethene	ug/L	ND	ND		20	
rans-1,3-Dichloropropene	ug/L	ND	ND		20	
rans-1,4-Dichloro-2-butene	ug/L	ND	ND		20	
richloroethene	ug/L	ND	ND		20	
richlorofluoromethane	ug/L	ND	ND		20	
/inyl acetate	ug/L	ND	ND		20	
/inyl chloride	ug/L	ND	ND		20	
(ylene (Total)	ug/L	ND	ND		20	
4-Bromofluorobenzene (S)	%.	97	97			
Dibromofluoromethane (S)	%.	98	99			
Toluene-d8 (S)	%.	101	99			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50361374

Date: 12/19/2023 01:36 PM

QC Batch: 768062 Analysis Method: EPA 5030/8260
QC Batch Method: EPA 5030/8260 Analysis Description: 8260 MSV

Laboratory: Pace Analytical Services - Indianapolis

Associated Lab Samples: 50361374003, 50361374004

METHOD BLANK: 3519474 Matrix: Water

Associated Lab Samples: 50361374003, 50361374004

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane			5.0	0.67	12/15/23 21:46	
1,1,1-Trichloroethane	ug/L	ND	5.0	0.60	12/15/23 21:46	
1,1,2,2-Tetrachloroethane	ug/L	ND	5.0	0.39	12/15/23 21:46	
1,1,2-Trichloroethane	ug/L	ND	5.0	0.38	12/15/23 21:46	
1,1-Dichloroethane	ug/L	ND	5.0	0.30	12/15/23 21:46	
1,1-Dichloroethene	ug/L	ND	5.0	0.42	12/15/23 21:46	
1,1-Dichloropropene	ug/L	ND	5.0	0.61	12/15/23 21:46	
1,2,3-Trichlorobenzene	ug/L	ND	5.0	0.32	12/15/23 21:46	
1,2,3-Trichloropropane	ug/L	ND	5.0	0.36	12/15/23 21:46	
1,2,4-Trichlorobenzene	ug/L	ND	5.0	0.31	12/15/23 21:46	
1,2,4-Trimethylbenzene	ug/L	ND	5.0	0.31	12/15/23 21:46	
1,2-Dibromoethane (EDB)	ug/L	ND	5.0	0.44	12/15/23 21:46	
1,2-Dichlorobenzene	ug/L	ND	5.0	0.28	12/15/23 21:46	
1,2-Dichloroethane	ug/L	ND	5.0	0.26	12/15/23 21:46	
1,2-Dichloropropane	ug/L	ND	5.0	0.48	12/15/23 21:46	
1,3,5-Trimethylbenzene	ug/L	ND	5.0	0.28	12/15/23 21:46	
1,3-Dichlorobenzene	ug/L	ND	5.0	0.28	12/15/23 21:46	
1,3-Dichloropropane	ug/L	ND	5.0	0.33	12/15/23 21:46	
1,4-Dichlorobenzene	ug/L	ND	5.0	0.26	12/15/23 21:46	
1-Methylnaphthalene	ug/L	ND	10.0	1.5	12/15/23 21:46	
2,2-Dichloropropane	ug/L	ND	5.0	0.62	12/15/23 21:46	
2-Butanone (MEK)	ug/L	ND	25.0	2.2	12/15/23 21:46	
2-Chlorotoluene	ug/L	ND	5.0	0.28	12/15/23 21:46	
2-Hexanone	ug/L	ND	25.0	1.9	12/15/23 21:46	
2-Methylnaphthalene	ug/L	ND	10.0	0.57	12/15/23 21:46	
4-Chlorotoluene	ug/L	ND	5.0	0.39	12/15/23 21:46	
4-Methyl-2-pentanone (MIBK)	ug/L	ND	25.0	1.8	12/15/23 21:46	
Acetone	ug/L	ND	100	4.0	12/15/23 21:46	
Acrolein	ug/L	ND	50.0	8.5	12/15/23 21:46	
Acrylonitrile	ug/L	ND	100	1.2	12/15/23 21:46	
Benzene	ug/L	ND	5.0	0.26	12/15/23 21:46	
Bromobenzene	ug/L	ND	5.0	0.38	12/15/23 21:46	
Bromochloromethane	ug/L	ND	5.0	0.49	12/15/23 21:46	
Bromodichloromethane	ug/L	ND	5.0	0.37	12/15/23 21:46	
Bromoform	ug/L	ND	5.0	0.95	12/15/23 21:46	
Bromomethane	ug/L	ND	5.0	2.7	12/15/23 21:46	
Carbon disulfide	ug/L	ND	10.0	0.24	12/15/23 21:46	
Carbon tetrachloride	ug/L	ND	5.0	0.83	12/15/23 21:46	
Chlorobenzene	ug/L	ND	5.0	0.31	12/15/23 21:46	
Chloroethane	ug/L	ND	5.0	2.0	12/15/23 21:46	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50361374

Date: 12/19/2023 01:36 PM

METHOD BLANK: 3519474 Matrix: Water

Associated Lab Samples: 50361374003, 50361374004

_		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Chloroform	ug/L	ND	5.0	0.87	12/15/23 21:46	
Chloromethane	ug/L	ND	5.0	0.61	12/15/23 21:46	
cis-1,2-Dichloroethene	ug/L	ND	5.0	0.48	12/15/23 21:46	
cis-1,3-Dichloropropene	ug/L	ND	5.0	0.70	12/15/23 21:46	
Dibromochloromethane	ug/L	ND	5.0	0.80	12/15/23 21:46	
Dibromomethane	ug/L	ND	5.0	0.57	12/15/23 21:46	
Dichlorodifluoromethane	ug/L	ND	5.0	1.2	12/15/23 21:46	
Ethyl methacrylate	ug/L	ND	100	0.50	12/15/23 21:46	
Ethylbenzene	ug/L	ND	5.0	0.33	12/15/23 21:46	
Hexachloro-1,3-butadiene	ug/L	ND	5.0	0.63	12/15/23 21:46	
Iodomethane	ug/L	ND	10.0	0.79	12/15/23 21:46	
Isopropylbenzene (Cumene)	ug/L	ND	5.0	0.29	12/15/23 21:46	
Methyl-tert-butyl ether	ug/L	ND	4.0	0.26	12/15/23 21:46	
Methylene Chloride	ug/L	ND	5.0	3.2	12/15/23 21:46	
n-Butylbenzene	ug/L	ND	5.0	0.36	12/15/23 21:46	
n-Hexane	ug/L	ND	5.0	0.51	12/15/23 21:46	
n-Propylbenzene	ug/L	ND	5.0	0.28	12/15/23 21:46	
Naphthalene	ug/L	ND	1.2	0.33	12/15/23 21:46	
p-Isopropyltoluene	ug/L	ND	5.0	0.30	12/15/23 21:46	
sec-Butylbenzene	ug/L	ND	5.0	0.28	12/15/23 21:46	
Styrene	ug/L	ND	5.0	0.33	12/15/23 21:46	
tert-Butylbenzene	ug/L	ND	5.0	0.24	12/15/23 21:46	
Tetrachloroethene	ug/L	ND	5.0	0.34	12/15/23 21:46	
Toluene	ug/L	ND	5.0	0.93	12/15/23 21:46	
trans-1,2-Dichloroethene	ug/L	ND	5.0	0.37	12/15/23 21:46	
trans-1,3-Dichloropropene	ug/L	ND	5.0	0.74	12/15/23 21:46	
trans-1,4-Dichloro-2-butene	ug/L	ND	100	0.84	12/15/23 21:46	
Trichloroethene	ug/L	ND	5.0	0.28	12/15/23 21:46	
Trichlorofluoromethane	ug/L	ND	5.0	0.39	12/15/23 21:46	
Vinyl acetate	ug/L	ND	50.0	1.6	12/15/23 21:46	
Vinyl chloride	ug/L	ND	2.0	0.49	12/15/23 21:46	
Xylene (Total)	ug/L	ND	10.0	0.60	12/15/23 21:46	
4-Bromofluorobenzene (S)	%.	94	79-124		12/15/23 21:46	
Dibromofluoromethane (S)	%.	99	82-128		12/15/23 21:46	
Toluene-d8 (S)	%.	101	73-122		12/15/23 21:46	

LABORATORY CONTROL SAMPLE:	3519475					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	50	51.6	103	81-130	
1,1,1-Trichloroethane	ug/L	50	49.9	100	76-127	
1,1,2,2-Tetrachloroethane	ug/L	50	53.3	107	70-126	
1,1,2-Trichloroethane	ug/L	50	55.1	110	79-124	
1,1-Dichloroethane	ug/L	50	47.8	96	76-123	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50361374

Date: 12/19/2023 01:36 PM

LABORATORY CONTROL SAMPLE:	3519475					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1-Dichloroethene	ug/L	50	51.6	103	73-133	
1,1-Dichloropropene	ug/L	50	51.2	102	78-144	
1,2,3-Trichlorobenzene	ug/L	50	52.9	106	72-138	
1,2,3-Trichloropropane	ug/L	50	57.2	114	75-121	
1,2,4-Trichlorobenzene	ug/L	50	48.3	97	71-138	
1,2,4-Trimethylbenzene	ug/L	50	48.2	96	70-127	
I,2-Dibromoethane (EDB)	ug/L	50	53.6	107	80-126	
,2-Dichlorobenzene	ug/L	50	50.6	101	79-123	
,2-Dichloroethane	ug/L	50	53.7	107	70-124	
,2-Dichloropropane	ug/L	50	50.4	101	74-128	
,3,5-Trimethylbenzene	ug/L	50	47.7	95	71-124	
,3-Dichlorobenzene	ug/L	50	48.0	96	77-124	
,3-Dichloropropane	ug/L	50	52.3	105	77-126	
I,4-Dichlorobenzene	ug/L	50	49.4	99	77-120	
-Methylnaphthalene	ug/L	50	77.6	155	49-175	
2,2-Dichloropropane	ug/L	50	38.9	78	65-136	
2-Butanone (MEK)	ug/L	250	275	110	59-134	
2-Chlorotoluene	ug/L	50	48.3	97	74-121	
-Hexanone	ug/L	250	294	118	63-134	
2-Methylnaphthalene	ug/L	50	73.7	147	52-170	
-Chlorotoluene	ug/L	50	49.6	99	78-123	
I-Methyl-2-pentanone (MIBK)	ug/L	250	291	117	67-133	
Acetone	ug/L	250	304	121	32-133	
Acrolein	ug/L	1000	1340	134	35-166	
Acrylonitrile	ug/L	250	279	112	69-137	
Benzene	ug/L	50	48.5	97	74-124	
Bromobenzene	ug/L	50	50.1	100	76-122	
Bromochloromethane	ug/L	50	47.0	94	66-127	
Bromodichloromethane	ug/L	50	54.0	108	80-126	
Bromoform	ug/L	50	55.1	110	75-128	
Bromomethane	ug/L	50	55.5	111	10-183	
Carbon disulfide	ug/L	50	45.9	92	68-123	
Carbon tetrachloride	ug/L	50	49.2	98	78-132	
Chlorobenzene	ug/L	50	50.0	100	77-121	
Chloroethane	ug/L	50	56.6	113	43-140	
Chloroform	ug/L	50	51.7	103	75-118	
Chloromethane	ug/L	50	49.7	99	45-130	
cis-1,2-Dichloroethene	ug/L	50	47.6	95	76-125	
sis-1,3-Dichloropropene	ug/L	50	51.2	102	76-132	
Dibromochloromethane	ug/L	50	54.7	109	79-130	
Dibromomethane	ug/L	50	54.3	109	79-124	
Dichlorodifluoromethane	ug/L	50	38.5	77	10-124	
Ethyl methacrylate	ug/L	50	58.1J	116	73-137	
Ethylbenzene	ug/L	50	49.9	100	74-125	
Hexachloro-1,3-butadiene	ug/L	50	40.8	82	66-141	
odomethane	ug/L	50	33.0	66	10-160	
sopropylbenzene (Cumene)	ug/L	50	49.6	99	75-126	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50361374

Date: 12/19/2023 01:36 PM

LABORATORY CONTROL SAMPLE:	3519475					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Methyl-tert-butyl ether	ug/L	50	51.3	103	74-129	
Methylene Chloride	ug/L	50	51.2	102	77-126	
-Butylbenzene	ug/L	50	47.4	95	72-131	
-Hexane	ug/L	50	40.1	80	58-131	
-Propylbenzene	ug/L	50	45.5	91	76-127	
aphthalene	ug/L	50	58.7	117	70-132	
-Isopropyltoluene	ug/L	50	47.2	94	76-126	
c-Butylbenzene	ug/L	50	47.7	95	76-129	
yrene	ug/L	50	51.0	102	81-129	
rt-Butylbenzene	ug/L	50	55.7	111	76-129	
trachloroethene	ug/L	50	45.5	91	73-132	
luene	ug/L	50	49.0	98	72-119	
ns-1,2-Dichloroethene	ug/L	50	46.8	94	74-125	
ns-1,3-Dichloropropene	ug/L	50	52.1	104	75-132	
ns-1,4-Dichloro-2-butene	ug/L	50	53.3J	107	66-152	
chloroethene	ug/L	50	47.8	96	75-127	
ichlorofluoromethane	ug/L	50	51.1	102	64-136	
inyl acetate	ug/L	200	239	119	62-159	
nyl chloride	ug/L	50	51.1	102	48-133	
rlene (Total)	ug/L	150	141	94	73-123	
Bromofluorobenzene (S)	%.			100	79-124	
oromofluoromethane (S)	%.			99	82-128	
oluene-d8 (S)	%.			103	73-122	

MATRIX SPIKE SAMPLE:	3519477						
		50361457010	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	ND	50	52.9	106	60-150	
1,1,1-Trichloroethane	ug/L	ND	50	55.3	111	63-138	
1,1,2,2-Tetrachloroethane	ug/L	ND	50	53.2	106	58-146	
1,1,2-Trichloroethane	ug/L	ND	50	55.0	110	63-142	
1,1-Dichloroethane	ug/L	ND	50	51.1	102	64-138	
1,1-Dichloroethene	ug/L	ND	50	57.1	114	65-139	
1,1-Dichloropropene	ug/L	ND	50	56.9	114	68-155	
1,2,3-Trichlorobenzene	ug/L	ND	50	50.3	101	32-141	
1,2,3-Trichloropropane	ug/L	ND	50	56.7	113	54-144	
1,2,4-Trichlorobenzene	ug/L	ND	50	47.0	94	31-140	
1,2,4-Trimethylbenzene	ug/L	ND	50	50.1	100	34-144	
1,2-Dibromoethane (EDB)	ug/L	ND	50	53.1	106	64-139	
1,2-Dichlorobenzene	ug/L	ND	50	51.4	103	50-136	
1,2-Dichloroethane	ug/L	ND	50	54.7	109	55-146	
1,2-Dichloropropane	ug/L	ND	50	52.5	105	66-134	
1,3,5-Trimethylbenzene	ug/L	ND	50	50.2	100	29-151	
1,3-Dichlorobenzene	ug/L	ND	50	49.8	100	47-133	
1,3-Dichloropropane	ug/L	ND	50	52.4	105	61-144	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50361374

Date: 12/19/2023 01:36 PM

MATRIX SPIKE SAMPLE:	3519477						
		50361457010	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
1,4-Dichlorobenzene	ug/L	ND	50	50.1	100	50-131	
1-Methylnaphthalene	ug/L	ND	50	54.7	109	20-176	
2,2-Dichloropropane	ug/L	ND	50	35.9	72	33-146	
2-Butanone (MEK)	ug/L	ND	250	271	108	45-155	
2-Chlorotoluene	ug/L	ND	50	50.8	102	43-142	
2-Hexanone	ug/L	ND	250	289	116	48-157	
2-Methylnaphthalene	ug/L	ND	50	57.9	116	21-175	
4-Chlorotoluene	ug/L	ND	50	51.3	103	47-137	
4-Methyl-2-pentanone (MIBK)	ug/L	ND	250	284	114	53-156	
Acetone	ug/L	ND	250	301	120	16-162	
Acrolein	ug/L	ND	1000	1130	113	39-184	
Acrylonitrile	ug/L	ND	250	273	109	58-140	
Benzene	ug/L	ND	50	51.8	104	65-137	
Bromobenzene	ug/L	ND	50	50.3	101	56-137	
Bromochloromethane	ug/L	ND	50	48.8	98	56-139	
Bromodichloromethane	ug/L	ND	50	55.5	111	61-149	
Bromoform	ug/L	ND	50	53.4	107	51-138	
Bromomethane	ug/L	ND	50	18.0	36	10-169	
Carbon disulfide	ug/L	ND	50	50.2	100	55-126	
Carbon tetrachloride	ug/L	ND	50	55.6	111	65-156	
Chlorobenzene	ug/L	ND	50	52.0	104	54-135	
Chloroethane	ug/L	ND	50	63.1	126	46-142	
Chloroform	ug/L	ND	50	55.2	110	64-133	
Chloromethane	ug/L	ND	50	53.2	106	30-139	
cis-1,2-Dichloroethene	ug/L	11.0	50	62.7	104	59-141	
cis-1,3-Dichloropropene	ug/L	ND	50	49.3	99	57-141	
Dibromochloromethane	ug/L	ND	50	54.0	108	59-147	
Dibromomethane	ug/L	ND	50	54.2	108	64-142	
Dichlorodifluoromethane	ug/L	ND	50	43.2	86	10-144	
Ethyl methacrylate	ug/L	ND	50	56.4J	113	58-147	
Ethylbenzene	ug/L	ND	50	52.7	105	50-143	
Hexachloro-1,3-butadiene	ug/L	ND	50	40.9	82	16-155	
lodomethane	ug/L	ND	50	15.9	32	10-154	
Isopropylbenzene (Cumene)	ug/L	ND	50	52.8	106	36-151	
Methyl-tert-butyl ether	ug/L	ND	50	50.9	102	66-138	
Methylene Chloride	ug/L	ND	50	52.0	104	53-126	
n-Butylbenzene	ug/L	ND	50	49.0	98	31-142	
n-Hexane	ug/L	ND	50	41.7	83	53-129	
n-Propylbenzene	ug/L	ND	50	49.3	99	39-145	
Naphthalene	ug/L	ND	50	54.8	110	51-135	
o-Isopropyltoluene	ug/L	ND	50	50.5	101	38-145	
sec-Butylbenzene	ug/L	ND	50	50.8	102	33-153	
Styrene	ug/L	ND	50	52.2	104	57-141	
ert-Butylbenzene	ug/L	ND	50	51.4	103	45-145	
Tetrachloroethene	ug/L	ND	50	50.4	101	43-149	
Toluene	ug/L	ND	50	52.0	104	57-137	
rans-1,2-Dichloroethene	ug/L	ND	50	51.7	102	63-133	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: GE Indy
Pace Project No.: 50361374

Date: 12/19/2023 01:36 PM

MATRIX SPIKE SAMPLE:	3519477						
		50361457010	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
trans-1,3-Dichloropropene	 ug/L	ND	50	50.1	100	56-140	
trans-1,4-Dichloro-2-butene	ug/L	ND	50	42.9J	86	36-169	
Trichloroethene	ug/L	ND	50	52.7	105	52-145	
Trichlorofluoromethane	ug/L	ND	50	58.5	117	52-144	
/inyl acetate	ug/L	ND	200	183	91	27-179	
Vinyl chloride	ug/L	ND	50	60.0	120	43-139	
Xylene (Total)	ug/L	ND	150	150	100	52-137	
1-Bromofluorobenzene (S)	%.				101	79-124	
Dibromofluoromethane (S)	%.				100	82-128	
Toluene-d8 (S)	%.				103	73-122	

SAMPLE DUPLICATE: 3519476						
		50361457009	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	ND ND	ND		20	
1,1,1-Trichloroethane	ug/L	ND	ND		20	
1,1,2,2-Tetrachloroethane	ug/L	ND	ND		20	
1,1,2-Trichloroethane	ug/L	ND	ND		20	
1,1-Dichloroethane	ug/L	ND	ND		20	
1,1-Dichloroethene	ug/L	ND	ND		20	
1,1-Dichloropropene	ug/L	ND	ND		20	
1,2,3-Trichlorobenzene	ug/L	ND	ND		20	
1,2,3-Trichloropropane	ug/L	ND	ND		20	
1,2,4-Trichlorobenzene	ug/L	ND	ND		20	
1,2,4-Trimethylbenzene	ug/L	ND	ND		20	
1,2-Dibromoethane (EDB)	ug/L	ND	ND		20	
1,2-Dichlorobenzene	ug/L	ND	ND		20	
1,2-Dichloroethane	ug/L	ND	ND		20	
1,2-Dichloropropane	ug/L	ND	ND		20	
1,3,5-Trimethylbenzene	ug/L	ND	ND		20	
1,3-Dichlorobenzene	ug/L	ND	ND		20	
1,3-Dichloropropane	ug/L	ND	ND		20	
1,4-Dichlorobenzene	ug/L	ND	ND		20	
1-Methylnaphthalene	ug/L	ND	ND		20	
2,2-Dichloropropane	ug/L	ND	ND		20	
2-Butanone (MEK)	ug/L	ND	ND		20	
2-Chlorotoluene	ug/L	ND	ND		20	
2-Hexanone	ug/L	ND	ND		20	
2-Methylnaphthalene	ug/L	ND	ND		20	
4-Chlorotoluene	ug/L	ND	ND		20	
4-Methyl-2-pentanone (MIBK)	ug/L	ND	ND		20	
Acetone	ug/L	ND	ND		20	
Acrolein	ug/L	ND	ND		20	
Acrylonitrile	ug/L	ND	ND		20	
Benzene	ug/L	ND	ND		20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: GE Indy
Pace Project No.: 50361374

Date: 12/19/2023 01:36 PM

SAMPLE DUPLICATE: 3519476 50361457009 Dup Max Parameter Units Result Result **RPD** RPD Qualifiers ND Bromobenzene ug/L ND 20 ND Bromochloromethane ug/L ND 20 ND Bromodichloromethane ug/L ND 20 Bromoform ND ND 20 ug/L ND ND 20 Bromomethane ug/L Carbon disulfide ug/L ND ND 20 ND Carbon tetrachloride ND 20 ug/L Chlorobenzene ND ND 20 ug/L Chloroethane ND ND 20 ug/L ND Chloroform ug/L ND 20 ND Chloromethane ug/L ND 20 6.8 cis-1,2-Dichloroethene ug/L 6.9 2 20 ND cis-1,3-Dichloropropene ug/L ND 20 Dibromochloromethane ND ND 20 ug/L Dibromomethane ND ND 20 ug/L Dichlorodifluoromethane ND 20 ug/L ND Ethyl methacrylate ND ND 20 ug/L ND Ethylbenzene ug/L ND 20 ND Hexachloro-1,3-butadiene ug/L ND 20 ND Iodomethane ND 20 ug/L ND ug/L Isopropylbenzene (Cumene) ND 20 ND Methyl-tert-butyl ether ug/L ND 20 ND Methylene Chloride ug/L ND 20 n-Butylbenzene ug/L ND ND 20 n-Hexane ND ND 20 ug/L n-Propylbenzene ug/L ND ND 20 ND ND Naphthalene ug/L 20 ND p-Isopropyltoluene ug/L ND 20 ND sec-Butylbenzene ND 20 ug/L ND ND 20 Styrene ug/L ND ND tert-Butylbenzene 20 ug/L ND Tetrachloroethene ND 20 ug/L ND ND 20 Toluene ug/L trans-1,2-Dichloroethene ug/L ND ND 20 trans-1,3-Dichloropropene ug/L ND ND 20 ND trans-1,4-Dichloro-2-butene ug/L ND 20 Trichloroethene ug/L ND ND 20 ND ND 20 Trichlorofluoromethane ug/L ND Vinyl acetate ND 20 ug/L ND Vinyl chloride 1.1J 20 ug/L ND ND 20 Xylene (Total) ug/L 4-Bromofluorobenzene (S) 96 94 %. 98 Dibromofluoromethane (S) %. 100 101 Toluene-d8 (S) %. 100

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

QUALIFIERS

Project: GE Indy
Pace Project No.: 50361374

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

Date: 12/19/2023 01:36 PM

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: GE Indy
Pace Project No.: 50361374

Date: 12/19/2023 01:36 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
50361374001	W-8-121123	RSK 175 Modified	767830		
50361374001	W-8-121123	EPA 5030/8260	768060		
50361374002	W-10-121123	EPA 5030/8260	768060		
50361374003 50361374004	MW-241-121123 Trip Blank-121123	EPA 5030/8260 EPA 5030/8260	768062 768062		

Pace Analytical	
WWW.PACELABS.COM	

CHAIN-OF-CUSTODY / Analytical Request Doc The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must t

Submitting a sample via this chain of custody constitutes acknowledgment and acceptance of the Pace Terms and Conditions found at https://info.pacelab

WO#:50361374

Section B	Section C	
Required Project Information:	Invoice Information:	
Report To: Chase Forman	Attention: Accounts Payable	50361374
Copy. To:	Company Name: Ramboll OH	
	Address:	Regulatory Agency
Purchase Order #: 1940006425	Pace Quote:	
Project Name: GE Indy	Pace Project Manager: heather.patterson@pacelabs.com	State / Location
Project #:	Pace Profile #: 9761-8	IN
	Required Project Information: Report To: Chase Forman Copy To: Purchase Order #: 1940006425 Project Name: GE Indy	Required Project Information: Report To: Chase Forman Copy To: Company Name: Ramboll OH Address: Purchase Order #: 1940006425 Project Name: GE Indy Invoice Information: Attention: Accounts Payable Company Name: Ramboll OH Address: Pace Quote: Pace Quote: heather.patterson@pacelabs.com

Section C

																	Re	queste	d Anal	ysis Filtered	(Y/N)				
	MATRIX	CODE	s to left)	COMP)	COI	LECTED		z			Pres	serva	atives		YIN										
# # #	SAMPLE ID One Character per box. (A-Z, 0-9 /, -) Sample Ids must be unique Drinking Water Water Water Water Water Variable Wipe Air Other Tissue		MATRIX CODE (see valid codes to left)	MPLE TYPE	START DATE TIME		END	SAMPLE TEMP AT COLLECTION	# OF CONTAINERS	Unpreserved H2SO4	HNO3	HCI	Na2S203	Methanol	Analyses Test	VOC by 8260	Dissolved Gases by AM20GAX	Metals, Field Filtered Fe Nitrate by 353.2	Sulfate by 300.0	TOC 5310		Residual Chlorine (Y/N)			
2	W-8-121123 W-10-12123 MW-241-12123		wt	GI.	2+1-23	1220			3	_	1	3				XXX	X						(X)	ر ع	
5	Trip Blank-121123		7	00	4	_			3			3				X							a)U	
11	ADDITIONAL COMMENTS		RELIN	IQUISHI	ED BY (AFFILIA	ATION	DA	ATE		пме			ACC	EPTED	BY / AF	FILIA	TION			DATE	TIME		SAMPL	CONDITI	DNS
	GAX for M/E/E/propane/propene/butane to Pace® Gulf Co	ast		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	lum	}	12-1	1-2	13	25	1	M.C	les	woll !	_					12-11-23	13:25	8.9	y	N	y
					3.0000	PLER NAM PRINT Nam SIGNATUR	e of SAI	MPLER	:	V A		5)	an	of H	+		DATE	Signe	d: //	71-	23	TEMP in C	Received on Ice	Custody Sealed	(14)

F-IN-Q-290-rev.23, 26Jun2023

SAMPLE CONDITION UPON RECEIPT FORM

any container with a septum cap or preserved with HCl. Circle: HN03 (<2) H2SO4 (<2) NaOH (>10) NaOH/ZnAc (>9) Any non-conformance to pH recommendations will be noted on the container count form Time 5035A TC placed in Freezer or Short Holds To Lab Residual Chlorine Check (SVOC 625 Pest/PCB 608) Rush TAT Requested (4 days or less): Custody Signatures Present? Readspace Wisconsin Sulfide? Headspace in VOA Vials (>6mm): See Containter Count form for details Trip Blank Present? Trip Blank Present?	Date/Time and Initials of person examining contents	: BC	12-11-	23 14:16					
(If yes)Seals Intact:	1. Courier: □FED EX □UPS ☑CLIENT □PACE	□NOW/J	ETT 🗆	OTHER	5. Packing Material:	☑ Bubble Wrap	Bubbl	e Bags	
3. Thermometer: 12345678 ABCDEFGH 4. Cooler Temperature(s):	2. Custody Seal on Cooler/Box Present:	No				☐ None	☐ Other		
4. Cooler Temperature(s):	(If yes)Seals Intact:	if no seals	were prese	ent)					
Cooler temp should be above freezing to 6°C	3. Thermometer: 12345678 ABCD	E F GH			6. Ice Type: Wet	☐ Blue ☐ None			
All discrepancies will be written out in the comments section below. Yes No USDA Regulated Soils? (HI, ID, NY, WA, OR,CA, NM, TX, OK, AR, LA, TN, AL, MS, NC, SC, GA, FL, or Puerto Rico) Short Hold Time Analysis (48 hours or less)? Analysis: Time 5035A TC placed in Freezer or Short Holds To Lab Time: Residual Chlorine Check (SVOC 625 Pest/PCB 608) Rush TAT Requested (4 days or less): Custody Signatures Present? Headspace Wisconsin Sulfide? Headspace in VOA Vials (>6mm): See Containter Count form for details Extra labels on Terracore Vials? (soils only) Yes No N/A All containers needing acid/base preservation have been pH CHECKED?: Exceptions: VOA, coliform, LLHg, O&G, RAD CHEM, and any container with a septum cap or preserved with HCI. Circle: HNO3 (<2) H2SO4 (<2) NaOH (>10) NaOH/ZnAc (>9) Any non-conformance to pH recommendations will be noted on the container count form Present Absent N/A Residual Chlorine Check (Total/Amenable/Free Cyanide) Headspace in VOA Vials (>6mm): See Containter Count form for details Trip Blank Present? Trip Blank Present? Trip Blank Custody Seals?:	4. Obbier remperature(s).								□ No
USDA Regulated Soils? (HI, ID, NY, WA, OR,CA, NM, TX, OK, AR, LA, TN, AL, MS, NC, SC, GA, FL, or Puerto Rico) Short Hold Time Analysis (48 hours or less)? Analysis: Time 5035A TC placed in Freezer or Short Holds To Lab Rush TAT Requested (4 days or less): Custody Signatures Present? Custody Signatures Present? Extra labels on Terracore Vials? (soils only) Yes No N/A All containers needing acid/base preservation have been pH CHECKED?: Exceptions: VOA, coliform, LLHg, O&G, RAD CHEM, and any container with a septum cap or preserved with HCI. CITIENT SHORT (CP) All containers needing acid/base preservation have been pH CHECKED?: Exceptions: VOA, coliform, LLHg, O&G, RAD CHEM, and any container with a septum cap or preserved with HCI. CIHECKED?: Exceptions: VOA, coliform, LLHg, O&G, RAD CHEM, and any container with a septum cap or preserved with HCI. CIHECKED?: Exceptions: VOA (coliform, LLHg, O&G, RAD CHEM, and any container with a septum cap or preserved with HCI. CIHECKED?: Exceptions: VOA (coliform, LLHg, O&G, RAD CHEM, and any container with a septum cap or preserved with HCI. CIHECKED?: Exceptions: VOA (>9) Any non-conformance to pH recommendations will be noted on the container count form Residual Chlorine Check (SVOC 625 Pest/PCB 608) Residual Chlorine Check (SVOC 625 Pest/PCB 608) Residual Chlorine Check (Total/Amenable/Free Cyanide) Headspace Wisconsin Sulfide? Headspace in VOA Vials (>6mm): See Containter Count form for details Trip Blank Present? Trip Blank Present? Trip Blank Custody Seals?:						should be above free	zing to 6°C		
USDA Regulated Soils? (HI, ID, NY, WA, OR,CA, NM, TX, OK, AR, LA, TN, AL, MS, NC, SC, GA, FL, or Puerto Rico) All containers needing acid/base preservation have been pH CHECKED?: Exceptions: VOA, coliform, LLHg, O&G, RAD CHEM, and any container with a septum cap or preserved with HCI. Circle: HNO3 (<2) H2SO4 (<2) NaOH (>10) NaOH/ZnAc (>9) Any non-conformance to pH recommendations will be noted on the container count form Time: Residual Chlorine Check (SVOC 625 Pest/PCB 608) Rush TAT Requested (4 days or less): Custody Signatures Present? Containers Intact?: Sample Label (IDs/Dates/Times) Match COC?: Except TCs, which only require sample ID Extra labels on Terracore Vials? (soils only) All containers needing acid/base preservation have been pH CHECKED?: Exceptions: VOA, coliform, LLHg, O&G, RAD CHEM, and any containers needing acid/base preservation have been pH CHECKED?: Exceptions: VOA, coliform, LLHg, O&G, RAD CHEM, and any containers needing acid/base preservation have been pH CHECKED?: Exceptions: VOA, coliform, LLHg, O&G, RAD CHEM, and any container with a septum cap or preserved with HCI. Circle: HNO3 (<2) H2SO4 (<2) NaOH (>10) NaOH/ZnAc (>9) Any non-conformance to pH recommendations will be noted on the container ount form Present Absent N/A Headspace Wisconsin Sulfide? Headspace Wisconsin Sulfide? Headspace Wisconsin Sulfide? Headspace Wisconsin Sulfide? Fresent Absent NOVOA Vials Sent NOVOA Vials Sent Trip Blank Present? Trip Blank Custody Seals?:	All			written out in the d	omments section below.			T	
OK, AR, LA, TN, AL, MS, NC, SC, GA, FL, or Puerto Rico) Short Hold Time Analysis (48 hours or less)? Analysis:	USDA Barrietad Saile 2 (HI ID NV WA OB CA NM TV	res	NO	All containers need	ling acid/base presentation b		Yes	No	N/A
Short Hold Time Analysis (48 hours or less)? Analysis: HN03 (<2) H2SO4 (<2) NaOH (>10) NaOH/ZnAc (>9) Any non-conformance to pH recommendations will be noted on the container count form Present Absent N/A Residual Chlorine Check (SVOC 625 Pest/PCB 608) Rush TAT Requested (4 days or less): Custody Signatures Present? Headspace Wisconsin Sulfide? Headspace in VOA Vials (>6mm): See Containter Count form for details Containers Intact?: Sample Label (IDs/Dates/Times) Match COC?: Except TCs, which only require sample ID Extra labels on Terracore Vials? (soils only) Trip Blank Custody Seals?:	OK, AR, LA, TN, AL, MS, NC, SC, GA, FL, or Puerto Rico)	,	/	CHECKED?: Excel	otions: VOA, coliform, LLHg,	O&G, RAD CHEM, and			
Residual Chlorine Check (SVOC 625 Pest/PCB 608) Rush TAT Requested (4 days or less): Custody Signatures Present? Headspace Wisconsin Sulfide? Headspace in VOA Vials (>6mm): See Containter Count form for details Trip Blank Present? Trip Blank Present? Residual Chlorine Check (SVOC 625 Pest/PCB 608) Residual Chlorine Check (Total/Amenable/Free Cyanide) Headspace Wisconsin Sulfide? Trip Blank Present?	Short Hold Time Analysis (48 hours or less)? Analysis:		~	HNO3 (<2) H2SO4 Any non-conformance					/
Custody Signatures Present? Headspace Wisconsin Sulfide? Headspace in VOA Vials (>6mm): See Containter Count form for details Trip Blank Present? Extra labels on Terracore Vials? (soils only) Headspace Wisconsin Sulfide? Trip Blank Present?	Time 5035A TC placed in Freezer or Short Holds To Lab	Time:		Residual Chlorine	Check (SVOC 625 Pest/PCB	608)	Present	Absent	N/A
Containers Intact?: Sample Label (IDs/Dates/Times) Match COC?: Except TCs, which only require sample ID Extra labels on Terracore Vials? (soils only) Headspace in VOA Vials (>6mm): See Containter Count form for details Trip Blank Present? Trip Blank Custody Seals?:	Rush TAT Requested (4 days or less):			Residual Chlorine	Check (Total/Amenable/Free	Cyanide)			
Containers Intact?: Sample Label (IDs/Dates/Times) Match COC?: Except TCs, which only require sample ID Extra labels on Terracore Vials? (soils only) Headspace in VOA Vials (>6mm): See Containter Count form for details Trip Blank Present? Trip Blank Present?	Custody Signatures Present?	/		Headspace Wiscon	sin Sulfide?				
Except TCs, which only require sample ID Trip Blank Present? Extra labels on Terracore Vials? (soils only) Trip Blank Custody Seals?:	Containers Intact?:	/					Present	Absent	No VOA Vials Sent
Extra rabels on Perracelle Viale, (estile striy)	Sample Label (IDs/Dates/Times) Match COC?: Except TCs, which only require sample ID			Trip Blank Present?					
COMMENTS:	Extra labels on Terracore Vials? (soils only)			Trip Blank Custody	Seals?:		/		
	COMMENTS:								

that are out of conformance **

																												that ar	e out of	conforma	nce ""
	1		MeOH (only)	1				1							1				•					ľ				Nitric	Sulfuric	Sodium Hydroxide	Sodium Hydroxide/ ZnAc
			SBS			-				AME	BER G	LASS		,				P	LAS1	ric					OTI	HER		Red	Yellow	Green	Black
COC Line Item	WGFU	WGKU BG1U	R	H GON	VOA VIAL HS >6mm	VG9U	VG9T	AGOU	AG1H	AG10	AG3U	AG3S	AG3SF	AG3B	BP1U	BP1N	BP2U	вРзи	BP3N	BP3F	BP3S	BP3B	BP3Z	ССЗН	CG3F	Syringe Kît	Matrix	HNO3 <2	H2SO4 <2	NaOH >10	NaOH/Zn Ac >9
1																				1							WT				
2				3																											
3																						11	-				Ш				
4				1																											
5																															
6																															•
7																															
8																															
9																															
10																		•												-	
11													300																		
12																			.		\perp										

Container Codes

	Glas	SS	
DG9H	40mL HCl amber voa vial	BG1T	glass
DG9P	40mL TSP amber vial	BG1U	1L unpreserved glass
DG9S	40mL H2SO4 amber vial	CG3U	250mL Unpres Clear Glass
DG9.T	40mL Na Thio amber vial	AG0U	100mL unpres amber glass
DG9U	40mL unpreserved amber vial	AG1H	1L HCl amber glass
VG9H	40mL HCI clear vial	AG1S	1L H2SO4 amber glass
VG9T	40mL Na Thio. clear vial	AG1T	1L Na Thiosulfate amber glass
VG9U	40mL unpreserved clear vial	AG1U	·1liter unpres amber glass
I	40mL w/hexane wipe vial	AG2N	500mL HNO3 amber glass
WGKL	8oz unpreserved clear jar	AG2S	500mL H2SO4 amber glass
WGFU	4oz clear soil jan	AG2U	500mL uppres amber glass
JGFU	4oz unpreşerved amber wide	AG3S	250mL H2SO4 amber glass
CG3H	250mL clear glass HCI	AG3SF	250mL H2SO4 amb glass field filtered
ĊG3F	250mL clear glass HCl, Fjeld Filter . ,	AG3U	250mL unpres amber glass
BG1H	1L HCl clear glass	AG3B	250mL NaOH amber glass
BG1S	1L H2SO4 clear glass		

	F	Plastic
BP1B 1L NaOH plastic	BP4U 12	5mL unpreserved plastic
BP1N 1L HNO3 plastic	BP4N 12	5ml, HNO3 plastic
BP18 1L H2SO4 plastic	BP4S 12	5mL H2SO4 plastic
BP1U 1L unpreserved plastic		Miscellaneous
BP1Z 1L NaOH, Zn, Ac		Miscellaneous
3P2N 500mL HNO3 plastic	Syringe K	it LL Cr+6 sampling kit
BP2C 500mL NaOH plastic	ZPLC Zir	oloc Bag
BP2S 500mL H2SQ4 plastic	R Te	rracore Kit
500mL unpreserved plastic	SP5T 12	0mL Coliform Sodium Thiosulfate
8P2Z 500mL NaOH, Zn Ac	GN Ge	eneral Container
BP3B 250mL NaOH plastic	U Su	mma Can (air sample)
P3N 250mL HNO3 plastic	WT Wa	ater
3P3F 250mL HNO3 plastic-field filtered	SL So	lid
P3U 250mL unpreserved plastic	OL: Oil	
P3S 250mL H2SO4 plastic	NAL No	n-aqueous liquid
P3Z 250mL NaOH, ZnAc plastic	WP Wi	pe
P3R 250mL Unpres. FF SO4/OH buffer		

APPENDIX D VOC CONCENTRATION TREND CHARTS

APPENDIX D-1 TCE AND BREAKDOWN PRODUCTS

APPENDIX D-2 TCA AND BREAKDOWN PRODUCTS

